
Portable Systems Group

Windows NT Argument Validation Specification

Author: David N. Cutler

Original Draft, May 4, 1989
Revision 1.1, May 5, 1989
Revision 1.2, May 10, 1989
Revision 1.3, July 15, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Argument Validation Specification

1. Overview... 1

2. Requirements... 1

3. Operation... 1

4. Interfaces.. 3
4.1 Probe for Readability and Read Argument Value............................... 3
4.2 Probe for Writeability and Read Argument Value.............................. 4
4.3 Probe for Writeability and Read/Write Argument Value................... 5
4.4 Probing An Aggregate Value... 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

i

Windows NT Argument Validation Specification

1. Overview

This document describes the argument probing and capture requirements
to which all system services must adhere.

System services must be written such that they are robust and provide
protection against malicious attack and inadvertent program bugs. It must
not be possible to crash or corrupt the system by passing an invalid
argument value, a pointer to memory that is not accessible to the caller, or
by dynamically altering or deleting the memory occupied by an argument in
a simultaneously executing thread.

2. Requirements

Every system service must ensure that the arguments on which it operates
are valid (i.e., values are correct). This is essential to robust system operation
and involves the capturing of values and the probing of argument addresses
at appropriate points.

In general, a system service should capture all arguments on entry to the
procedure. This ensures that the caller or one of its cohorts (buddy threads)
cannot dynamically alter the value of the argument after it has been read
and verified, or delete the memory in which it is contained.

In some cases, it is not necessary to capture the value of an argument
immediately. Such is the case for I/O buffers and name strings. However, all
pointers MUST be captured and the addresses to which they point MUST be
probed for accessibility.

Fortunately, most arguments do not need explicit capture since they are
passed in registers. Arguments that are passed in memory are probed and
captured by the system service dispatcher as necessary.

3. Operation

The address space layout of Windows NT contains a boundary that
delineates user address space from system address space. All addresses
above the boundary are considered system addresses and all addresses
below the boundary are considered user addresses.

Pages in the system part of the address space are owned by kernel mode
and are not accessible to the user unless they are double mapped into the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

1

Windows NT Argument Validation Specification

user part of the address space. Pages in the user part of the address space
are owned by user mode and the access for kernel mode is identical to that
for user mode.

The executive NEVER creates a page in the user part of the address space
that is owned by kernel mode. Furthermore, at the boundary between user
address space and system address space, there are 64K bytes that are
inaccessible to all modes. This address space layout makes it possible to
determine whether an address is a valid user address simply by doing a
boundary comparison.

When a system service is called, the trap handler gets control, saves state,
and transfers control to the system service dispatcher. The system service
dispatcher determines which system service is being called, and obtains the
address of the appropriate function and the number of in-memory
arguments from a dispatch table. If the previous processor mode is user
mode and there is one or more in-memory arguments, then the in-memory
argument list is probed and then copied to the kernel stack. If an access
violation occurs during the copy, then the system service is completed with
a status of access violation. If an access violation does not occur, then the
the pointer to the in-memory argument list is changed to point to the copy
of the arguments on the kernel stack. The system service dispatcher sets up
a catchall condition handler, and then calls the system service function.

The first thing the system service should do is establish a condition handler.
This handler should be prepared to handle access violations that may occur
as argument pointers are dereferenced to read or write actual argument
values.

Next, the system service code should obtain the previous processor mode. If
the previous processor mode was kernel, then there is no need to probe any
arguments. The executive does not call itself with bad arguments.

If the previous processor mode was user, then any argument values that are
read or written by dereferencing a pointer must be probed for accessibility.
Probing is accomplished by first ensuring that the address of the variable is
within the user's address space and then reading or writing the variable as
appropriate. The code that actually probes pointer-related arguments does
not set up a condition handler. It merely does the boundary check and then
reads or writes the indicated location. If the boundary check fails, an access

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

2

Windows NT Argument Validation Specification

violation condition is raised. If the memory is inaccessible, an access
violation is raised by hardware. Thus probes are extremely cheap.

The complete code at the beginning of a system service should be
constructed as follows:

// set up condition handler to catch access violations
.
.
.

if (GetPreviousMode() != KernelMode) {
.
.
.

// probe and capture reference arguments
.
.
.

}

At this point in the execution of a system service, all input values have been
captured and all output variables have been probed for writeability. The
system service performs its function, writes output values as necessary, and
returns a status that indicates whether the service succeeded or failed.

During the writing of output values, an access violation can occur because
another thread or user altered the address space of the calling thread.
Access violations that occur at this time are silent and do not cause the
service to fail. If this were not the case, then it would be very difficult to
actually complete a system service since code would have to be added to
back out and undo the service right up until the very last output value is
written. If the caller receives a success status under such conditions, it is
likely that the caller will attempt to access one of the output values and get
an access violation.

4. Interfaces

The following sections describe the interfaces that are provided to probe
arguments for read and write accessibility.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

3

Windows NT Argument Validation Specification

4.1 Probe for Readability and Read Argument Value

The following functions provide the capability to probe a primitive data type
for readability and to read an argument value.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

4

Windows NT Argument Validation Specification

CHAR
ProbeAndReadChar (

IN PCHAR Address
);

UCHAR
ProbeAndReadUchar (

IN PUCHAR Address
);

SHORT
ProbeAndReadShort (

IN PSHORT Address
);

USHORT
ProbeAndReadUshort (

IN PUSHORT Address
);

LONG
ProbeAndReadLong (

IN PLONG Address
);

ULONG
ProbeAndReadUlong (

IN PULONG Address
);

QUAD
ProbeAndReadQuad (

IN PQUAD Address
);

UQUAD
ProbeAndReadUquad (

IN PUQUAD Address
);

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

5

Windows NT Argument Validation Specification

HANDLE
ProbeAndReadHandle (

IN PHANDLE Address
);

BOOLEAN
ProbeAndReadBoolean (

IN PBOOLEAN Address
);

The previous functions are used to probe and read a value pointed to by a
safe pointer. A safe pointer is one that has either been captured on
procedure entry or which has been previously captured with one of the
these functions. The functions compare the pointer value to the user/system
address boundary, read the appropriate data-type value, and return the
value as the function value. If the value is not of consequence, then the
function value is simply not assigned to a variable. Note that both signed
and unsigned data types are provided.

4.2 Probe for Writeability and Read Argument Value

The following functions provide the capability to probe a primitive data type
for writeability and read an argument value.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

6

Windows NT Argument Validation Specification

CHAR
ProbeForWriteChar (

IN PCHAR Address
);

UCHAR
ProbeForWriteUchar (

IN PUCHAR Address
);

SHORT
ProbeForWriteShort (

IN PSHORT Address
);

USHORT
ProbeForWriteUshort (

IN PUSHORT Address
);

LONG
ProbeForWriteLong (

IN PLONG Address
);

ULONG
ProbeForWriteUlong (

IN PULONG Address
);

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

7

Windows NT Argument Validation Specification

QUAD
ProbeForWriteQuad (

IN PQUAD Address
);

UQUAD
ProbeForWriteUquad (

IN PUQUAD Address
);

HANDLE
ProbeForWriteHandle (

IN PHANDLE Address
);

BOOLEAN
ProbeForWriteBoolean (

IN PBOOLEAN Address
);

The previous functions are used to probe for writeability and read a value
pointed to by a safe pointer. A safe pointer is one that has either been
captured on procedure entry or which has been previously captured with
one of these functions. The functions compare the pointer value to the
user/system address boundary, read the appropriate data type value, write
the value that was read back into memory, and return the original value as
the function value. If the value is not of consequence, then the function
value is simply not assigned to a variable. Note that both signed and
unsigned data types are provided.

4.3 Probe for Writeability and Read/Write Argument Value

The following functions provide the capability to probe a primitive data type
for writeability, read an argument value, and write a specified value.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

8

Windows NT Argument Validation Specification

CHAR
ProbeAndWriteChar (

IN PCHAR Address,
IN CHAR Value
);

UCHAR
ProbeAndWriteUchar (

IN PUCHAR Address,
IN UCHAR Value
);

SHORT
ProbeAndWriteShort (

IN PSHORT Address,
IN SHORT Value
);

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

9

Windows NT Argument Validation Specification

USHORT
ProbeAndWriteUshort (

IN PUSHORT Address,
IN USHORT Value
);

LONG
ProbeAndWriteLong (

IN PLONG Address,
IN LONG Value
);

ULONG
ProbeAndWriteUlong (

IN PULONG Address,
IN ULONG Value
);

QUAD
ProbeAndWriteQuad (

IN PQUAD Address,
IN QUAD Value
);

UQUAD
ProbeAndWriteUquad (

IN PUQUAD Address,
IN UQUAD Value
);

HANDLE
ProbeAndWriteHandle (

IN PHANDLE Address,
IN HANDLE Value
);

BOOLEAN
ProbeAndWriteBoolean (

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

10

Windows NT Argument Validation Specification

IN PBOOLEAN Address,
IN BOOLEAN Value
);

The previous functions are used to probe a primitive data type for
writeability and read a value pointed to by a safe pointer. In addition, the
value that is to be written is specified as an argument to the function. A safe
pointer is one that has either been captured on procedure entry or which
has been previously captured with one of these functions. The functions
compare the pointer value to the user/system address boundary, read the
appropriate data-type value, write the specified value to memory, and
return the original memory contents as the function value. If the value is not
of consequence, then the function value is simply not assigned to a variable.
Note that both signed and unsigned data types are provided.

4.4 Probing An Aggregate Value

The following functions provide the capability to probe aggregate data types
(i.e., structures, arrays, strings, etc.) for read and write accessibility.

VOID
ProbeForRead (

IN PCHAR Address,
IN ULONG Length
);

VOID
ProbeForWrite (

IN PCHAR Address,
IN ULONG Length
);

The previous functions are used to probe an aggregate for read or write
accessibility using a safe pointer. A safe pointer is one that has either been
captured on procedure entry or which has been previously captured with
one of the preceding functions. The functions compare the starting and
ending addresses of the specified aggregate for read or write accessibility
and then read or write one character from each page that is spanned by the
aggregate. Note that these functions do not capture the aggregate value.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

11

Windows NT Argument Validation Specification

Revision History:

Original Draft 1.0, May 4, 1989

Revision 1.1, May 5, 1989

1. Add capturing of reference arguments to sample system service
code.

2. Change data type definitions to make Portable System Group
conventions.

Revision 1.2, May 10, 1989

1. Move the capturing and probing of the in-memory argument list
into the system service dispatcher.

Revision 1.3, July 15, 1989

1. Add functions to probe handle and boolean values.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

12

	1. Overview
	2. Requirements
	3. Operation
	4. Interfaces
	4.1 Probe for Readability and Read Argument Value
	4.2 Probe for Writeability and Read Argument Value
	4.3 Probe for Writeability and Read/Write Argument Value
	4.4 Probing An Aggregate Value

