
Portable Systems Group

Windows NT Attach Process Design Note

Author: David N. Cutler

Original Draft 1.0, February 8, 1989
Revision 1.2, March 30, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 2

This design note discusses a proposal that would allow a
thread to attach to the address space of another process,
execute code in the attached process's address space, and
then detach and resume execution in the original process
address space. It is envisioned that this capability will be
required to implement the newly proposed system structure.

This capability would not be exported to user mode at all.
It is intended for internal use by the executive layer of
the system.

The new system structure (i.e. system service servers)
requires the ability to perform certain operations on behalf
of another process. Typical of these operations is creating
and deleting virtual memory. In order to implement these
operations, we either have to build the data structures and
algorithms such that they can be done outside the recipient
process or architect a way to actually execute code within
the address space of another process.

A good example of a difficult service to build outside of a
process is the deletion of virtual memory. Mach stands on
its head to implement this capability and, while it is doing
such an operation, a global virtual memory lock must be
held.

Graham Hamilton (of exDECwest fame) suggested that a way to
do this was to have some number of anonymous system threads
which could do such an operation. A requesting thread would
build a request packet that contained the arguments of the
operation to be performed, the function that was to be
executed, a pointer to the address map that the thread was
to execute in, and an event to synchronize the completion of
the operation. The request packet would then be queued to
the worker thread, a semaphore signaled, and the requesting
thread would wait on the event. A worker thread would be
awakened by the signal of the semaphore and would remove an
entry from the request queue. The thread would attach to the
new address space, perform the operation, set the event,

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 3

detach from the address space, and then look for more work
to do. The requesting thread would then resume execution.

In analyzing Graham's proposal it is clear that there are
two extra context switches, a copy of the argument data, two
extra translation buffer and data cache flushes, and the
need to attach to an address space. So why not just let the
requesting thread directly attach to the target process
address space and avoid the worker threads, the argument
copy, and the two extra context switches?

When a thread wanted to execute in another process' address
space it would execute the following logic:

verify that source process has the rights necessary to
perform the desired operation on the destination
process

obtain pointers to objects in the source process as
necessary

KeAttachProcess(pPcb)
perform desired operation in address space of target

process
KeDetachProcess()
resume execution is source process

There are several questions and complications that arise
from doing this kind of operation. These include:

1. How is the kernel stack of the source thread
addressed in the target process?

2. What happens if the source process gets removed from
the balance set while an attach operation is in
progress and causes the process' thread's kernel
stacks to be made pageable?

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 4

3. What happens if the target process is not in the
balance set?

4. What happens if the source or target processes are
terminated?

5. What happens if the source thread is terminated?

6. What happens if a thread tries to do a second attach
after having attached to a target process' address
space?

7. What object table is visible when a thread is
attached to the address space of another process?

8. What working set is manipulated while a thread is
attached to the address space of another process?

9. What process gets charged for the time that is
consumed while the thread is attached to another
process' address space?

10. How is mutex ownership handled between the source
and target processes?

11. What happens if user and/or kernel mode are alerted
while a process is attached?

12. What happens to APC's that are queued to the thread
after it has entered the target process' address
space?

13. Can the attached thread receive APC's?

14. What happens if a suspend or resume is performed on
the specified thread?

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 5

Before attempting to answer these questions it is useful to
review the kernel data structures that correspond to process
and thread objects. These data structures are described in
more detail at the end of this note.

There is a Process Control Block (PCB) and a Thread Control
Block (TCB).

A PCB contains a pointer to a process address map (actually
the physical address of the Page Directory for the process),
a list of all the TCB's that are members of the PCB, a count
of all the kernel mutexes owned by member TCB's, and a state
which is either "included" or "excluded" (corresponds to
whether the process is, or is not, in the balance set).

A TCB contains a pointer to the PCB of which it is a member,
an APC queue for each of the modes kernel and user, a kernel
APC in progress flag, a kernel APC pending flag, a user APC
pending flag, a user alert APC Control Block (ACB), an
alerted flag for each of the modes kernel and user, an
alertable wait flag, an owned mutex count, and link pointers
for linking the thread into the PCB's TCB list.

Actually there are several other fields in the TCB and PCB,
but they are not really pertinent to this discussion.

The kernel data structures that describe the TCB and PCB are
contained within the executive data structures that describe
the process and thread objects. The executive must use the
linkage structures provided by the kernel and cannot keep a
separate set of linkage pointers that tie the data
structures together.

The below discussion addresses the questioins raised above
and gives an explanation of how KeAttachProcess and
KeDetachProcess work.

How is the kernel stack of the source thread addressed in
the target process?

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 6

We would like to make kernel stacks addressible in the
process part of the address space. However, in order to
attach to another process' address space we will need to map
kernel stacks in the system part of the address space so we
can avoid an argument copy and allocation of a temporary
kernel stack. If we do not do this, then we will have to
allocate a temporary kernel stack in the system part of the
address space, copy necessary argument information to the
temporary stack, switch to the temporary stack, attach the
target process' address space, execute the necessary logic,
switch back to the source address space, switch back to the
original stack, and then deallocate the temporary stack.

When a process is in the balance set the kernel stacks of
all its threads must be locked in memory (there are several
ways we can do this - the reference count on the pages being
the most likely candidate). When a process is not in the
balance set, the kernel stacks of all its threads are
pageable. The locking and unlocking of these pages is
performed by the balance set manager when it brings a
process into or out of the balance set.

What happens if the source process gets removed from the
balance set while an attach operation is in progress and
causes the process' thread's kernel stacks to be made
pageable?

If the source process is allowed to leave the balance set
while a thread is attached to another process, then the
kernel stack on which the thread is running would become
pageable. This cannot be allowed to happen since it would
cause the system to crash if a page fault occurred on the
kernel stack itself. In order to prevent this situation from
happening, the Pcb.MutexCount in the source PCB is
incremented by one on attach to ensure that the process is
not allowed to leave the balance set. When the corresponding
detach is executed the count if decremented by one.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 7

Even though the process is not allowed to leave the balance
set any threads that do not own mutexes are prevented from
further execution if the process is excluded from the
balance set. Threads that do own mutexes are allowed to
continue execution until they release all the mutexes they
own. Therefore Tcb.MutexCount in the TCB is incremented by
one on attach to ensure that the thread continues to
execute. When the corresponding detach is executed the count
is decremented by one.

What happens if the target process is not in the balance
set?

If the target process is not in the balance set, then the
subject TCB is inserted in the target PCB's ready queue.
When the corresponding process is brought into the balance
set, the thread's TCB will be inserted in the appropriate
dispatcher ready queue. We must ensure that once the target
process is brought into the balance set, it is not allowed
to leave the balance set until the detach operation is
performed. This is required since we have incremented
Tcb.MutexCount which allows the thread to continue running
in the target process' address space even though the process
might be removed from the balance set. Therefore
Pcb.MutexCount is also incremented in the target process'
PCB during the attach operation. When the detach operation
occurs all the mutex counts will be corrected to enable the
respective processes to leave the balance set.

What happens if the source or target processes are
terminated?

What happens if the source thread is terminated?

The kernel does not allocate or deallocate any data
structures that control the execution of threads within the
system. It depends on the executive to keep appropriate
reference counts, and only when the reference count is zero,
can the executive delete data structures. Therefore the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 8

executive must ensure that the reference count of the source
process, the target process, and the subject thread are such
that they cannot be deleted during the execution of a
attach/detach sequence.

What happens if a thread tries to do a second attach after
having attached to a target process' address space?

The TCB of a thread contains the storage necessary to save
information for a single execution of an attach/detach
sequence. Therefore the rule is that only one level of
attach is allowed. If an attempt is made to attach to
another address space while an address space is already
attached, then a bug check will occur.

What object table is visible when a thread is attached to
the address space of another process?

The object table of the attached process is visible to a
thread when it is attached to another process' address
space. It is doubtful that it will ever be necessary to
create an object in another process' object table, but this
operation can be performed if necessary.

What working set is manipulated while a thread is attached
to the address space of another process?

While a thread is attached to another process' address space
it takes page faults and manipulates the working set of that
process as if it were really a thread in that process.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 9

What process gets charged for the time that is consumed
while the thread is attached to another process' address
space?

While a thread is attached to a target process' address space,
the target process is charged for the execution time
accumulated by the thread. When the detach operation occurs,
execution time is again charged to the source process.

How is mutex ownership handled between the source and target
processes?

There is simple rule for mutex ownership. When a thread does
and attach or detach process it cannot own any mutexes. If
an attempt is made to attach/detach while a thread owns a
mutex, then a bug check will occur.

What happens if user and/or kernel mode are alerted while a
process is attached?

There is no interaction between alert and attach process.
Kernel alert applies to whatever context the thread is
currently in. The thread can either respond or ignor kernel
alert as appropriate. User alert only applies to the source
context since user mode cannot be entered when a process is
attached.

A user mode alert cannot occur while a thread has a process
attached since the thread will never do a wait alertable for
user mode. An alert ACB may have been queued just prior to
attaching the process in which case it will occur when the
thread detachs and returns to user mode.

What happens to APC's that are queued to the thread after it has
entered the target process' address space?

Can the attached thread receive APC's?

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 10

An ACB is initialized and directed to a thread running in a
specific address space. Therefore APC's directed to a source
process context cannot be allowed to occur while the subject
thread is attached to the address space of another process.
This means that there must be a way to direct an APC to the
right context and make sure it does not occur at the wrong
time.

To accomplish this, each TCB will contain an APC state index
(Tcb.ApcStateIndex) which can have a value of zero or one
(only one level of attach is allowed). When an ACB is
initialized the address of the associated TCB must be
specified. This allows Tcb.ApcStateIndex and
Tcb.CurrentApcState.Pcb to be captured and stored in the ACB
in addition to the address of the TCB itself.

Two sets of APC context are stored in the TCB; the current APC
context (Tcb.CurrentApcState) and the saved APC context
(Tcb.SavedApcState). Each set of context contains the APC
state information described for the kernel TCB data
structure.

An array of pointers is used to address the two sets of APC
context. When an ACB is queued, the appropriate set of APC
context is selected by using Acb.ApcStateIndex to obtain the
appropriate array member which contains the address of the
corresponding set of APC context. A comparison is then made
between the PCB address stored in the ACB and the PCB
address stored in the selected APC context. If a mismatch
occurs, then a bug check is executed (i.e. an attach was
performed, an ACB was initialized (e.g. associated with a
timer), a detach was performed, and then the ACB was
queued). Otherwise the ACB is inserted in the selected APC
queue and appropriate APC state bits are updated. If
Tcb.ApcStateIndex is equal to Acb.ApcStateIndex, then the
APC effects the current context of the subject thread and
checks are made to determine if an APC should be delivered
immediately.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 11

When Tcb.ApcStateIndex is zero, the first pointer of the array
points to Tcb.CurrentApcState and the second pointer points
to Tcb.SavedApcState. To ensure a PCB address mismatch
occurs if an attempt is made to queue an ACB with an
Acb.ApcStateIndex value of one, a value of NIL is stored in
Tcb.SavedApcState.Pcb.

When Tcb.ApcStateIndex is one, the first pointer of the array
points to Tcb.SavedApcState and the second pointer of the
array points to Tcb.CurrentApcState. Both sets of context
have a valid PCB pointer.

When an attach process is executed, Tcb.ApcStateIndex is
examined. If the value is one, then a bug check occurs (i.e.
an attempt is being made to attach another process while one
is already attached). Otherwise Tcb.ApcStateIndex is
incremented and the current APC context is copied to the
saved APC context. The two pointers in the array that
address the APC context blocks are switched and the current
APC state is initialized.

While a thread is executing in another process' address space,
the thread can initialize and receive APC's targeted to that
address space.

When a detach process is executed, Tcb.ApcStateIndex is examined.
If the value is zero, then a bug check occurs (i.e. an
attempt is being made to detach an address space when one is
not attached). The current APC context is also examined to
determine if the thread has a "clean" APC context. If a
kernel APC is in progress, the kernel APC queue contains an
entry, or the user APC queue contains as entry, then a bug
check occurs. Otherwise Tcb.ApcStateIndex is decremented,
the saved APC context is moved to the current APC context,
the saved APC context PCB address is set to NIL, and the two
entries in the pointer array are switched.

What happens if a suspend or resume is performed on the
specified thread?

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 12

A thread is suspended by queuing the thread's builtin
suspend ACB. This ACB is initialized such that it's target
is the source process' address space and causes a normal
kernel APC. In an attempt is made to suspend a thread while
it attached to another process, then the suspend ACB will
get queued to the source context and the suspend count will
get adjusted. Suspension of the thread will not actually
occur until the thread does a detach and reenters the source
context. The thread may be suspended and resumed several
times while it is attached to another process. This works in
the same way as the case where the suspend APC cannot be
delivered because the thread is either currently in a kernel
APC or has kernel APC's blocked (IRQL raised).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 13

The following pseudo code describes the operation of attach to
address space:

PROCEDURE KeAttachProcess (
IN Pcb : POINTER KtPcb;
);

BEGIN

Acquire dispatcher database lock;
Get current TCB address;
IF Tcb.ApcStateIndex == 1 OR Tcb.MutexCount <> 0 THEN

Call bugcheck with fatal error;
ELSE

Tcb.ApcStateIndex += 1;
Tcb.SavedApcState = Tcb.CurrentApcState;
Tcb.CurrentApcState.Pcb = Pcb;
Tcb.CurrentApcState.KernelApcInProgress = FALSE;
Tcb.CurrentApcState.KernelApcPending = FALSE;
Tcb.CurrentApcState.UserApcPending = FALSE;
Initialize APC queue headers for current state;

Swap APC context pointers in APC pointer array;
Tcb.MutexCount += 1;
Pcb.MutexCount += 1;
Tcb.SavedApcState.Pcb->Pcb.MutexCount += 1;
IF Pcb.Active OR Pcb.MutexCount > 1 THEN

Flush data cache;
Set new page directory pointer;
Release dispatcher database lock;

ELSE
Tcb.PcbReadyQueue = TRUE;
Insert TCB in PCB's ready queue;
Select new thread to run;
Call context switch routine;

END IF;
END IF;
RETURN;

END KeAttachProcess;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 14

The following pseudo code describes the operation of detach
from address space:

PROCEDURE KeDetachProcess (
);

BEGIN

Acquire dispatcher database lock;
Get current TCB address;
IF Tcb.ApcStateIndex == 0 OR Tcb.MutexCount <> 1 OR
 Tcb.CurrentApcState.KernelApcInProgress OR
 Current kernel APC queue not empty OR
 Current user APC queue not empty THEN

Call bugcheck with fatal error;
ELSE

Tcb.ApcStateIndex -= 1;
Tcb.CurrentApcState.Pcb->Pcb.MutexCount -= 1;
IF Tcb.CurrentApcState.Pcb->Pcb.MutexCount == 0
 AND NOT Tcb.CurrentApcState.Pcb->Pcb.Active

THEN
Set Tcb.CurrentApcState.Pcb->Pcb.Event;

END IF;
Tcb.CurrentApcState = Tcb.SavedApcState;
Tcb.SavedApcState.Pcb = NIL;

Swap APC context pointers in APC pointer array;
Tcb.MutexCount -= 1;
IF Kernel APC queue not empty THEN

Tcb.CurrentApcState.KernelApcPending = TRUE;
Set software interrupt at IRQL 1;

END IF;
Tcb.CurrentApcState.Pcb->Pcb.MutexCount -= 1;
IF Tcb.CurrentApcState.Pcb->Pcb.MutexCount == 0
 AND NOT Tcb.CurrentApcState.Pcb->Pcb.Active

THEN
Set Tcb.CurrentApcState.Pcb->Pcb.Event;
Tcb.PcbReadyQueue = TRUE;
Insert TCB in PCB's ready queue;
Select new thread to run;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 15

Call context switch routine;
ELSE

Flush data cache;
Set new page directory pointer;
Release dispatcher database lock;

END IF;
END IF;
RETURN;

END KeDetachProcess;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

Windows NT Attach Process Design Note 16

Revision History:

Original Draft 1.0, February 8, 1989

Revision 1.1, February 17, 1989

1. Add text to explain what interactions exist
between attach/detach process and
suspend/resume, APC's, alerts, and mutexes.

2. Allow APC's to be queued and processed in
either the source or target address on
attach/detach operations.

Revision 1.2, March 30, 1989

1. Minor edits ot conform to standard format.

[end of attproc]

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

