
Portable Systems Group

Windows NT Exception Handling Specification

Author: David N. Cutler

Original Draft 1.0, May 22, 1989
Revision 1.1, June 2, 1989
Revision 1.2, June 6, 1989
Revision 1.3, August, 4, 1989
Revision 1.4, August, 15, 1989
Revision 1.5, November 7, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 3

1. Introduction... 1

2. Goals.. 1

3. Exception Architecture.. 2
3.1 Frame-Based Exception Handlers.. 2
3.2 Exception Dispatching.. 3
3.3 Exception Handling and Unwind.. 4
3.4 Exception Record.. 4
3.5 Exception Context... 6

4. Hardware-Defined Exceptions... 7
4.1 Access Violation... 8
4.2 Breakpoint... 8
4.3 Data-Type Misalignment.. 8
4.4 Floating Divide By Zero.. 8
4.5 Floating Overflow.. 9
4.6 Floating Underflow... 9
4.7 Floating Reserved Operand... 9
4.8 Illegal Instruction.. 9
4.9 Privileged Instruction... 9
4.10 Invalid Lock Sequence.. 10
4.11 Integer Divide By Zero... 10
4.12 Integer Overflow... 10
4.13 Single Step... 10

5. Windows NT Software-Defined Exceptions.. 11
5.1 Guard Page Violation.. 11
5.2 Page Read Error.. 11
5.3 Paging File Quota Exceeded.. 11

6. Standard Exception Handling.. 11
6.1 Alignment Faults... 12
6.2 IEEE Floating Faults... 12

7. Exception Handling Interfaces.. 12
7.1 Exception Dispatcher.. 12
7.2 Exception Handler.. 13
7.3 Raise Exception... 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 4

7.4 Continuing From An Exception... 15
7.5 Unwinding From An Exception... 16
7.6 Last Chance Exception Handling.. 18

8. OS/2 2.0 Compatibility.. 18
8.1 Windows NT Intel i860 Implementation.. 19
8.2 OS/2 2.0 Intel x86 Implementation.. 19
8.3 Windows NT Implementation of OS/2 Capabilities............................ 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 1

1. Introduction

This specification describes the exception handling capabilities of Windows NT. An
exception is an event that occurs during the execution of a program which requires the
execution of software outside the normal flow of control.

Exceptions can result from the execution of certain instruction sequences, in which case
they are initiated by hardware. Other conditions may arise as the result of the execution
of a software routine (e.g., an invalid parameter value), and are therefore initiated
explicitly by software.

When an exception is initiated, a systematic search is performed in an attempt to find
an exception handler that will dispose of (handle) the exception.

An exception handler is a function written to explicitly deal with the possibility that an
exception may occur in a certain sequence of code.

Exception handlers are declared in a language-specific syntax and are associated with a
specific scope of code. The scope may be a block, a set of nested blocks, or an entire
procedure or function.

Microsoft compilers for Windows NT adhere to a common calling standard which
enables exception handlers to be established and disestablished in a very efficient
manner.

\ The initial hardware target for Windows NT is the Intel i860, and therefore, the
Microsoft C compiler for the i860 will be the first compiler that conforms to the
required calling standard. As Windows NT is ported to other architectures,
compilers will be required to implement a calling standard that is functional enough
to support the Windows NT exception handling capabilities. \

Exception handling capabilities are an integral and pervasive part of the Windows NT
system. They enable a very robust implementation of the system software. It is
envisioned that ISVs, application writers, and third-party compiler writers will see the
benefits of exception handling capabilities and also use them in a pervasive manner.

2. Goals

The goals of the Windows NT exception handling capabilities are the following:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 2

o Provide a single mechanism for exception handling that is usable across all
languages.

o Provide a single mechanism for the handling of hardware-, as well as software-
generated exceptions.

o Provide a single exception handling mechanism that can be used by privileged, as
well as nonprivileged software.

o Provide a single mechanism for the handling of exceptions and for the
capabilities necessary to support sophisticated debuggers.

o Provide an exception handling architecture with the capabilities necessary to
emulate the exception handling capabilities of other operating systems (e.g. OS/2
and POSIX).

o Provide an exception handling mechanism that is portable and which separates
machine-dependent from machine-independent information.

o Provide an exception handling mechanism that supports the structured
exception handling extensions being proposed by Microsoft for the C language
(see Structured Exception Handling in C by Don MacLaren, May 10, 1989).

3. Exception Architecture

The overall exception architecture of Windows NT encompasses the process creation
primitives, system service emulation subsystems, the Microsoft calling standard(s), and
system routines that raise, dispatch, and unwind exceptions.

Two optional exception ports may be specified when a process is created. These ports
are called the debugger port and the system service emulation subsystem port.

When an exception is initiated, an attempt is made to send a message to the recipient
process's debugger port. If there is no debugger port, or the associated debugger does
not handle the exception, then a search of the current thread's call frames is conducted
in an attempt to locate an exception handler. If no frame-based handler can be found,
or none of the frame-based handlers handle the exception, then another attempt is
made to send a message to the recipient process's debugger port. If there is no
debugger port, or the associated debugger does not handle the exception, then an
attempt is made to send a message to the recipient process's system service emulation

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 3

subsystem port. If there is no subsystem port, or the subsystem does not handle the
exception, then the system provides default handling based on the exception type.

Thus the search hierarchy is:

1. Debugger first chance

2. Frame-based handlers

3. Debugger second chance

4. Emulation subsystem

The purpose of this architecture is to provide a very robust exception architecture, while
at the same time allow for the emulation of the exception handling capabilites of
various operating system environments (e.g., OS/2 2.0 exception handling, POSIX
signals, etc.).

Throughout this document, explanations concerning the implementation of the
Windows NT exception architecture are given referring to the Intel i860. It should not
be inferred that the described implementation is the only possible implementation, and
in fact, the actual implementation on other hardware architectures may be different.

3.1 Frame-Based Exception Handlers

An exception handler can be associated with each call frame in the procedure call
hierarchy of a program. This requires that each procedure or function that either saves
nonvolatile registers or establishes an associated exception handler, have a call frame.

Microsoft compilers for Windows NT adhere to a standard calling convention for the
construction of a call frame. A call frame for the Intel i860 contains the following:

1. A register save mask that describes the nonvolatile registers saved in the frame.
These registers are saved in a standard place relative to the frame pointer.

2. Two flags that specify whether an extended register save mask and/or exception
handler address is present in the frame.

3. An optional extended register save mask that describes the volatile registers
saved in the frame. These registers are saved in a standard place relative to the
frame pointer.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 4

4. An optional address of an exception handler that is associated with the frame.

Call frames for other architectures contain similar information. The exact details of the
call frame layout are described in the Microsoft Windows NT calling standard(s).

3.2 Exception Dispatching

When a hardware exception occurs, the Windows NT trap handling software gets
control and saves the hardware state of the current thread in a context record. The
reason for the trap is determined, and an exception record is constructed which describes
the exception and any pertinent parameters. Executive software is then called to
dispatch the exception.

If the previous processor mode was kernel, then the exception dispatcher is called to
search the kernel stack call frames in an attempt to locate an exception handler. If a
frame-based handler cannot be located, or no frame-based handler handles the
exception, then KeBugCheck is called to shut down system operation. Unhandled
exceptions emanating from within privileged software are considered fatal bugs.

If the previous processor mode was user, then an attempt is made to send a message
to the associated debugger port. This message includes the exception record and the
identification of the client thread. The debugger may handle the exception (e.g.,
breakpoint or single step) and modify the thread state as appropriate, or not handle the
exception and defer to any frame-based exception handlers found on the user stack.

If the debugger replies that it has handled the exception, then the machine state is
restored and thread execution is continued. Otherwise, if the debugger replies that it
has not handled the exception, or there is no debugger port, then executive software
must prepare to execute the exception dispatcher in user mode.

If the debugger does not dispose of the exception, then stack space is allocated on the
user stack, and both the exception record and the context record are moved to the user
stack. The machine state of the thread is modified such that thread execution will
resume in code that is part of the executive, but it executes in user mode.

The machine state is restored and execution of the thread is resumed in user mode
within executive code that calls the exception dispatcher to search the user stack for an
exception handler. If a frame-based handler handles the exception, then thread
execution is continued. Otherwise, if no frame-based handler is found, or no frame-

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 5

based handler handles the exception, then the NtLastChance system service is
executed.

The purpose of the NtLastChance system service is to provide the debugger a second
chance to handle the exception and to provide the system service emulation subsystem
associated with the thread's process, if any, a chance to perform any subsystem-specific
exception processing. A second attempt is made to send a message to the associated
debugger port. This message includes the exception record and the identification of the
client thread. The debugger may handle the exception (e.g., query the user and receive
a disposition) and modify the thread state as appropriate, or not handle the exception
and defer to the system service emulation subsystem associated with the thread's
process.

If the debugger replies that it has handled the exception, then the machine state is
restored and thread execution is continued. Otherwise, if the debugger replies that it
has not handled the exception, or there is no debugger port, then an attempt is made
to send a message to the associated subsystem. This message includes the exception
record and the identification of the client thread. The subsystem may handle the
exception and modify the thread state as appropriate, or not handle the exception and
defer to any default handling supplied by the executive.

If the subsystem replies that it has handled the exception, then the machine state is
restored and thread execution is continued. Otherwise, the executive provides default
handling of the exception, which is most cases causes the thread to be terminated.

3.3 Exception Handling and Unwind

During the dispatching of an exception, each frame-based handler is called specifying
the associated exception and context records as parameters. The exception handler can
handle the exception and continue execution, not handle the exception and continue
the search for an exception handler, or handle the exception and initiate an unwind
operation.

Handling an exception may be as simple as noting an error and setting a flag that will
be examined later, printing a warning or error message, or taking some other overt
action. If execution can be continued, then it may be necessary to change the machine
state by modifying the context record (e.g., advance the continuation instruction
address).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 6

If execution can be continued, then the exception handler returns to the exception
dispatcher with a status code that specifies that execution should be continued.
Continuing execution causes the exception dispatcher to stop its search for an
exception handler. The machine state from the context record is restored and execution
is continued accordingly.

If execution of the thread cannot be continued, then the exception handler usually
initiates an unwind operation by calling a system-supplied function specifying a target
call frame and a continuation address. The unwind function walks the stack backwards
searching for the target call frame. As it walks the stack, the unwind function calls each
exception handler that is encountered to allow it to perform any cleanup actions that
may be necessary (e.g., release a semaphore, etc.). When the target call frame is
reached, the machine state is restored and execution is continued at the specified
address.

3.4 Exception Record

An exception record describes an exception and its associated parameters. The same
structure is used for both hardware-, and software-generated exceptions.

An exception record has the following structure:

Exception Record Structure

NTSTATUS ExceptionCode - The status code that specifies the reason for the
exception.

ULONG ExceptionFlags - A set of flags that describes attributes of the exception.

Exception Flags

EXCEPTION_NONCONTINUABLE - The exception is not continuable, and any
attempt to continue will cause the exception
STATUS_NONCONTINUABLE_EXCEPTION to be raised.

EXCEPTION_UNWINDING - The exception record describes an exception for
which an unwind is in progress.

EXCEPTION_EXIT_UNWIND - The exception record describes an exception for
which an exit unwind is in progress.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 7

EXCEPTION_STACK_INVALID - The user stack was not within the limits specified
by the Thread Environment Block (TEB) when the exception was raised in
user mode. Alternately, during the trace backwards through the call
frames on the user (or kernel) stack, a call frame was encountered that
was not within the stack limits specified by the TEB (or within the kernel
stack limits), or a call frame was encountered that was unaligned.

EXCEPTION_NESTED_CALL - The exception record describes an exception that
was raised while the current exception handler was active, i.e., a nested
exception is in progress and the current handler was also called to
handle the previous exception.

PEXCEPTION_RECORD ExceptionRecord - An optional pointer to an associated
exception record. Exception records can be chained together to provide
additional information when nested exceptions are raised.

PVOID ExceptionAddress - The instruction address at which the hardware exception
occurred or the address from which the software exception was raised.

ULONG NumberParameters - The number of additional parameters that further
describe the exception and immediately follow this parameter in the
exception record.

ULONG ExceptionInformation[NumberParameters] - Additional information that
describes the exception.

The EXCEPTION_NONCONTINUABLE bit in the exception flags field is the only flag that can
be set by the user. The remaining flags are set by system supplied software as the result
of dispatching an exception or the unwinding of call frames.

3.5 Exception Context

A context record describes the machine state at the time an exception occurred. This
record is hardware architecture dependent and is not portable. Therefore, in general,
software should not use the information contained is this record. Hardware-
architecture-dependent code such as math libraries, however, can make use of this
information to optimize certain operations.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 8

For a hardware-initiated exception, the context record contains the complete machine
state at the time of the exception. For a software-initiated exception, the context record
contains the machine state at the time the exception was raised by software.

The context record is constructed so that it has an identical format to the call frames
generated by the Microsoft compilers for the Intel i860. The context record for the
Intel i860 has the following structure:

Context Record Structure

ULONG ContextFlags - A set of flags that describes which sections of the context
record contain valid information.

Context Flags

CONTEXT_CONTROL - The Psr, Epsr, Fir, IntR1, IntFp, and IntSp fields of the context
record are valid.

CONTROL_FLOATING_POINT - The FltF2...FltF31 and Fsr fields of the context record
are valid.

CONTEXT_INTEGER - The IntR4...IntR31 fields of the context record are valid.

CONTEXT_PIPELINE - The AddStageX, MulStageX, FldStageX, IntResult, Kr, Ki, Merge,
T, Fsr1, Fsr2, and Fsr3 fields of the context record are valid.

ULONG Fsr - The contents of the floating point status register (FSR) at the time of
the exception.

UQUAD AddStage1, AddStage2, AddStage3 - Stages 1 - 3 of the floating point addition
pipeline.

UQUAD MulStage1, MulStage2, MulStage3 - Stages 1 - 3 of the floating point
multiplication pipeline.

UQUAD FldStage1, FldStage2, FldStage3 - Stages 1 - 3 of the floating point load
pipeline.

UQUAD IntResult - The integer result of the graphics pipeline.

UQUAD Kr - The contents of the KR register.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 9

UQUAD Ki - The contents of the KI register.

UQUAD Merge - The contents of the MERGE register.

UQUAD T - The contents of the T register.

ULONG Fir - The continuation instruction pointer.

ULONG Fsr1, Fsr2, Fsr3 - The contents of the floating status register (FSR) for stages
1 - 3 of the pipeline.

ULONG IntR4...IntR31 - The contents of the integer registers r4 - r31.

UQUAD FltF2...FltF31 - The contents of the floating point registers f2 - f31.

ULONG IntSp - The contents of the stack pointer at the time of the exception.

ULONG ExtendedSaveMask - The extended register save mask that specifies that
register Int16...IntR31 are saved in the record.

ULONG Handler - The address of the associated exception handler.

ULONG RegisterSaveMask - The standard register save mask that specifies that
registers IntR4...IntR15 and FltF2...FltF31 are saved in the record.

ULONG IntFp - The contents of the frame pointer at the time of the exception.

ULONG IntR1 - The contents of the register R1 (return address) at the time of the
exception.

ULONG - Psr - The processor status (PSR) at the time of the exception.

ULONG - Epsr - The extended processor status (EPSR) at the time of the exception.

4. Hardware-Defined Exceptions

Hardware-defined exceptions are initiated by the executive when a particular kind of
fault condition is encountered as the result of instruction execution, e.g., an integer
overflow. System software collects the information necessary to initiate the exception
and then calls a routine that routes the exception to the appropriate exception handler.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 10

The following sections describe the various hardware-defined exceptions in a machine-
independent format. For each exception, the exception status code and any additional
parameters are specified. These values are placed in the exception record when the
particular type of exception is generated. In addition, any pertinent Intel i860-
dependent information is also provided.

Not all hardware architectures generate all the various exceptions that are defined.
Each port of Windows NT to a new hardware architecture requires a mapping of the
hardware-defined exceptions onto the machine-independent format given below.

\ The following sections must be carefully examined to ensure that they represent a
machine-independent description for x86, as well as i860, exceptions. \

4.1 Access Violation

An access violation exception is generated when an attempt is made to load or store
data from/to a location that is not accessible to the current process, or when an attempt
is made to execute an instruction that is not accessibile to the current process.

Exception Code: STATUS_ACCESS_VIOLATION

Additional Parameters: 2

Read/Write - A value of zero signifies a read; a value of one signifies a write.

Virtual Address - The virtual address of the data that is not accessible.

4.2 Breakpoint

A breakpoint exception occurs when a breakpoint instruction is executed, or a
hardware-defined breakpoint is encountered (e.g. an address in a breakpoint register).
This exception is intended for use by debuggers.

Exception Code: STATUS_BREAKPOINT

Additional Parameters: 1

Read/Write - A value of zero signifies a read; a value of one signifies a write.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 11

i860 Implementation: The execution of a TRAP r30,r29,r0 instruction, or a match with
the address in the breakpoint register causes a breakpoint exception on the Intel
i860.

4.3 Data-Type Misalignment

A data-type misalignment exception is generated when an attempt is made to load or
store data from/to an address that is not naturally aligned, on a hardware architecture
that does not provide alignment hardware. For example, 16-bit entities must be aligned
on two-byte boundaries, 32-bit entities must be aligned on four-byte boundaries, etc.

Exception Code: STATUS_DATATYPE_MISALIGNMENT

Additional Parameters: 3

Read/Write - A value of zero signifies a read; a value of one signifies a write.

Data-type Mask - A data-type mask that specifies how many low-address bits must
be zero. For example, the data-type mask for a 16-bit entity is one, a 32-bit
entity three, etc.

Virtual Address - The virtual address of the misaligned data.

4.4 Floating Divide By Zero

A floating divide by zero exception is generated when an attempt is made to divide a
floating point dividend by a floating point divisor of zero.

Exception Code: STATUS_FLOATING_DIVIDE_BY_ZERO

Additional Parameters: None

4.5 Floating Overflow

A floating overflow exception is generated when the resulting exponent of a floating
point operation is greater than the magnitude allowed for the respective floating point
data type.

Exception code: STATUS_FLOATING_OVERFLOW

Additional Parameters: None

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 12

4.6 Floating Underflow

A floating underflow exception is generated when the resulting exponent of a floating
point operation is less than the magnitude provided for the respective floating point
data type.

Exception Code: STATUS_FLOATING_UNDERFLOW

Additional Parameters: None

4.7 Floating Reserved Operand

A floating reserved operand exception is generated when one or more of the source
operands in a floating point operation have a format that is reserved.

Exception Code: STATUS_FLOATING_RESERVED_OPERAND

Additional Parameters: None

4.8 Illegal Instruction

An illegal instruction exception is generated when an attempt is made to execute an
instruction whose operation is not defined for the host machine architecture.

Exception Code: STATUS_ILLEGAL_INSTRUCTION

Additional Parameters: None

i860 Implementation: The execution of a TRAP instruction other than TRAP r30,r29,r0
or TRAP r30,r28,r0 or TRAP r30,r27,r0 causes an illegal instruction exception.

4.9 Privileged Instruction

A privileged instruction exception is generated when an attempt is made to execute an
instruction whose operation is not allowed in current machine mode (e.g., an attempt to
execute an instruction from user mode that is only allowed in kernel mode).

Exception Code: STATUS_PRIVILEGED_INSTRUCTION

Additional Parameters: None

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 13

4.10 Invalid Lock Sequence

An invalid lock sequence exception is generated when an attempt is made to execute an
operation, within an interlocked section of code, such that the sequence is invalid for
the host machine architecture.

Exception Code: STATUS_INVALID_LOCK_SEQUENCE

Additional Parameters: None

i860 Implementation: Exceeding the 32-instruction limit within a lock sequence, an
attempt to execute a TRAP instruction within a lock sequence, or an attempt to
execute an INTOVR instruction within a lock sequence causes an invalid lock
sequence exception.

4.11 Integer Divide By Zero

An integer divide-by-zero exception is generated when an attempt is made to divide an
integer dividend by an integer divisor of zero.

Exception Code: STATUS_INTEGER_DIVIDE_BY_ZERO

Additional Parameters: None

4.12 Integer Overflow

An integer overflow exception is generated when the result of an integer operation
causes a carry out of the the most significant bit of the result, which is not the same as
the carry into of the most significant bit of the result. For example, the addition of two
positive integers that produces a negative result.

Exception Code: STATUS_INTEGER_OVERFLOW

Additional Parameters: None

i860 Implementation: The execution of an INTOVR instruction when OF set in EPSR
causes an integer overflow exception. The OF bit in EPSR is cleared prior to
initiating this exception.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 14

4.13 Single Step

A single step exception is generated when a trace trap or other single instruction
execution mechanism signals that one instruction has been executed. This exception is
intended for use by debuggers.

Exception Code: STATUS_SINGLE_STEP

Additional Parameters: None

i860 Implementation: The execution of a TRAP r30,r28,r0 instruction causes a single
step exception.

5. Windows NT Software-Defined Exceptions

Windows NT software-defined exceptions are explicitly raised by system software when
certain conditions are encountered, e.g., a page file read error. System software collects
the information necessary to initiate the exception and then calls a routine that routes
the exception to the appropriate exception handler.

5.1 Guard Page Violation

A guard page violation exception is generated when an attempt is made to load or store
data from/to a location that is contained within a guard page. Memory management
software immediately turns the guard page into a demand zero page and initiates a
guard page violation exception.

Exception Code: STATUS_GUARD_PAGE_VIOLATION

Additional Parameters: 2

Read/Write - A value of zero signifies a read; a value of one signifies a write.

Virtual Address - The virtual address of the data within a guard page.

5.2 Page Read Error

A page read error exception is generated when an attempt is made to read a page into
memory and an I/O error is encountered.

Exception Code: STATUS_IN_PAGE_ERROR

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 15

Additional Parameters: 1

Virtual Address - A virtual address within the page that was being read.

5.3 Paging File Quota Exceeded

A page file quota exceeded exception is generated when an attempt is made to commit
backing store space for a page that is being removed from a process's working set.

Exception Code: STATUS_PAGEFILE_QUOTA

Additional Parameters: 1

Virtual Address - A virtual address within the page that was being read.

6. Standard Exception Handling

Standard exception handling is provided for some exceptions in which it is most likely
that the user will select the default handling as the first resort, rather than wait until all
other handlers have been given an opportunity to handle the exception. This enables
the fault to be handled in the most efficient manner.

This capability is provided in Windows NT for alignment faults and IEEE floating point
faults.

6.1 Alignment Faults

Standard handling of alignment faults ... TBS

6.2 IEEE Floating Faults

Standard handling of IEEE faults ... TBS

7. Exception Handling Interfaces

Several interfaces are supplied by the Windows NT system to implement the exception
handling architecture described above. Some of these interfaces are intended for use
only by the exception handling components themselves, while others are available to
user-level software. The following subsections describe the exception handling APIs
that are provided by Windows NT.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 16

7.1 Exception Dispatcher

The exception dispatcher is responsible for searching the stack for frame-based
exception handlers. There is a single exception dispatcher and it is responsible for
dispatching both hardware-, and software-generated exceptions.

The exception dispatcher can be invoked with the RtlpDispatchException function:

BOOLEAN
RtlDispatchException (

IN PEXCEPTION_RECORD ExceptionRecord,
IN PCONTEXT ContextRecord
);

Parameters:

ExceptionRecord - A pointer to an exception record that describes the exception, and
the parameters of the exception, that has been raised.

ContextRecord - A pointer to a context record that describes the machine state at
the time the exception occurred.

The exception dispatcher walks backward through the call frame hierarchy attempting
to find an exception handler that will handle the exception. As each handler is
encountered, it is called specifying the exception record, the context record, the
address of the call frame of the establisher of the handler, and whether the handler is
being called recursively or not, as parameters.

The exception handler may handle the exception or request that the scan of call frames
be continued. As each step backwards is made in the call hierarchy, a check is made to
ensure that the previous call frame address is within the current thread's stack limits
and is aligned. If the stack is not within limits or is unaligned, then the
EXCEPTION_STACK_INVALID flag is set in the exception flags field and the NtLastChance
system service is called to finish processing of the exception. Otherwise, the previous
frame is examined to determine if it specifies an exception handler.

The exception dispatcher is called by RtlRaiseException and by the executive code that
processes hardware-generated exceptions.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 17

7.2 Exception Handler

An exception handler is usually called by the exception dispatcher, specifying
parameters that describe the exception and the environment in which the exception
handler was established. Exception handlers, however, are also called during an unwind
operation and are given a chance to clean up data structures, deallocate resources, or
do any other operations that are necessary to unwind the establisher's call frame.

The EXCEPTION_UNWINDING, EXCEPTION_EXIT_UNWIND, and EXCEPTION_NESTED_CALL flags in
the exception record determine how an exception handler is being called. These flags
are set by the exception dispatcher and the unwind function. If both the
EXCEPTION_UNWINDING and EXCEPTION_EXIT_UNWIND flags are clear, then the exception
handler is being called to handle an exception. Otherwise, an unwind operation is in
progress, and the exception handler is being called to perform any necessary cleanup
operations. If the exception handler is being called to handle an exception, then the
EXCEPTION_NESTED_CALL flag determines whether a nested exception is in progress (i.e.,
another exception was raised in the containing scope before the previous exception
was disposed of).

An exception handler has the following type definition:

typedef
EXCEPTION_DISPOSITION
(*PEXCEPTION_ROUTINE) (

IN PEXCEPTION_RECORD ExceptionRecord,
IN PVOID EstablisherFrame,
IN OUT PCONTEXT ContextRecord,
IN OUT PVOID DispatcherContext
);

Parameters:

ExceptionRecord - A pointer to an exception record that describes the exception and
the parameters of the exception.

EstablisherFrame - A pointer to the call frame of the establisher of the exception
handler.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 18

ContextRecord - A pointer to a context record that describes the machine state at
the time the exception occurred.

DispatcherContext - A pointer to a record that receives state information on nested
exceptions and collided unwinds.

When an exception handler is called to handle an exception, it has several options for
how it processes an exception:

1. It can handle the exception, provide any fixup that is necessary by modifying the
context record, and then continue execution of the program at the point of the
exception by returning a disposition value of ExceptionContinueExecution.

2. It can handle the exception, determine that execution cannot be continued, and
initiate an unwind operation.

3. It can decide that it cannot handle the exception and return a disposition value of
ExceptionContinueSearch, which causes the exception dispatcher to continue the
search for an exception handler.

When an exception handler is called during an unwind operation, it also has several
options for how it processes the call:

1. It can perform any necessary cleanup operations and return a disposition value
of ExceptionContinueSearch.

2. It can perform any necessary cleanup operations and initiate another unwind
operation to a different target.

3. It can restore the machine state from the context record and continue execution
directly.

If the exception handler belongs to the exception dispatcher itself, then it can also
return a disposition value of ExceptionNestedException when it is called to handle an
exception. Likewise, if the exception handler belongs to the unwind function, then it can
also return a disposition value of ExceptionCollidedUnwind when it is called to perform any
necessary cleanup operations (i.e., an unwind is in progress). For both of these cases,
the DispatcherContext parameter is used to return information to either the exception
dispatcher or the unwind function. No other exception handler can place information in
this output parameter.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 19

If an invalid disposition value is returned by an exception handler, then the exception
STATUS_INVALID_DISPOSITION is raised by the exception dispatcher.

The ContextRecord parameter is intended for use by machine-specific code that either
restores the machine state during an unwind operation, or manipulates the machine
state in such a way as to fix up an exception. An example of such an exception handler
is the default IEEE floating point exception handler, which uses the machine state
information to determine how a floating point exception should actually be handled.
Another example is the fixup necessary for unaligned data references. This type of
exception handler is machine specific and will generally be supplied by Microsoft.

When an exception handler is called to handle an exception, the context record contains
the machine state at the time of the exception. However, when an exception handler is
called during an unwind operation, the context record contains the machine state of the
exception handler's establisher.

When a disposition value of ExceptionContinueExecution is returned, the exception
dispatcher checks to determine if the exception is continuable. If it is not continuable
(i.e., the EXCEPTION_NONCONTINUABLE flag is set in the exception flags field of the
exception record), then the exception dispatcher raises the exception
STATUS_NONCONTINUABLE_EXCEPTION. Otherwise, the machine state is restored
and execution resumes at the point of the exception.

A disposition value of ExceptionContinueSearch causes the exception dispatcher or unwind
function to continue its scan of call frames.

If the exception handler of the exception dispatcher is encountered during the scan for
an exception handler, then it returns a disposition value of ExceptionNestedException and
the address of the call frame that established the exception handler most recently
called by the exception dispatcher. The EXCEPTION_NESTED_CALL flag is set in the
exception flags field of the exception record for each exception handler that is called
between the exception dispatcher handler and the establisher of the most recently
called exception handler. It is the responsibility of the individual exception handlers
themselves to determine if they can be recursively called.

The exception handler of the unwind function returns a disposition value of
ExceptionCollidedUnwind and the target frame of the current unwind. This information is
used to determine the new scope of the unwind.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 20

7.3 Raise Exception

A software exception can be raised with the RtlRaiseException function:

VOID
RtlRaiseException (

IN PEXCEPTION_RECORD ExceptionRecord
);

Parameters:

ExceptionRecord - A pointer to an exception record that describes the exception, and
the parameters of the exception, that is raised.

Raising a software exception captures the machine state of the current thread in a
context record. The ExceptionAddress field of the exception record is set to the caller's
return address, and the exception dispatcher is then called in an attempt to locate a
frame-based exception handler to handle the exception. Note that the associated
debugger, if any, is not given a first chance to handle software exceptions.

If an exception handler returns a disposition value of ExceptionContinueExecution, then
execution will return to the caller of RtlRaiseException. If no frame-based exception
handler disposes of the exception, then NtLastChance is called to enable the
appropriate system service emulation subsystem to perform any subsystem-specific
processing.

7.4 Continuing From An Exception

Execution of a thread can be continued from the point of an exception with the
NtContinue function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 21

VOID
NtContinue (

IN PCONTEXT ContextRecord,
IN BOOLEAN TestAlert
);

Parameters:

ContextRecord - A pointer to a context record that describes the machine state that
is to be restored.

TestAlert - A boolean value that specifies whether an alert should be tested for the
previous processor mode. This parameter is used for APC processing.

This function restores the machine state from the specified context record and resumes
execution of the thread.

\ Note that such a service would not normally be required. The Intel i860
architecture, however, does not allow the entire machine state to be completely
restored in user mode, and therefore, a system service must be called in kernel mode
to perform this operation. \

This function is called by the exception dispatcher to continue the execution of a thread
when an exception handler returns a dispostion value of ExecptionContinueExecution.

7.5 Unwinding From An Exception

An exception can be unwound with the RtlUnwind function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 22

VOID
RtlUnwind (

IN PVOID TargetFrame OPTIONAL,
IN PVOID TargetIp OPTIONAL,
IN PEXCEPTION_RECORD ExceptionRecord OPTIONAL
);

Parameters:

TargetFrame - An optional pointer to the call frame that is the target of the unwind.
If this parameter is not specified, then the EXCEPTION_EXIT_UNWIND flag is set
in the exception flags field of the exception record.

TargetIp - An optional instruction address that specifies the continuation address.
This parameter is ignored if the TargetFrame parameter is not specified.

ExceptionRecord - An optional pointer to an exception record that is used when each
exception handler is called during the unwind operation.

This function initiates an unwind of procedure call frames. The machine state at the
time of the call to RtlUnwind is captured in a context record, the EXCEPTION_UNWINDING
flag is set in the exception flags field of the exception record, and the
EXCEPTION_EXIT_UNWIND flag is also set if the TargetFrame parameter is not specified. A
backward walk through the procedure call frames is then performed to find the target
of the unwind operation.

As each call frame is unwound, the machine state of the previous frame is computed by
restoring any registers stored by the procedure. The previous frame is then examined
to determine if it has an associated exception handler. If the call frame has an exception
handler, then it is called specifying the exception record, the establisher's frame
pointer, and the context record that contains the machine state of the handler's
establisher. The exception handler should perform any cleanup operations that are
necessary, and continue the unwind operation by returning a disposition value of
ExceptionContinueSearch, initiating another unwind operation, or directly restoring the
machine state from the context record.

Note that languages that support a termination model for exception handling (e.g., Ada,
Modula-3, and the proposed extensions to Microsoft C) can implement this capability
by unwinding to the frame of the establisher when a language-specific exception

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 23

handler is invoked during either an unwind operation or during the dispatching of an
exception.

There is no return from a call to RtlUnwind. Control is either transferred to the
specified instruction pointer address, or NtLastChance is called to perform secondary
debugger processing and/or subsystem-specific default processing at the completion of
the unwind operation. If RtlUnwind encounters an error during its processing, it raises
another exception rather than return control to the caller.

If the target call frame is reached and an exit unwind is not being performed (i.e. the
TargetFrame parameter is specified), then the computed machine state is restored from
the context record and control is transfered to the address specified by the TargetIp
parameter. Note that the stack pointer is not restored making it possible to transfer
information on the stack. It is the responsibility of the code at the target address to
reset the stack pointer as necessary.

If an exit unwind is being performed (i.e. the TargetFrame parameter is not specified),
then all call frames are unwound until the base of the stack is reached. NtLastChance is
then called to perform secondary debugger processing and/or subsystem-specific
processing.

If the ExceptionRecord parameter is specified, then each exception handler encountered
during the unwind operation is called using the specified record. If this parameter is not
specified, then RtlUnwind constructs an exception record that specifies the exception
STATUS_UNWIND.

During an unwind operation, it is possible for one unwind to collide with a previous
unwind. This occurs when the scope of the second unwind overlaps the scope of the
first unwind.

There are two cases to consider:

1. The target frame of the second unwind is a frame that has already been
unwound by the first unwind.

2. The target frame of the second unwind occurs earlier in the call hierarchy than
the target of the first unwind.

The first case is processed by unwinding call frames for the second unwind until the
first call frame unwound by the first unwind is encountered. The second unwind is then

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 24

terminated and processing of the first unwind is continued at the point where the first
unwind was interrupted by the second unwind.

The second case is processed by changing the target of the first unwind to that of the
second unwind, and then applying the handling that is provided for case one.

7.6 Last Chance Exception Handling

Last chance exception handling can be invoked with the NtLastChance function:

NTSTATUS
NtLastChance (

IN PEXCEPTION_RECORD ExceptionRecord,
IN PCONTEXT ContextRecord
);

Parameters:

ExceptionRecord - A pointer to an exception record that describes the exception, and
the parameters of the exception, that has been raised.

ContextRecord - A pointer to a context record that describes the machine state at
the time the exception occurred.

Last chance handling copies the exception and context records onto the kernel stack
and checks to determine if a system service emulation subsystem port is associated
with the thread's process. If a subsystem port is associated with the thread's process,
then a message is sent to the port specifying the exception record and the identification
of the client thread. Otherwise, default handling is provided for the exception.

This function is called by the exception dispatcher to perform subsystem and/or default
handling for an exception that is not handled by any of the frame-based exception
handlers. It is not called by any other component of the system.

Normally there is no return from the call to NtLastChance. However, if the context or
exception record is not accessible to the calling process, then an access violation status
is returned.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 25

8. OS/2 2.0 Compatibility

The OS/2 Cruiser project is currently designing a new exception handling capability for
OS/2 that replaces the current DosSetVec interface, and which can provide the basis for
frame-based exception handling.

It is desirable to be able to directly emulate the proposed exception capabilities of OS/2
with the native frame-based exception handling provided by Windows NT.
Furthermore, it is desirable to be able to use both the OS/2 style of exception handlers
in the same program as the Windows NT frame-based handlers without a conflict
arising. Currently this is not possible without further refinement of the OS/2 proposal
and the introduction of certain constraints concerning the establishment and
disestablishment of OS/2 exception handlers. Other problems with the current OS/2
design include the visibility of x86 architectural features, which makes the user interface
nonportable.

The following changes and restrictions need to be specified:

1. The machine-dependent state must be separated from the exception state in the
OS/2 proposal so that portable software can be written that makes use of the
exception handling capabilities of OS/2 on architectures other than the x86.

2. The exception information included in an exception record for OS/2 must be
specified in such a way as to be portable to architectures other than the x86 (i.e.,
a higher level of abstraction is needed for the parameter values).

3. A restriction must be placed on the establishment and disestablishment of OS/2
exception handlers such that they are strictly frame based (i.e., an exception
handler that is established in a frame must be disestablished before leaving the
frame).

4. A restriction must be placed on the use of OS/2 style exception handlers in the
same frame as Windows NT frame-based exception handlers.

5. The semantics of DosRaiseException must be corrected to return to the call site
if a continuation status is returned by an exception handler.

If these changes and restrictions are implemented, then the Windows NT exception
handling capabilities, with slight modification, can directly emulate the OS/2 exception
handling capabilities.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 26

8.1 Windows NT Intel i860 Implementation

The Intel i860 Windows NT implementation of exception handling is frame based. Each
call frame has a pointer that is dedicated to holding the address of an exception handler
for the frame. Usually this is a language-supplied handler that provides whatever
semantics are required to provide exception handling for the language. If there is no
handler associated with the frame, then a flag is clear in the frame to signify that there
is no exception handler and the dedicated pointer does not contain meaningful
information. If the handler address is specified as VOID, then there is also no exception
handler associated with the frame.

When an exception occurs, or an unwind operation is initiated, a backward walk
through the call frames is conducted. If a call frame contains an exception handler, then
it is called with the appropriate arguments.

Establishing an exception handler does not require the allocation of any heap storage,
or the initialization of any data structure on the part of the user. Exception handlers are
automatically disestablished upon leaving a procedure and deleting its call frame from
the stack.

Unwind does not return to its caller. Rather it unwinds call frames, calling exception
handlers as appropriate until the target of the unwind is reached, and then restores the
machine state and transfers control to a specified destination instruction address.

8.2 OS/2 2.0 Intel x86 Implementation

The OS/2 implementation of exception handling on the Intel x86 is list based. The head
of the list is anchored in the Thread Information Block (TIB) of a thread. When an
exception handler is established, a structure called an exception-handler-structure is
supplied by the user, and linked into the last in, first out (LIFO) list of exception
handlers. Disestablishing an exception handler removes the appropriate exception-
handler-structure from the list.

The exception-handler-structure contains a link pointer and a pointer to the exception
handler associated with the structure. The fields of the structure are exported to the
user who is free to change the address of the exception handler while the structure is in
the exception list.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 27

When an exception occurs, or an unwind operation is initiated, a forward walk through
the exception handler list is performed. Each handler is called with the appropriate
arguments.

After completing an unwind operation (no unwind is actually done), the OS/2 function
returns control to the caller, which must perform a longjmp() if necessary.

OS/2 defines the following APIs for exception handling:

1. DosSetExceptionHandler (*exception-handler-structure) - This function establishes
an exception handler by placing the specified exception-handler-structure at the
front of the exception handler list.

2. DosUnsetExceptionHandler (*exception-handler-structure) - This function
disestablishes an exception handler by removing the specified exception-handler-
structure from the exception handler list.

3. DosRaiseException (*exception-structure) - This function raises a software
exception.

4. DosUnwindException (*exception-handler-structure) - This function causes
exception handlers to be called up, including the exception handler specified by
the exception-handler-structure.

8.3 Windows NT Implementation of OS/2 Capabilities

In order to directly emulate OS/2 exception handling in Windows NT, the restrictions
and changes described above for OS/2 must be made. Assuming these changes are
made, the following paragraphs describe how Windows NT can directly emulate the
OS/2 capabilities.

The meaning of the handler address in a call frame is expanded to be either a handler
address (low-order bit is clear), or a pointer to a LIFO list of exception-handler-
structures (low-order bit is set). A call frame can contain either a list head for OS/2 style
exception handlers or a pointer to a single exception handler for Windows NT
exceptions.

The function DosSetExceptionHandler inserts an exception-handler-structure in the
LIFO list of exception handlers defined for the current call frame. If there is a Windows
NT exception handler already established for the frame, then an attempt to insert an

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 28

OS/2 style handler causes the exception
STATUS_INCOMPATIBLE_EXCEPTION_HANDLER to be raised. Otherwise, the specified
exception-handler-structure is inserted at the front of the exception handler list and the
low-order bit of the exception handler address is set.

The function DosUnsetExceptionHandler removes an exception-handler-structure
from the exception list associated with the current frame. If the current frame contains
a Windows NT exception handler, or the specified exception-handler-structure is not in
the current frame's exception handler list, then the exception
STATUS_HANDLER_NOT_FOUND is raised. Otherwise, the specified exception-handler-
structure is removed from the exception handler list of the currrent frame.

The function DosRaiseException reformats the exception record that it is passed into
the exception record expected by RtlRaiseException. No other processing is required.
If an exception handler returns a continuation status, then control returns to the caller
of DosRaiseException.

The function DosUnwindException performs a prescan of call frames in an attempt to
locate the specified exception-handler-structure. The prescan is performed by walking
backwards through the call frame and examining the exception handler list for each
frame that contains such a list. If the specified exception-handler-structure is not found,
then the exception STATUS_HANDLER_NOT_FOUND is raised. Otherwise, RtlUnwind is
called specifying the address of the target frame to unwind to and the address of the
exception-handler-structure as the continuation instruction address.

The Windows NT exception dispatcher performs a walk backwards through the call
frames when an exception is raised. If it encounters a frame with a handler that has the
low-order bit set, it knows that this is not really the address of a handler, but rather the
address of an exception handler list for the frame. It calls each handler in the list, one
after the other, exactly in the same manner as OS/2, thus implementating exactly the
exception dispatching semantics of OS/2.

The function RtlUnwind also performs a walk backwards through the call frames when
an unwind operation is initiated. This function also recognizes that frames containing a
handler with the low-order bit set really point to a list of OS/2 style exception handlers.
If the target of the unwind is a frame that contains an exception handler list, then it is
known that the continuation address is really the address of an exception-handler-
structure that is the target of the unwind and that control is to be returned to the caller
of unwind. This implements exactly the same unwind semantics as OS/2.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 29

Revision History:

Original Draft 1.0, May 22, 1989

Revision 1.1, June 2, 1989

1. Major update to include first draft comments.

2. Added section on the implementation of OS/2 exception handling on top of
the Windows NT capabilities.

Revision 1.2, June 6, 1989

1. Minor corrections of typos.

2. Deleted parameter to illegal instruction, privileged instruction, and invalid
lock sequence exceptions to make them more portable.

3. Changed the type name of the context record to match the definition of
thread context in the process structure.

Revision 1.3, August 4, 1989

1. Changed the exception dispatch sequence to include a second call to the
debugger just before calling the system service emulation subsystem.

2. Changed the name of the RECURSIVE_CALL flag to NESTED_CALL.

3. Changed the definition of NtLastChance so that the function returns an
access violation status if the exception or context record are not accessible to
the calling process.

Revision 1.4, August 15, 1989

1. Changed names of exception flags to include a leading "EXCEPTION_" tag.

2. Changed field names in the context record to reflect the actual
implementation which uses the context record as a call frame.

3. Changed the name of the exception dispatcher to a private internal name and
added stack limit parameters.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Exception Handling Specification 30

4. Changed the exception disposition values from manifest constants to an
enumerated type.

5. The exception STATUS_INVALID_DISPOSITION is raised if an invalid
disposition value.

6. Change name of NtContinueExecution to NtContinue and add a boolean
parameter to specify whether a test alert should be executed.

7. The registers f0, f1, and r0 are no longer saved in the context record.

Revision 1.5, November 6, 1989

1. Delete stack limit arguments from exception dispatcher routine.

2. Change name of collided unwind status code from ExceptionNestedUnwind
to ExceptionCollidedUnwind.

3. Change name of exception dispatcher from RtlpDispatchException to
RtlDispatchException.

4. Change name of unwind routine from NtUnwind to RtlUnwind.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

	1. Introduction
	2. Goals
	3. Exception Architecture
	3.1 Frame-Based Exception Handlers
	3.2 Exception Dispatching
	3.3 Exception Handling and Unwind
	3.4 Exception Record
	3.5 Exception Context

	4. Hardware-Defined Exceptions
	4.1 Access Violation
	4.2 Breakpoint
	4.3 Data-Type Misalignment
	4.4 Floating Divide By Zero
	4.5 Floating Overflow
	4.6 Floating Underflow
	4.7 Floating Reserved Operand
	4.8 Illegal Instruction
	4.9 Privileged Instruction
	4.10 Invalid Lock Sequence
	4.11 Integer Divide By Zero
	4.12 Integer Overflow
	4.13 Single Step

	5. Windows NT Software-Defined Exceptions
	5.1 Guard Page Violation
	5.2 Page Read Error
	5.3 Paging File Quota Exceeded

	6. Standard Exception Handling
	6.1 Alignment Faults
	6.2 IEEE Floating Faults

	7. Exception Handling Interfaces
	7.1 Exception Dispatcher
	7.2 Exception Handler
	7.3 Raise Exception
	7.4 Continuing From An Exception
	7.5 Unwinding From An Exception
	7.6 Last Chance Exception Handling

	8. OS/2 2.0 Compatibility
	8.1 Windows NT Intel i860 Implementation
	8.2 OS/2 2.0 Intel x86 Implementation
	8.3 Windows NT Implementation of OS/2 Capabilities

