
Portable Systems Group

Windows NT Alerts Design Note

Author: David N. Cutler

Original Draft 1.0, February 9, 1989
Revision 1.2, March 30, 1989

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note 2

This design note discusses a proposal to implement alerts in
both kernel and user mode. The alert capability can be used 
to interrupt thread execution in either processor mode at 
well defined points. A companion design note on APC's 
contains information and algorithms that are pertinent to 
this design.

There are three alert specific kernel services; 
TestAlertThread, AlertThread, and AlertResumeThread. In 
addition, the kernel Wait functions take a mode and an 
alertable flag as arguments.

Each thread has an alerted flag for each of the processor 
modes user and kernel. These flags are set by calling the 
AlertThread function and specifying the thread and the mode 
which are to be alerted.

If AlertThread is called and the target thread is in a wait 
state, then several additional tests are performed to 
determine the correct action to take. 

If the mode of the wait is user, the alertable flag is set, 
and the alert mode is user, then a thread specific APC is 
queued to user mode which will raise the condition 
"alerted", the user APC pending flag is set, and the thread 
is unwaited with a completion status of "alerted".

If the mode of the wait is kernel or user, the alertable 
flag is set, and the alert mode is kernel, then the thread 
is unwaited with a status of "alerted". There is no APC 
queued for kernel mode.

The following pseudo code describes the logic of 
AlertThread:

PROCEDURE AlertThread (
IN Mode : KtProcessorMode;
IN Tcb : POINTER KtThread;

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note 3

);

BEGIN

Acquire dispatcher database lock;
IF Tcb.State == Waiting THEN

IF Tcb.WaitMode >= Mode AND Tcb.Alertable THEN
IF Mode == User THEN

Queue Tcb.AlertAcb;
Tcb.UserApcPending = True;

END IF;
Unwait thread with a status of Alerted;

ELSE
Tcb.Alerted[Mode] = True;

END IF;
ELSE

Tcb.Alerted[Mode] = True;
END IF;
Release dispatcher database lock;

END AlertThread;

When the user mode alerted flag gets set, it remains set 
until either a TestAlert or a Wait alertable is performed 
which clears the flag. 

The kernel mode alerted flag is treated somewhat differently
in that it is cleared on each system service entry to the 
system. The reasoning behind this is that a kernel mode 
alert should only persist for the duration of time that 
execution continues in kernel mode. As soon as execution 
leaves kernel mode, the alerted flag is no longer 
significant. This is a very important feature which allows 
the conditional aborting of native system services by 
protected subsystems which provide system services for other
operating system API's. This subject is discussed in more 
detail at the end of this document.

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note 4

The kernel service AlertResumeThread allows a thread to be 
alerted and then resumed in a single operation. This 
operation is really a kernel mode AlertThread followed by a 
ResumeThread, but is provided as a kernel service so that is
can be executed without any race conditions.

The following pseudo code describes the logic of 
AlertResumeThread:

PROCEDURE AlertResumeThread (
IN Tcb : POINTER KtThread;
) RETURNS integer;

VARIABLE

OldCount : integer;

BEGIN

Acquire dispatcher database lock;
IF Tcb.State == Waiting THEN

IF Tcb.Alertable THEN
Unwait thread with a status of Alerted;

ELSE
Tcb.Alerted[Kernel] = True;

END IF;
ELSE

Tcb.Alerted[kernel] = True;
END IF;
OldCount = Tcb.SuspendCount;
IF Tcb.SuspendCount <> 0 THEN

Tcb.SuspendCount = Tcb.SuspendCount - 1;
IF Tcb.SuspendCount == 0 THEN

Release Tcb.SuspendSemaphore;
END IF;

END IF;
Release dispatcher database lock;
RETURN OldCount;

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note 5

END AlertResumeThread;

TestAlertThread tests the alerted flag for a specified 
processor mode and returns a status value of "alerted" if 
the flag was set and "normal" if the flag was clear. If the 
alerted flag was set, then it is cleared, and if the 
specified mode is user, then an alert APC is queued to user 
mode and user APC pending is set in the calling thread's 
TCB. 

In addition, TestAlertThread also tests whether a user APC 
should be delivered. If the specified mode is user and the 
user APC queue contains an entry, then APC pending is set in
the calling thread's TCB.

The following pseudo code describes the logic of TestAlert:

PROCEDURE TestAlertThread (
IN Mode : KtProcessorMode;
) RETURNS KtStatus;

BEGIN

Acquire dispatcher database lock;
Get current TCB address;
IF Tcb.Alerted[Mode] THEN

Tcb.Alerted[Mode] = False;
IF Mode == User THEN

Queue Tcb.AlertAcb;
Tcb.UserApcPending = True;

END IF;
Release dispatcher database lock;
RETURN Alerted;

ELSE
IF Mode == User AND Tcb.ApcQueue[User] <> NIL THEN

Tcb.UserApcPending = True;
END IF;

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note 6

Release dispatcher database lock;
RETURN Normal;

END IF;
END TestAlertThread;

Wait tests the alerted flags for the specified and all more 
privileged processor modes if the alertable argument value 
is true. If an alerted flag is set, then a status value of 
"alerted" is returned.

In addition, Wait also tests whether a user APC should be 
delivered if the alertable argument value is true and the 
specified mode is user. For this case, if the user APC queue
contains an entry, then APC pending is set in the calling 
thread's TCB and a status value of "UserApc" is returned.

The following pseudo code describes the logic of Wait:

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note 7

PROCEDURE Wait (
IN Mode : KtProcessorMode;
IN Alertable : boolean;
IN WaitObject : POINTER KtDispatcherObject;
IN Timeout : POINTER integer;
) RETURNS KTStatus;

BEGIN

Repeat:
Acquire dispatcher database lock;
Get current TCB address;
IF Alertable THEN

IF Tcb.Alerted[Mode] THEN
Tcb.Alerted[Mode] = False;
IF Mode == User THEN

Queue Tcb.AlertAcb;
Tcb.UserApcPending = True;

END IF;
Release dispatcher database lock;
RETURN Alerted;

ELSEIF Mode == User THEN
IF Tcb.UserApcQueue <> NIL THEN

Tcb.UserApcPending = True;
Release dispatcher database lock;
RETURN UserApc;

ELSEIF Tcb.Alerted[Kernel] THEN
Tcb.Alerted[Kernel] = False;
Release dispatcher database lock;
RETURN Alerted;

END IF;
END IF;

END IF;
IF WaitObject.Signal THEN

Satisfy wait for WaitObject;
Release dispatcher database lock;
RETURN Tcb.WaitStatus;

ELSE
Tcb.Alertable = Alertable;

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note 8

Construct wait control block for WaitObject;
Initialize Tcb.Timer with time out value;
Insert wait control block in wait queue;
Insert Tcb.Timer in timer queue;
Select new thread to run;
Swap context to new thread;
IF Tcb.WaitStatus == KernelApc THEN

Goto Repeat;
ELSE

RETURN Tcb.WaitStatus;
END IF;

END IF;
END Wait;

It is the responsibility of the executive to test for the 
"alerted" return status from TestAlert and Wait and perform 
the correct operation (e.g. cleaning up data structure, 
unwinding, etc).

Wait and AlertThread both allow a thread that is waiting 
user mode alertable to be awakened by a kernel mode alert. 
If this were not done, then it would not be possible to 
abort the Wait system service.

The interesting combinations of initial conditions and the 
resultant action when a Wait system service is executed are 
given below.

Case 1

Wait Mode = Kernel
Tcb.Alerted[User] = True
Tcb.Alerted[Kernel] = False
Alertable = True

Action - Put thread in wait state

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note 9

Case 2

Wait Mode = Kernel
Tcb.Alerted[User] = x
Tcb.Alerted[Kernel] = True
Alertable = True

Action - Clear Tcb.Alerted[Kernel] and return Alerted

Case 

Wait Mode = User
Tcb.Alerted[User] = True
Tcb.Alerted[Kernel] = x
Alertable = True

Action - Clear Tcb.Alerted[User], queue Tcb.AlertAcb,
and set Tcb.UserApcPending

Case 4

Wait Mode = User
Tcb.Alerted[User] = False
Tcb.Alerted[Kernel] = True
Alertable = True

Action - Clear Tcb.Alerted[Kernel] and return Alerted

Case 5

Wait Mode = User
Tcb.Alerted[User] = False
Tcb.Alerted[Kernel] = False
Alertable = True

Action - Put thread in wait state

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note 10

Kernel mode alerts can be used to implement the semantics 
necessary to abort native system services. The following 
discussion describes how this can be implemented in Windows 
NT.

In Mach the operations necessary to abort a native system 
service are suspend, abort service, and resume. This 
capability is used to get a thread out of a possible wait 
state in the system and deliver a signal, terminate 
execution, etc.

A similar set of primitives can be provided in Windows NT 
using the kernel alert capability.

Windows NT suspends a thread by sending it a normal kernel 
APC that causes the thread to wait on an semaphore that is 
built into the thread object. The resume operation simply 
releases the builtin semaphore which continues thread 
execution.

The suspend wait operation is nonalertable to ensure that 
the alert and resume operation functions properly; see 
below.

If a thread is in a wait state when it is suspended, then 
the wait completion status is set to "kernel APC". This is 
done so the wait can be repeated when the APC returns.

Implementing the primitives to abort native system services 
does not quite solve the whole problem. Each native service 
that can result in a long wait must be written such that it 
is responsive to kernel alerts. This means that a native 
service should wait alertable in kernel mode when it does a 
wait that could take a long time. Also, if very long 
algorithms are being performed, then TestAlert should also 
be called at appropriate points.

It is preferable that a native service either complete 
successfully or be entirely aborted. For those cases where 

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note 11

there are really two parts to the service such as an 
operation followed by a wait, the service should be broken 
into two parts. Each part should be executed separately from
the calling mode.

A protected subsystem that is a system service server can 
stop, alter, and a resume a thread by performing the 
sequence of operations suspend, get state, set state, and 
alert and resume.

If a native service is active when the suspend operation 
takes place, then the kernel alerted flag will remain set 
for the duration of the service after the thread is resumed.
The alerted flag can be tested by the service using the 
TestAlert function.

A more interesting case is when the native service is 
waiting kernel mode alertable. The suspend service causes a 
normal kernel APC to be sent to the target thread which 
completes its wait with a status of "kernel APC". The target
thread then waits nonalertable on its builtin suspend 
semaphore.

When the subsystem executes the alert and resume service, 
the kernel alerted flag is set in the target thread and the 
target thread's suspend semaphore is released. This causes 
the target thread to be unwaited with a status that is the 
key value of the semaphore.

Unwaiting the thread causes it to continue execution in the 
suspend APC routine which simply returns to the kernel APC 
delivery code. The kernel APC delivery code restores the 
state of the thread and resumes execution at the point of 
interruption which is in the wait code. The wait code tests 
the wait completion status and determines that the wait was 
satisfied to deliver a kernel APC. The wait is repeated and 
finds that the kernel alerted flag is set and that the wait 
is alertable. Thus it returns immediately with a wait 
completion status of "alerted".

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note 12

Note that the kernel APC delivery code must save and restore
the wait completion status in the TCB so that the subsequent
suspend wait does not destroy it.

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note 13

Revision History:

Original Draft 1.0, February 9, 1989

Revision 1.1, February 10, 1989

1. Include tests for nonempty user APC queue in 
TestAlert and Wait algorithm descriptions.

Revision 1.2, March 30, 1989

1. Minor edits to conform to standard format.

[end of alerts]

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License


