
Portable Systems Group

Windows NT APC Design Note

Author: David N. Cutler

Original Draft 1.0, February 6, 1989
Revision 1.2, March 30, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

APC Design Note 2

The following design note describes a proposal for the
handling of APC's in Windows NT. The companion design notes
on alerts and attach process contain information and
algorithms that are pertinent to this design.

The nice thing about APC's is that they interrupt thread
execution at any point and cause a procedure to be executed
in the context of a specified thread. This capability can be
used to reduce the number of threads required to perform a
particular function and can alleviate the need for polling.

The new model for implementing OS/2 and POSIX compatibility
with protected subsystems would suggest that APC's could be
used to substantially reduce the overhead and implementation
complexity of these subsystems. For instance OS/2 timers
could be implemented by NT timers that queue an APC when
they expire. The APC would be fielded by the OS/2 subsystem
which would clear the appropriate semaphore and delete or
repeat the timer as appropriate.

As good as this all sounds it is not without flaw. The very
thing that makes APC's so useful is also the same thing that
makes them so bad. This is the fact that they interrupt a
thread at arbitrary points. To get past this liability, the
capability to "disable" APC's over short regions of code is
needed. But this then has the problem of not being very
modular and also requires a lot of thought on the part of
the user. Writing code that is "APC" safe is VERY difficult.

SRC never recognized the need for APC's but did recognize
that it was useful to be able to send a thread an alert
signal. This signal typically means quit what you are doing
and reset to some canonical state. SRC's system provides a
function to send an alert to a thread (AlertThread), a
function to test if a thread had been alerted (TestAlert),
and a form of wait that allows a thread to be alerted while
it is waiting (WaitAlertable).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

APC Design Note 3

When TestAlert or WaitAlertable is called and the subject
thread has been alerted, then the condition "alert" is
raised. In addition, if AlertThread is called while a thread
is waiting as the result of a call to WaitAlertable, then
the thread is unwaited and the "alert" condition is raised.

The nice thing about the SRC alert design is that the alert
condition occurs at well defined points in the execution of
a program. These points are exactly the points where the
program says it is alertable. Writing code that is "alert"
safe is easy.

We do not want to drop the flexibility of APC's, but at the
same time we do not want to interrupt the execution of a
thread at arbitrary points. Therefore why not combine the
notion of alertable with the functionality of APC's? To do
this we simply do not deliver an APC unless the thread is
alertable or calls TestAlert.

We only need to do this for user mode, and it fact, do not
want to do this for kernel mode as we need to break into the
kernel mode execution of a thread at an arbitrary point. As
system designers this does not (or more succinctly better
not!) present us with the same level of difficulty that it
does the run of the mill user.

Thus in user mode, APC's are only delivered at points where
the program is alertable. In kernel mode APC's are delivered
when the appropriate enabling conditions are present.

The following is an explantion of how APC's would work using
the concepts described above.

There are three types of APC's:

1. special kernel

2. normal kernel

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

APC Design Note 4

3. normal user

A special kernel APC is deliverable whenever the Interrupt
Request Level (IRQL) of the corresponding thread is equal to
zero, and executes in kernel mode at IRQL 1. This type of
APC is used to break into a thread's execution and perform
some short operation such as posting I/O status. Code that
runs as the result of a special kernel APC is not allowed to
acquire any mutexes that can also be acquired at IRQL 0.
Special kernel APC code is allowed to take page faults, and
thus memory management code must ensure that it runs at IRQL
1 when it owns a mutex that could also be acquired during a
special kernel APC.

A normal kernel APC is deliverable whenever the IRQL of the
corresponding thread is equal to zero, a normal kernel APC
is not already in progress, and the thread does not own any
kernel level mutexes. Normal kernel APC code executes at
IRQL 0 and is allowed to execute any code including all
system services.

A normal user APC is deliverable at any time the target
thread is user mode alertable. Normal user APC code executes
at IRQL 0 and is allowed to execute any code including all
system services.

Both normal kernel and normal user APC's can also specify a
routine that is to be executed in kernel mode at IRQL 1 just
prior to executing the normal APC routine.

Each thread has a machine state which includes IRQL, an APC
pending flag for each of the modes kernel and user, an APC
in progress flag for kernel mode, and the number of mutexes
that are owned in kernel mode. This state is used to
determine when an APC should be delivered to a thread.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

APC Design Note 5

Unlike VAX or PRISM, there is no hardware support for APC's.
Thus at each exit from kernel mode (i.e. on each REI type of
operation), appropriate tests must be made to determine
whether an APC should be delivered or not.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

APC Design Note 6

The following pseudo code describes the logic of system
exit:

ExitFromSystem:

disable interrupts;
IF Previous IRQL == 0 THEN

Get current TCB address;
IF Previous mode == Kernel THEN

IF Tcb.KernelApcPending THEN
IRQL = 1;
Call kernel APC delivery code;

END IF;
ELSEIF Tcb.UserApcPending THEN

IRQL = 1;
Call user APC delivery code;

END IF;
END IF;
Restore state and continue execution;

The user APC delivery code is only called when an APC can
actually be delivered to user mode. Calling the kernel APC
delivery code, however, does not guarantee that a kernel APC
can really be delivered. Further checks must be performed to
ensure that proper enabling conditions are present. These
tests include whether the thread currently owns any mutexes
and whether a normal kernel APC is already in progress.

A thread in Windows NT can be in one of six states:

1. initialized - the thread has been initialized but
has not been readied for execution.

2. running - the thread is currently in execution on
some processor.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

APC Design Note 7

3. ready - the thread is either in a processor ready
queue (i.e. ready to execute) or in a process
ready queue (i.e. process is not in balance set).

4. standby - the thread has been selected to run on a
processor but has not actually started its
execution.

5. terminated - the thread has terminated but has not
yet been rundown (e.g. all resources have not been
returned).

6. waiting - the thread is waiting on one or more
dispatcher objects to attain a state of signaled.

When an APC is queued, certain tests must be performed to
determine what action if any should be taken.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

APC Design Note 8

The following pseudo code describes the logic of queuing an APC:

PROCEDURE QueueApc (
IN Acb : POINTER KtApc;
IN Tcb : POINTER KtThread;
);

BEGIN

IF Acb.Mode == Kernel THEN
IF Acb.Type == Special THEN

Insert APC at front of thread kernel APC
queue selected by Acb.ApcIndex;

ELSE
Insert APC at end of thread kernel APC queue

selected by Acb.ApcIndex;
END IF;
IF Tcb.State == Running AND
 Acb.ApcIndex == Tcb.ApcIndex THEN

IF Tcb.NextProcessor == CurrentProcessor THEN
Set software interrupt at IRQL 1;

ELSE
Set APC delivery request for target

processor;
Set interrupt request for target

processor;
END IF;

ELSEIF (Tcb.State == Waiting AND
 Acb.ApcIndex == Tcb.ApcIndex AND
 Tcb.WaitIrql == 0) AND
 (Acb.Type == Special OR
 (Tcb.MutexCount == 0 AND

 NOT Tcb.KernelApcInProgress)) THEN
Unwait thread with status of KernelApc;

END IF;
Tcb.KernelApcPending = True;

ELSE
Insert APC at the end of thread user APC queue

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

APC Design Note 9

selected by Acb.ApcIndex;
IF Tcb.State == Waiting AND
 Acb.ApcIndex == Tcb.ApcIndex AND
 Tcb.WaitMode == User AND
 Tcb.Alertable THEN

Tcb.UserApcPending = True;
Unwait thread with status of Alerted;

END IF;
END IF;

END QueueApc;

A thread may be unwaited to execute a special kernel, normal
kernel, or normal user APC.

If the APC executes in kernel mode then the APC will have
already been executed by the time that execution continues
in the wait code. For this case the wait function is merely
repeated.

If the APC executes in user mode, then execution continues
in the wait code without having deliverd the user APC. For
this case, the wait code simply returns the status "alerted"
to the executive level Wait routine. The executive level
Wait routine must return a status of "RepeatService" to the
system service dispatch. The system service dispatcher backs
up the PC so that the wait service will be repeated,
restores state as necessary, and then executes the "REI"
which will cause a user APC to occur.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

APC Design Note 10

Revision History

Original Draft 1.0, February 6, 1989

Revision 1.1, February 10, 1989

1. Move alert algorithms to alert design note.

2. Add test for attached process in QueueApc
procedure.

3. Add software interrupt request when APC is
queued to the current processor in kernel
mode.

4. Correct algorithm for delivery of user APC.

Revision 1.2, March 30, 1989

1. Minor edits to confrom to standard format.

2. Add capability to receive APC's while attached
to another address space.

[end of apc.doc]

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

