
NT OS/2 Coding Conventions

Portable Systems Group
NT OS/2 Coding Conventions
Author: Mark Lucovsky, Helen Custer
Revision 1.5, January 21, 1991

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

Introduction..3
Module Headers...3
Function Headers..4
Header Files..6

Header File Inclusion...6
Header File Format...7

Naming...8
Variable Names..9

Initial Caps Format...9
Unstructured Format...9

Data Type Names...9
Structure Field Names and Enumeration Constants...10
Macro and Constant Names...10

Indentation and Placement of Braces...11
Constructs to Avoid...13

Left Hand Side Typecasts..13
Zero Length Arrays in Structures...13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

Introduction
All code written for NT OS/2 by members of the Portable Systems Group
adheres to a common coding style. This style gives the system a uniform
appearance that allows group members to read, modify, and maintain each
other's modules without learning several different coding conventions.

The following items are standardized:
 Module headers
 Function headers and declarations
 Header file format
 Names of variables, data types, structure fields, macros,

and constants
 Control structure indentation and placement of braces

Module Headers
The following prototype should appear at the beginning of each module.
The source to the prototype can be found in file \nt\bak\inc\modhdr.c.
/*++

Copyright (c) 1989 Microsoft Corporation

Module Name:

 name-of-module-filename

Abstract:

 abstract-for-module

Author:

 name-of-author (email-name) creation-date-dd-mmm-yyyy

[Environment:]

 optional-environment-info (e.g. kernel mode only...)

[Notes:]

 optional-notes

Revision History:

 most-recent-revision-date email-name
 description

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

 .
 .
 least-recent-revision-date email-name
 description

--*/

The following is a sample of a completed module header:
/*++

Copyright (c) 1989 Microsoft Corporation

Module Name:

 pool.c

Abstract:

 This module contains the pool allocator for the NT OS/2
 executive.

Author:

 Mark Lucovsky (markl) 16-Feb-1989

Environment:

 Kernel mode only.

Revision History:

 22-Feb-1989 markl

 Modified module to conform to the new naming and coding
 standards agreed to 21-Feb-1989.

 20-Feb-1989 markl

 Added module and function headers.

--*/

Note that the revision history portion is not completed. Until we get
further along in the project, we will not keep a revision history.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

The /*++ <text> --*/ construct is used by a comment extractor program
that will be developed to assist in our documentation efforts.

Function Headers
The following is a prototype function declaration. This declaration is
to appear with the implementation of the function. The source to the
prototype can be found in file \nt\bak\inc\prochdr.c.
Notice the following details in the function declaration:

 A form-feed character should appear one line before the
"return-type" line. This convention is noted in this
document with the string "<form-feed>".

 All formal arguments are preceded by one of the following
macro definitions:

IN Indicates that the argument is a non-modifiable input
value (i.e., call-by-value semantics)

OUT Indicates that the argument is an address which refers
to a variable or structure that will be modified
by the function (i.e., call-by-reference
semantics)

IN OUT Indicates that the argument is the address of an
input variable or structure that is both read and
written by the function (i.e., call-by-reference
semantics)

 The OPTIONAL macro appears after a formal argument of type
pointer, HANDLE, or ULONG when the function accepts either a
NULL or non-NULL value. To determine whether the actual
value supplied is NULL or non-NULL, the programmer must use
the macro ARGUMENT_PRESENT, which takes the pointer, HANDLE,
or ULONG variable as an argument and returns a value of type
BOOLEAN.

 The order of the arguments in the comment block is the same
as the order in which they appear in the function
declaration.

 The function declaration follows:
<form-feed>
return-type
function-name(
 direction type-name argument-name,
 direction type-name argument-name...
)

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

/*++

Routine Description:

 description-of-function

Arguments:

 argument-name - [Supplies | Returns] description-of-argument
 .
 .
 .

Return Value:

 return-value - description-of-return-value
-or-

 None

 --*/

{
 .
 .
 .
}

The following is a sample of a completed function declaration:
<form-feed>
VOID
IoBuildPartialMdl(
 IN PMDL SourceMdl,
 IN PMDL TargetMdl,
 IN PVOID VirtualAddress,
 IN ULONG Length OPTIONAL
)

/*++

Routine Description:

This routine maps a portion of a buffer as described by an
MDL. The portion of the buffer to be mapped is specified via a virtual
address and an optional length. If the length is not supplied, then the
remainder of the buffer is mapped.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

Arguments:

 SourceMdl - MDL for the current buffer.

 TargetMdl - MDL to map the specified portion of the buffer.

 VirtualAddress - Base of the buffer to begin mapping.

 Length - Optional length of buffer to be mapped; if zero,
 remainder.

Return value:

 None.

When a function is declared externally in a header file, its declaration
contains only the function prototype and not the comment section. For
example:
VOID
IoBuildPartialMdl(
 IN PMDL SourceMdl,
 IN PMDL TargetMdl,
 IN PVOID VirtualAddress,
 IN ULONG Length OPTIONAL
);

Header Files
The following sections define the requirements for inclusion and format
of header files.

Header File Inclusion
There are three types of header files in the NT OS/2 system:

 Header files that are private to a single operating system
component (the kernel or the I/O system, for example)

 A header file that is shared by the internal components of
the operating system (the kernel and the executive)

 A public header file that defines external application
programming interfaces (APIs) for system components outside
the kernel and executive

Each component of the operating system has a private header file. The
naming convention for these header files is <component-name>p.h. For
example, the private header file for kernel component, ke, is called
kep.h.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

The NT OS/2 shared header file, \nt\private\src\ntos\inc\ntos.h, is
included by each component of the executive and by the kernel, using the
following statement:
#include "ntos.h"

(This file is included by a component's private include file.)

File ntos.h contains a list of #include statements, one for each
operating system component. Each operating system component has a
corresponding header file that defines prototypes for the functions that
are shared with other components within the executive. The naming
convention for these header files is <component-name>.h. For example,
the header file containing shared prototypes for kernel component, ke,
is called ke.h.

The public header file, \nt\sdk\inc\ntos2.h, is included by all
components outside the NT OS/2 kernel and executive, using the following
statement:
#include <ntos2.h>

Header File Format
Modules should be able to nest header files without causing multiple
definition problems. To accomplish this, each header file should be
conditionally expanded to itself, or to nothing if it has already been
expanded.

In the example below, if the module pool.h was not previously included,
then the macro _POOL_ is defined and the header file is expanded.
Otherwise, _POOL_ is already defined and the remainder of the header
file is ignored. This results in the header file being included only
once.

The following header file style should be used:
/*++

Copyright (c) 1989 Microsoft Corporation

Module Name:

 pool.h

Abstract:

 This module defines the NT OS/2 pool data structures and
 function prototypes.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

Author:

 Mark Lucovsky (markl) 16-Feb-1989

Revision History:

--*/

#ifndef _POOL_
#define _POOL_

#include "ntdef.h"
#include "list.h"
#include "process.h"

typedef enum _POOL_TYPE {
 NonPagedPool,
 PagedPool
 } POOL_TYPE;

#endif // _POOL_

Note that if module list.h were shown, the conditional would appear as
follows:
 #ifndef _LIST_
 #define _LIST_

 //
 // body
 //

 #endif // _LIST_

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

Naming
The following sections describe the naming conventions for variables,
structure fields, types, constants, and macros.

Variable Names
Variable names are either in "initial caps" format, or they are
unstructured. The following two sections describe when each is
appropriate.
Note that the NT OS/2 system does not use the Hungarian naming
convention used in some of the other Microsoft products.

Initial Caps Format
All global variables and formal argument names must use the initial caps
format. The following rules define this format:

 Words within a name are spelled out; abbreviations are
discouraged.

 The first character of each word in a name is capitalized.
 Acronyms are treated as words, that is, only the first

character of the acronym is capitalized.

The following list shows some sample names that conform to these rules:
NumberOfBytes
TcbAddress
BilledProcess

Unstructured Format
Local variables may appear in either the initial caps format, or in a
format of the programmer's preference. The following list shows some
possibilities for local variable names:
loopindex
LoopIndex
loop_index

Data Type Names
A set of primitive data types for use in the NT OS/2 system is defined
in the file \nt\sdk\inc\ntdef.h. All NT OS/2 software must declare
variables using these defined types rather than standard C types, where
appropriate. The following are some examples of NT OS/2 types:

VOID
PVOID
QUAD

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

UQUAD
STRING
TIME

All new type names should be created in uppercase using typedef. Words
within the name may either be packed together or separated by
underscores. All types should have a corresponding typedef which
defines a pointer to the type. The name for the pointer is the type
name with a "P" prefix.

The following example illustrates how to use typedef to create a
structure type:

typedef struct _POOL_LIST_HEAD {
 ULONG CurrentFreeLength;
 ULONG TotalEverAllocated;
 LIST_ENTRY ListHead;
} POOL_LIST_HEAD, *PPOOL_LIST_HEAD;

The following example illustrates how to use typedef to create an
enumerated type:
typedef enum _POOL_TYPE {
 NonPagedPool,
 PagedPool,
 MaxPoolType
 } POOL_TYPE;

Structure Field Names and Enumeration Constants

Structure field names should follow initial caps format. They should
not have field name prefixes tied to a type. The following is a sample
structure:

typedef struct _POOL_LIST_HEAD {
 ULONG CurrentFreeLength;
 ULONG TotalEverAllocated;
 LIST_ENTRY ListHead;
} POOL_LIST_HEAD, *PPOOL_LIST_HEAD;

As illustrated in the previous section, enumeration constants should
also follow initial caps format.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

Macro and Constant Names

All macros and manifest constants should have uppercase names. Words
within a name may either be packed together, or separated by
underscores.

The following statements illustrate some macro and manifest constant
names:

#define PAGE_SIZE 4096
#define CONTAINING_RECORD(address, type, field) \
 ((type *)((LONG)(address) - \
 (LONG)(&((type *)0)->field)))

Note: Any macro that is likely to be replaced by a function at a later
time should use the naming conventions for functions.

Indentation and Placement of Braces

The following skeletal statements illustrate the proper indentation and
placement of braces for C control structures. In all cases,
indentations consist of four spaces each.
All control structures should routinely use braces even if there is only
a single statement that will be executed.
<form-feed>
INT
FooBar(
 INT ArgumentOne,
 PULONG ArgumentTwo
)

/*++

Routine Description:

 This is the routine description.

Arguments:

 ArgumentOne - Supplies the value for argument 1.

 ArgumentTwo - Supplies the address of argument 2.

Return Value:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

 0 - Success

 1 - Failure

--*/

{
 //
 // Local variables are indented one tab (tabs are 4 spaces)
 //

 ULONG LocalVariable1;
 LONG Counter;

 //
 // for loops
 // - all for loops must have braces
 // - closing brace is at same indentation level as
 // for statement
 //

 for (Counter = 0; Counter < 10; Counter++) {

 //
 // Body of loop
 //

 }

 //
 // if statement
 //
 // - All if statements should use braces
 //

 if (Counter == 0) {

 //
 // Then statements
 //

 }

 //
 // if then else
 //

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

 if (Counter == 1) {

 //
 // Then statements
 //

 } else {

 //
 // Else statements
 //

 }

 //
 // switch statement
 //

 switch (Counter) {

 case 1 :

 //
 // case 1 statements
 //
 break;

 case 2 :

 //
 // case 2 statements
 //
 break;

 default :

 //
 // default case
 //
 break;

 }
}

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

Constructs to Avoid

NT OS/2 is written in portable, ANSI C. Due to differences in C
compilers, there are a number of coding constructs that need to be
avoided in order to promote portability.

Left Hand Side Typecasts

Some C compilers allow the cast operator on the left hand side of an
assignment. This is not allowed by standard C and must be avoided in NT
OS/2.

Zero Length Arrays in Structures
Zero length arrays embedded in structure definitions are not handled
uniformly by all C compilers. They should not be used in NT OS/2.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NT OS/2 Coding Conventions

Revision History

Original Draft 1.0, February 21, 1989 - ml
Revision 1.1, February 23, 1989 - ml
Revision 1.2, May 5, 1989 - hkc

1. Extracted coding guidelines from exec.txt and converted text
to Word.

2. Added text regarding primitive data type definitions.
3. Added text and example describing OPTIONAL arguments.
4. Added text regarding the inclusion of header files in

implementation modules.
5. Style edit.

Revision 1.3, May 11, 1989 - Incorporated group comments. hkc
Revision 1.5, January 21, 1991 tonye

1. Emphasized that all control structures must use braces.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

	Introduction
	Module Headers
	Function Headers
	Header Files
	Header File Inclusion
	Header File Format

	Naming
	Variable Names
	Initial Caps Format
	Unstructured Format

	Data Type Names
	Structure Field Names and Enumeration Constants
	Macro and Constant Names

	Indentation and Placement of Braces
	Constructs to Avoid
	Left Hand Side Typecasts
	Zero Length Arrays in Structures

