
Portable Systems Group

Windows NT Executive Support Routines Specification

Author: David Treadwell, Windows NT team

Revision 1.0, August 2, 1989
Revision 1.1, October 11, 1989
Revision 1.2, January 31, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 1

1. Introduction... 1

2. Get Information About Pages.. 3
2.1 ExCreateBitMap.. 3
2.2 DeleteBitMap... 3
2.3 ExInitializeBitMap... 4
2.4 ExClearAllBits... 4
2.5 ExSetAllBits.. 5
2.6 ExFindClearBits... 5
2.7 ExFindSetBits... 5
2.8 ExFindClearBitsAndSet... 6
2.9 ExFindSetBitsAndClear... 6
2.10 ExClearBits... 7
2.11 ExSetBits.. 7
2.12 ExFindLongestRunClear... 8
2.13 ExFindLongestRunSet.. 8
2.14 ExCheckBit... 9

3. Determine Pool Type.. 10
3.1 MmDeterminePoolType... 10

4. Allocate and Deallocate Pool... 11
4.1 ExLockPool... 11
4.2 ExUnlockPool... 11
4.3 InitializePool.. 12
4.4 ExAllocatePool... 12
4.5 ExAllocatePoolWithQuota.. 13
4.6 ExDeallocatePool.. 14

5. Initialize and Extend Zone Buffer.. 15
5.1 ExInitializeZone... 15
5.2 ExExtendZone.. 16

6. Perform Interlocked Allocate and Free from Zone................................... 17
6.1 ExAllocateFromZone... 17
6.2 ExFreeToZone.. 17
6.3 ExIsFullZone... 17
6.4 ExInterlockedAllocateFromZone... 18
6.5 ExInterlockedFreeToZone.. 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 2

7. Zero and Move Memory... 20
7.1 ExZeroMemory.. 20
7.2 ExMoveMemory.. 20

8. Manage Memory for I/O... 22
8.1 MmProbeAndLockPages.. 22
8.2 MmUnlockPages... 22
8.3 MmMapLockedPages... 23
8.4 MmUnmapLockedPages.. 23
8.5 MmMapIoSpace.. 24
8.6 MmUnmapIoSpace... 25
8.7 MmGetPhysicalAddress... 25
8.8 MmSizeOfMdl.. 26
8.9 MmCreateMdl.. 26

9. Is Address Valid... 28
9.1 MmIsAddressValid.. 28

10. Perform Bit Map Operations... 29
10.1 PAGE_ALIGN.. 29
10.2 BYTES_TO_PAGES.. 29
10.3 ROUND_TO_PAGES... 29
10.4 BYTE_OFFSET... 30
10.5 ADDRESS_AND_SIZE_TO_SPAN_PAGES.. 30

11. Manage Object Handles and Handle Tables... 32
11.1 ExCreateHandleTable... 32
11.2 ExLockHandleTable.. 33
11.3 ExUnlockHandleTable.. 33
11.4 ExDupHandleTable... 34
11.5 ExDestroyHandleTable... 34
11.6 ExDumpHandleTable... 35
11.7 ExEnumHandleTable.. 35
11.8 ExCreateHandle.. 36
11.9 ExDestroyHandle.. 37
11.10 ExMapHandleToPointer... 37

12. Probe and Validate Arguments... 39
12.1 ProbeForRead... 39

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 3

12.2 ProbeForWrite... 39
12.3 ProbeAndReadChar.. 40
12.4 ProbeAndReadUchar.. 40
12.5 ProbeAndReadShort... 40
12.6 ProbeAndReadLong... 40
12.7 ProbeAndReadUlong.. 40
12.8 ProbeAndReadQuad... 40
12.9 ProbeAndReadUquad.. 40
12.10 ProbeAndReadHandle... 41
12.11 ProbeAndReadBoolean.. 41
12.12 ProbeForWriteChar.. 41
12.13 ProbeForWriteUchar.. 41
12.14 ProbeForWriteShort... 41
12.15 ProbeForWriteUshort... 41
12.16 ProbeForWriteLong.. 41
12.17 ProbeForWriteUlong.. 41
12.18 ProbeForWriteQuad... 41
12.19 ProbeForWriteUquad... 42
12.20 ProbeForWriteHandle.. 42
12.21 ProbeForWriteBoolean.. 42
12.22 ProbeAndWriteChar... 42
12.23 ProbeAndWriteUchar... 42
12.24 ProbeAndWriteShort.. 42
12.25 ProbeAndWriteUshort... 42
12.26 ProbeAndWriteLong... 42
12.27 ProbeAndWriteUlong... 43
12.28 ProbeAndWriteQuad.. 43
12.29 ProbeAndWriteUquad.. 43
12.30 ProbeAndWriteHandle... 43
12.31 ProbeAndWriteBoolean... 43

13. Perform Restricted Interlock Operations... 44
13.1 ExInterlockedAddLong... 44
13.2 ExInterlockedAddShort.. 44
13.3 ExInterlockedInsertHeadList... 45
13.4 ExInterlockedInsertTailList.. 45
13.5 ExInterlockedRemoveHeadList... 46
13.6 ExInterlockedPopEntryList.. 46

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 4

13.7 ExInterlockedPushEntryList.. 47

14. Allocate and Free Spin Locks... 48
14.1 ExAllocateSpinLock... 48
14.2 ExFreeSpinLock... 48

15. Perform General Interlocked Operations.. 49
15.1 RtlInterlockedAddLong.. 49
15.2 RtlInterlockedAddShort... 49
15.3 RtlInterlockedInsertHeadList.. 50
15.4 RtlInterlockedInsertTailList... 50
15.5 RtlInterlockedRemoveHeadList.. 51
15.6 RtlInterlockedRemoveHeadList.. 51
15.7 RtlInterlockedPopEntryList.. 52
15.8 RtlInterlockedPushEntryList.. 52

16. Perform Operations on Counted Strings... 54
16.1 RtlInitString... 54
16.2 RtlCopyString... 54
16.3 RtlCompareString... 55
16.4 RtlEqualString.. 55

17. Debugging Support Functions.. 57
17.1 DbgBreakPoint.. 57
17.2 DbgCommand... 57
17.3 DbgQueryInstructionCounter... 57
17.4 DbgPrint... 58
17.5 DbgPrompt.. 58
17.6 DbgLoadImageFileSymbols.. 59
17.7 DbgSetDirBaseForImage... 59
17.8 DbgKillDirBase.. 60
17.9 DbgCheckpointSimulator.. 60

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 1

1. Introduction

This chapter describes executive support routines that are not documented elsewhere
in the Windows NT Design Workbook. The routines are callable from kernel mode within
the Windows NT executive. The following routines are presented in subsequent
sections:

Get Information About Pages ——Routines to calculate values related to the
memory pagesize

Determine Pool Type ——A memory management routine that determines whether
a virtual address resides in paged or nonpaged memory pool

Allocate and Deallocate Pool ——Routines used to allocate and deallocate memory
pool using a binary buddy algorithm

Initialize and Extend Zone Buffer ——Routines that initialize or extend a zone buffer
(used primarily by local process communication)

Perform Interlocked Allocate and Free from Zone ——Routines to allocate and free
memory from a zone in a multiprocessor-safe manner

Zero and Move Memory ——Routines to zero and move memory

Manage Memory for I/O ——Routines that provide memory management support
for the I/O system

Is Address Valid ——A routine that determines if a given virtual address will cause a
page fault if read

Perform Bit Map Operations ——Routines to create, initialize, and manipulate bit
maps

Manage Object Handles and Handle Tables ——Routines that support object
handles and handle tables

Probe and Validate Arguments ——Routines that provide argument validation for
system service calls

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 2

Perform Restricted Interlocked Operations ——Restricted routines (no page faults
allowed) implementing operations that must be synchronized across
processors in a multiprocessing system

Allocate and Free Spin Locks ——Routines to allocate and free spin locks (specialized
mutual exclusion semaphores)

Perform General Interlocked Operations ——Unrestricted routines (page faults
allowed) implementing operations that must be synchronized across
processors in a multiprocessing system

Perform Operations on Counted Strings ——Routines that manipulate counted
strings (strings that maintain a length field)

Debugging Support Functions ——Routines for interfacing kernel-mode commands
to the kernel-mode debugger.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 3

2. Get Information About Pages

Implementation of the bit map routines for the Windows NT executive.

Bit numbers within the bit map are zero based. The first is numbered zero.

A bit map is allocated and initialized using the ExCreateBitMap routine. Once a bit
map has been created, it must be set to a known state using either the ExSetAllBits
or the ExClearAllBits routine.

The ExInitializeBitMap routine is provided to initialize preallocated bit maps.

The bit map routines keep track of the number of bits clear or set by subtracting or
adding the number of bits operated on as bit ranges are cleared or set; individual
bit states are not tested. This means that if a range of bits is set, it is assumed that
the total range is currently clear.

2.1 ExCreateBitMap

PEX_BITMAP
ExCreateBitMap(

IN ULONG SizeOfBitMap,
IN POOL_TYPE PoolType
)

Routine Description:

This procedure allocates a bit map from the specified pool and returns a pointer to
the bit map.

Parameters:

SizeOfBitMap - Supplies the number of bits required in the bitmap.

PoolType - Supplies the type of pool from which to allocate the bit map.

Return Value:

PEX_BITMAP - Returns a pointer to the allocated bit map. The bit map is not
initialized.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 4

2.2 DeleteBitMap

VOID
DeleteBitMap(

IN PEX_BITMAP BitMap
)

Routine Description:

This procedure deallocates a bit map from the specified pool.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

Return Value:

None.

2.3 ExInitializeBitMap

VOID
ExInitializeBitMap(

IN PEX_BITMAP BitMap,
IN ULONG SizeOfBitMap
)

Routine Description:

This procedure initializes a bit map which has already been allocated.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

SizeOfBitMap - Supplies the number of bits required in the bit map.

Return Value:

None.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 5

2.4 ExClearAllBits

VOID
ExClearAllBits(

IN PEX_BITMAP BitMap
)

Routine Description:

This procedure clears all bits in the specified bit map.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

Return Value:

None.

2.5 ExSetAllBits

VOID
ExSetAllBits(

IN PEX_BITMAP BitMap
)

Routine Description:

This procedure sets all bits in the specified bit map.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

Return Value:

None.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 6

2.6 ExFindClearBits

ULONG
ExFindClearBits(

IN PEX_BITMAP BitMap,
IN ULONG NumberToFind
)

Routine Description:

This procedure searches the specified bit map for the specified contiguous region
of clear bits.

Uses methods from Pinball scan for bit block algorithm.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

NumberToFind - Supplies the size of the contiguous region to find.

Return Value:

ULONG - Starting value (zero based) of the contiguous region found.

2.7 ExFindSetBits

ULONG
ExFindSetBits(

IN PEX_BITMAP BitMap,
IN ULONG NumberToFind
)

Routine Description:

This procedure searches the specified bit map for the specified contiguous region
of set bits.

Uses methods from Pinball scan for bit block algorithm.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 7

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

NumberToFind - Supplies the size of the contiguous region to find.

Return Value:

ULONG - Starting value (zero based) of the contiguous region found.

2.8 ExFindClearBitsAndSet

ULONG
ExFindClearBitsAndSet(

IN PEX_BITMAP BitMap,
IN ULONG NumberToFind
)

Routine Description:

This procedure searches the specified bit map for the specified contiguous region
of clear bits, sets the bits and returns the starting bit number which was clear then
set.

Uses methods from Pinball scan for bit block algorithm.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

NumberToFind - Supplies the size of the contiguous region to find.

Return Value:

ULONG - Starting value (zero based) of the contiguous region found.

2.9 ExFindSetBitsAndClear

ULONG
ExFindSetBitsAndClear(

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 8

IN PEX_BITMAP BitMap,
IN ULONG NumberToFind
)

Routine Description:

This procedure searches the specified bit map for the specified contiguous region
of set bits, clears the bits and returns the starting bit number which was set then
clear.

Uses methods from Pinball scan for bit block algorithm.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

NumberToFind - Supplies the size of the contiguous region to find.

Return Value:

ULONG - Starting value (zero based) of the contiguous region found.

2.10 ExClearBits

VOID
ExClearBits(

IN PEX_BITMAP BitMap,
IN ULONG StartingLocation,
IN ULONG NumberToClear
)

Routine Description:

This procedure clears the specified range of bits within the specified bit map.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

StartingLocation - Supplies the number of the first bit to clear.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 9

NumberToClear - Supplies the number of bits to clear.

Return Value:

None.

2.11 ExSetBits

VOID
ExSetBits(

IN PEX_BITMAP BitMap,
IN ULONG StartingLocation,
IN ULONG NumberToSet
)

Routine Description:

This procedure sets the specified range of bits within the specified bit map.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

StartingLocation - Supplies the number of the first bit to set.

NumberToClear - Supplies the number of bits to set.

Return Value:

None.

2.12 ExFindLongestRunClear

ULONG
ExFindLongestRunClear(

IN PEX_BITMAP BitMap
)

Routine Description:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 10

This procedure finds the largest contiguous range of clear bits within the specified
bit map.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

Return Value:

ULONG - Largest contiguous range of clear bits.

2.13 ExFindLongestRunSet

ULONG
ExFindLongestRunSet(

IN PEX_BITMAP BitMap
)

Routine Description:

This procedure finds the largest contiguous range of set bits within the specified
bit map.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

Return Value:

ULONG - Largest contiguous range of set bits.

2.14 ExCheckBit

ULONG
ExCheckBit(

IN PEX_BITMAP BitMap,
IN ULONG BitPosition
)

Routine Description:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 11

This procedure returns the state of the specified bit within the specified bit map.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

BitPosition - Supplies the bit number of which to return the state.

Return Value:

ULONG - The state of the specified bit.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 12

3. Determine Pool Type

This module contains the routines which allocate and deallocate one or more
pages from paged or nonpaged pool.

3.1 MmDeterminePoolType

POOL_TYPE
MmDeterminePoolType(

IN PVOID VirtualAddress
)

Routine Description:

This function determines which pool a virtual address resides within.

Parameters:

VirtualAddress - Supplies the virtual address to determine which pool it resides
within.

Return Value:

Returns the POOL_TYPE (PagedPool or NonPagedPool).

Environment:

Kernel Mode Only.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 13

4. Allocate and Deallocate Pool

Implementation of the binary buddy pool allocator for the Windows NT executive.

4.1 ExLockPool

HANDLE
ExLockPool(

IN POOL_TYPE PoolType
)

Routine Description:

This function locks the pool specified by pool type.

Parameters:

PoolType - Specifies the pool that should be locked.

Return Value:

Opaque - Returns a lock handle that must be returned in a subsequent call to
ExUnlockPool.

4.2 ExUnlockPool

VOID
ExUnlockPool(

IN POOL_TYPE PoolType,
IN HANDLE LockHandle,
IN BOOLEAN Wait
)

Routine Description:

This function unlocks the pool specified by pool type. If the value of the Wait
parameter is true, then the pool's lock is released using "wait == true".

Parameters:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 14

PoolType - Specifies the pool that should be unlocked.

LockHandle - Specifies the lock handle from a previous call to ExLockPool.

Wait - Supplies a boolean value that signifies whether the call to ExUnlockPool will
be immediately followed by a call to one of the kernel Wait functions.

Return Value:

None.

4.3 InitializePool

VOID
InitializePool(

IN POOL_TYPE PoolType,
IN ULONG Threshold
)

Routine Description:

This procedure initializes a pool descriptor for a binary buddy pool type. Once
initialized, the pool may be used for allocation and deallocation.

This function should be called once for each pool type during system initialization.

Each pool descriptor contains an array of list heads for free blocks. Each list head
holds blocks of a particular size. One list head contains page-sized blocks. The
other list heads contain 1/2- page-sized blocks, 1/4-page-sized blocks.... A
threshold is associated with the page-sized list head. The number of free blocks
on this list will not grow past the specified threshold. When a deallocation occurs
that would cause the threshold to be exceeded, the page is returned to the page-
aliged pool allocator.

Parameters:

PoolType - Supplies the type of pool being initialized (e.g. nonpaged pool, paged
pool...).

Threshold - Supplies the threshold value for the specified pool.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 15

Return Value:

None.

4.4 ExAllocatePool

PVOID
ExAllocatePool(

IN POOL_TYPE PoolType,
IN ULONG NumberOfBytes
)

Routine Description:

This function allocates a block of pool of the specified type and returns a pointer to
the allocated block. This function is used to access both the page-aligned pools,
and the binary buddy (less than a page) pools.

If the number of bytes specifies a size that is too large to be satisfied by the
appropriate binary buddy pool, then the page-aligned pool allocator is used. The
allocated block will be page-aligned and a page-sized multiple.

Otherwise, the appropriate binary buddy pool is used. The allocated block will be
64-bit aligned, but will not be page aligned. The binary buddy allocator calculates
the smallest block size that is a power of two and that can be used to satisfy the
request. If there are no blocks available of this size, then a block of the next larger
block size is allocated and split in half. One piece is placed back into the pool, and
the other piece is used to satisfy the request. If the allocator reaches the paged-
sized block list, and nothing is there, the page-aligned pool allocator is called. The
page is added to the binary buddy pool...

Parameters:

PoolType - Supplies the type of pool to allocate.

NumberOfBytes - Supplies the number of bytes to allocate.

Return Value:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 16

Non-NULL - Returns a pointer to the allocated pool.

4.5 ExAllocatePoolWithQuota

PVOID
ExAllocatePoolWithQuota(

IN POOL_TYPE PoolType,
IN ULONG NumberOfBytes
)

Routine Description:

This function allocates a block of pool of the specified type, returns a pointer to the
allocated block, and if the binary buddy allocator was used to satisfy the request,
charges pool quota to the current process. This function is used to access both the
page-aligned pools, and the binary buddy.

If the number of bytes specifies a size that is too large to be satisfied by the
appropriate binary buddy pool, then the page-aligned pool allocator is used. The
allocated block will be page-aligned and a page-sized multiple. No quota is
charged to the current process if this is the case.

Otherwise, the appropriate binary buddy pool is used. The allocated block will be
64-bit aligned, but will not be page aligned. After the allocation completes, an
attempt will be made to charge pool quota (of the appropriate type) to the current
process object. If the quota charge succeeds, then the pool block's header is
adjusted to point to the current process. The process object is not dereferenced
until the pool is deallocated and the appropriate amount of quota is returned to
the process. Otherwise, the pool is deallocated, a "quota exceeded" condition is
raised.

Parameters:

PoolType - Supplies the type of pool to allocate.

NumberOfBytes - Supplies the number of bytes to allocate.

Return Value:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 17

Non-NULL - Returns a pointer to the allocated pool.

Unspecified - If insuffient quota exists to complete the pool allocation, the return
value is unspecified.

4.6 ExDeallocatePool

VOID
ExDeallocatePool(

IN PVOID P
)

Routine Description:

This function deallocates a block of pool. This function is used to deallocate to
both the page aligned pools, and the binary buddy (less than a page) pools.

If the address of the block being deallocated is page-aligned, then the page-aliged
pool deallocator is used.

Otherwise, the binary buddy pool deallocator is used. Deallocation looks at the
allocated block's pool header to determine the pool type and block size being
deallocated. If the pool was allocated using ExAllocatePoolWithQuota, then after
the deallocation is complete, the appropriate process's pool quota is adjusted to
reflect the deallocation, and the process object is dereferenced.

Parameters:

P - Supplies the address of the block of pool being deallocated.

Return Value:

None.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 18

5. Initialize and Extend Zone Buffer

This module implements a simple zone buffer manager. The primary consumer of
this module is local LPC.

The zone package provides a fast and efficient memory allocator for fixed-size 64-
bit aligned blocks of storage. The zone package does not provide any serialization
over access to the zone header and associated free list and segment list. It is the
responsibility of the caller to provide any necessary serialization.

The zone package views a zone as a set of fixed-size blocks of storage. The block
size of a zone is specified during zone initialization. Storage is assigned to a zone
during zone initialization and when a zone is extended. In both of these cases, a
segment and length are specified.

The zone package uses the first ZONE_SEGMENT_HEADER portion of the segment
for zone overhead. The remainder of the segment is carved up into fixed-size
blocks and each block is added to the free list maintained in the zone header.

As long as a block is on the free list, the first SINGLE_LIST_ENTRY (32 bit) sized
piece of the block is used as zone overhead. The rest of the block is not used by
the zone package and may be used by applications to cache information. When a
block is not on the free list, its entire contents are available to the application.

5.1 ExInitializeZone

NTSTATUS
ExInitializeZone(

IN PZONE_HEADER Zone,
IN ULONG BlockSize,
IN PVOID InitialSegment,
IN ULONG InitialSegmentSize
)

Routine Description:

This function initializes a zone header. Once successfully initialized, blocks can be
allocated and freed from the zone, and the zone can be extended.

Parameters:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 19

Zone - Supplies the address of a zone header to be initialized.

BlockSize - Supplies the block size of the allocatable unit within the zone. The size
must be larger that the size of the initial segment, and must be 64-bit aligned.

InitialSegment - Supplies the address of a segment of storage. The first
ZONE_SEGMENT_HEADER-sized portion of the segment is used by the zone
allocator. The remainder of the segment is carved up into fixed size
(BlockSize) blocks and is made available for allocation and deallocation from
the zone. The address of the segment must be aligned on a 64-bit boundary.

InitialSegmentSize - Supplies the size in bytes of the InitialSegment.

Return Value:

STATUS_UNSUCCESSFUL - BlockSize or InitialSegment was not aligned on 64-bit
boundaries, or BlockSize was larger than the initial segment size.

STATUS_SUCCESS - The zone was successfully initialized.

5.2 ExExtendZone

NTSTATUS
ExExtendZone(

IN PZONE_HEADER Zone,
IN PVOID Segment,
IN ULONG SegmentSize
)

Routine Description:

This function extends a zone by adding another segment's worth of blocks to the
zone.

Parameters:

Zone - Supplies the address of a zone header to be extended.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 20

Segment - Supplies the address of a segment of storage. The first
ZONE_SEGMENT_HEADER-sized portion of the segment is used by the zone
allocator. The remainder of the segment is carved up into fixed-size
(BlockSize) blocks and is added to the zone. The address of the segment must
be aligned on a 64- bit boundary.

SegmentSize - Supplies the size in bytes of Segment.

Return Value:

STATUS_UNSUCCESSFUL - BlockSize or Segment was not aligned on 64-bit
boundaries, or BlockSize was larger than the segment size.

STATUS_SUCCESS - The zone was successfully extended.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 21

6. Perform Interlocked Allocate and Free from Zone

Public executive data structures and procedure prototypes.

6.1 ExAllocateFromZone

PVOID
ExAllocateFromZone(

IN PZONE_HEADER Zone
)

Routine Description:

This routine removes an entry from the zone and returns a pointer to it.

Parameters:

Zone - Pointer to the zone header controlling the storage from which the entry is to
be allocated.

Return Value:

The function value is a pointer to the storage allocated from the zone.

6.2 ExFreeToZone

VOID
ExFreeToZone(

IN PZONE_HEADER Zone,
IN PVOID Block
)

Routine Description:

This routine places the specified block of storage back onto the free list in the
specified zone.

Parameters:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 22

Zone - Pointer to the zone header controlling the storage to which the entry is to be
inserted.

Block - Pointer to the block of storage to be freed back to the zone.

Return Value:

None.

6.3 ExIsFullZone

BOOLEAN
ExIsFullZone(

IN PZONE_HEADER Zone
)

Routine Description:

This routine determines if the specified zone is full or not. A zone is considered full
if the free list is empty.

Parameters:

Zone - Pointer to the zone header to be tested.

Return Value:

TRUE if the zone is full and FALSE otherwise.

6.4 ExInterlockedAllocateFromZone

PVOID
ExInterlockedAllocateFromZone(

IN PZONE_HEADER Zone,
IN PKSPIN_LOCK Lock
)

Routine Description:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 23

This routine removes an entry from the zone and returns a pointer to it. The
removal is performed with the specified lock owned for the sequence to make it
MP-safe.

Parameters:

Zone - Pointer to the zone header controlling the storage from which the entry is to
be allocated.

Lock - Pointer to the spin lock which should be obtained before removing the entry
from the allocation list. The lock is released before returning to the caller.

Return Value:

The function value is a pointer to the storage allocated from the zone.

6.5 ExInterlockedFreeToZone

VOID
ExInterlockedFreeToZone(

IN PZONE_HEADER Zone,
IN PVOID Block,
IN PKSPIN_LOCK Lock
)

Routine Description:

This routine places the specified block of storage back onto the free list in the
specified zone. The insertion is performed with the lock owned for the sequence
to make it MP-safe.

Parameters:

Zone - Pointer to the zone header controlling the storage to which the entry is to be
inserted.

Block - Pointer to the block of storage to be freed back to the zone.

Lock - Pointer to the spin lock which should be obtained before inserting the entry
onto the free list. The lock is released before returning to the caller.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 24

Return Value:

None.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 25

7. Zero and Move Memory

This module implements functions to zero and move memory blocks of memory.
If the memory is aligned on 8 byte boundaries then these functions are very
efficient, otherwise they do their work a byte at a time.

7.1 ExZeroMemory

VOID
ExZeroMemory(

IN PVOID Destination,
IN ULONG Length
)

Routine Description:

These functions zero memory. The ExZeroMemory function determines the most
efficient method to use based on the alignment of the Destination pointer and the
Length. If the Destination pointer is aligned but the Length is not, then it will zero
alignment sized units and then zero the odd number of bytes to finish up. If the
Destination pointer is not aligned, then it will zero the entire length by bytes.

Parameters:

Destination (r16) - Supplies a pointer to the memory to zero.

Length (r17) - Supplies the Length, in bytes, of the memory to be zeroed.

Return Value:

None.

Performance:

10 Instructions to setup

2 Instructions per MEMORY_ALIGNMENT bytes zeroed

4 Instructions for each trailing odd byte

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 26

4 Instructions to finish

Zero ObjectTableEntry (16 bytes, quad aligned) is 18 instructions

7.2 ExMoveMemory

VOID
ExMoveMemory(

IN PVOID Destination,
IN PVOID Source OPTIONAL,
IN ULONG Length
)

Routine Description:

This function moves memory. The ExMoveMemory function determines the most
efficient method to use based on the alignment of the Source and Destination
pointers and the Length.

Parameters:

Destination (r16) - Supplies a pointer to the destination of the move.

Source (r17) - Supplies a pointer to the memory to move. If NULL then zeros the
memory at Destination.

Length (r18) - Supplies the Length, in bytes, of the memory to be moved.

Return Value:

None.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 27

8. Manage Memory for I/O

This module contains routines which provide support for the I/O system.

8.1 MmProbeAndLockPages

VOID
MmProbeAndLockPages(

IN OUT PMDL MemoryDescriptorList,
IN KPROCESSOR_MODE AccessMode,
IN LOCK_OPERATION Operation
)

Routine Description:

This routine probes the specified pages, makes the pages resident and locks the
physical pages mapped by the virtual pages in memory. The Memory descriptor
list is updated to describe the physical pages.

Parameters:

MemoryDescriptorList - Supplies a pointer to a Memory Descriptor List (MDL). The
supplied MDL must supply a virtual address, byte offset and length field. The
physical page portion of the MDL is updated when the pages are locked in
memory.

AccessMode - Supplies the access mode in which to probe the arguments. One of
KernelMode or UserMode.

Operation - Supplies the operation type. One of IoReadAccess, IoWriteAccess or
IoModifyAccess.

Return Value:

None - exceptions are raised.

Environment:

Kernel mode.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 28

8.2 MmUnlockPages

VOID
MmUnlockPages(

IN OUT PMDL MemoryDescriptorList
)

Routine Description:

This routine unlocks physical pages which are described by a Memory Descriptor
List.

Parameters:

MemoryDescriptorList - Supplies a pointer to a memory description list (MDL). The
supplied MDL must have been supplied to MmLockPages to lock the pages
down. As the pages are unlocked, the MDL is updated.

Return Value:

None.

Environment:

Kernel mode.

8.3 MmMapLockedPages

PVOID
MmMapLockedPages(

IN PMDL MemoryDescriptorList,
IN KPROCESSOR_MODE AccessMode
)

Routine Description:

This function maps physical pages described by a memory description list into the
system virtual address space.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 29

Parameters:

MemoryDescriptorList - Supplies a valid Memory Descriptor List which has been
updated by MmProbeAndLockPages.

AccessMode - Supplies an indicator of where to map the pages; KernelMode
indicates that the pages should be mapped in the system part of the address
space, UserMode indicates the pages should be mapped in the user part of
the address space.

Return Value:

Returns the base address where the pages are mapped. The base address has the
same offset as the virtual address in the MDL.

This routine will raise an exception if the processor mode is USER_MODE and
quota limits or VM limits are exceeded.

Environment:

Kernel mode.

8.4 MmUnmapLockedPages

VOID
MmUnmapLockedPages(

IN PVOID BaseAddress,
IN PMDL MemoryDescriptorList
)

Routine Description:

This routine unmaps locked pages which were previously mapped via a
MmMapLockedPages function.

Parameters:

BaseAddress - Supplies the base address where the pages were previously mapped.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 30

MemoryDescriptorList - Supplies a valid Memory Descriptor List which has been
updated by MmProbeAndLockPages.

Return Value:

None.

Environment:

Kernel mode.

8.5 MmMapIoSpace

PVOID
MmMapIoSpace(

IN PHYSICAL_ADDRESS PhysicalAddress,
IN ULONG NumberOfBytes
)

Routine Description:

This function maps the specified physical address into the non-pageable portion of
the system address space.

Parameters:

PhysicalAddress - Supplies the starting physical address to map.

NumberOfBytes - Supplies the number of bytes to map.

Return Value:

Returns the virtual address which maps the specified physical addresses.

Environment:

Kernel mode. APCs disabled.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 31

8.6 MmUnmapIoSpace

VOID
MmUnmapIoSpace(

IN PVOID BaseAddress,
IN ULONG NumberOfBytes
)

Routine Description:

This function unmaps a range of physical address which were previously mapped
via an MmMapIoSpace function call.

Parameters:

BaseAddress - Supplies the base virtual address where the physical address was
previously mapped.

NumberOfBytes - Supplies the number of bytes which were mapped.

Return Value:

None.

Environment:

Kernel mode.

8.7 MmGetPhysicalAddress

PHYSICAL_ADDRESS
MmGetPhysicalAddress(

IN PVOID BaseAddress
)

Routine Description:

This function returns the corresponding physical address for a valid virtual
address.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 32

Parameters:

BaseAddress - Supplies the virtual address for which to return the physical address.

Return Value:

Returns the corresponding physical address.

Environment:

Kernel mode. APCs disabled.

8.8 MmSizeOfMdl

ULONG
MmSizeOfMdl(

IN PVOID Base,
IN ULONG Length
)

Routine Description:

This function returns the number of bytes required for an MDL for a given buffer
and size.

Parameters:

Base - Supplies the base virtual address for the buffer.

Length - Supplies the size of the buffer in bytes.

Return Value:

Returns the number of bytes required to contain the MDL.

Environment:

Kernel mode.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 33

8.9 MmCreateMdl

PMDL
MmCreateMdl(

IN PMDL MemoryDescriptorList OPTIONAL,
IN PVOID Base,
IN ULONG Length
)

Routine Description:

This function optionally allocates and initializes an MDL.

Parameters:

MemoryDescriptorList - Optionally supplies the address of the MDL to initialize. If
this address is supplied as NULL an MDL is allocated from non-paged pool
and initialized.

Base - Supplies the base virtual address for the buffer.

Length - Supplies the size of the buffer in bytes.

Return Value:

Returns the address of the initialized MDL.

Environment:

Kernel mode.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 34

9. Is Address Valid

This module contains the pager for memory management.

9.1 MmIsAddressValid

BOOLEAN
MmIsAddressValid(

IN PVOID VirtualAddress
)

Routine Description:

For a given virtual address this function returns TRUE if no page fault will occur for
a read operation on the address, FALSE otherwise.

Note that after this routine was called, if appropriate locks are not held, a non-
faulting address could fault.

Parameters:

VirtualAddress - Supplies the virtual address to check.

Return Value:

TRUE if a no page fault would be generated reading the virtual address, FALSE
otherwise.

Environment:

Kernel mode.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 35

10. Perform Bit Map Operations

This module contains the public data structures and procedure prototypes for the
memory management system.

10.1 PAGE_ALIGN

PVOID
PAGE_ALIGN(

IN PVOID Va
)

Routine Description:

The PAGE_ALIGN macro takes a virtual address and returns a page-aligned virtual
address for that page.

Parameters:

Va - Virtual address.

Return Value:

Returns the page aligned virtual address.

10.2 BYTES_TO_PAGES

ULONG
BYTES_TO_PAGES(

IN ULONG Size
)

Routine Description:

The BYTES_TO_PAGES macro takes the size in bytes and calculates the number of
pages required to contain the bytes.

Parameters:

Size - Size in bytes.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 36

Return Value:

Returns the number of pages required to contain the specified size.

10.3 ROUND_TO_PAGES

ULONG
ROUND_TO_PAGES(

IN ULONG Size
)

Routine Description:

The ROUND_TO_PAGES macro takes a size in bytes and rounds it up to a multiple
of the page size.

Parameters:

Size - Size in bytes to round up to a page multiple.

Return Value:

Returns the size rounded up to a multiple of the page size.

10.4 BYTE_OFFSET

ULONG
BYTE_OFFSET(

IN PVOID Va
)

Routine Description:

The BYTE_OFFSET macro takes a virtual address and returns the byte offset of that
address within the page.

Parameters:

Va - Virtual address.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 37

Return Value:

Returns the byte offset portion of the virtual address.

10.5 ADDRESS_AND_SIZE_TO_SPAN_PAGES

ULONG
ADDRESS_AND_SIZE_TO_SPAN_PAGES(

IN PVOID Va,
IN ULONG Size
)

Routine Description:

The ADDRESS_AND_SIZE_TO_SPAN_PAGES macro takes a virtual address and size
and returns the number of pages spanned by the size.

Parameters:

Va - Virtual address.

Size - Size in bytes.

Return Value:

Returns the number of pages spanned by the size.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 38

11. Manage Object Handles and Handle Tables

This module implements a set of functions for supporting handles. Handles are
opaque pointers that are implemented as indexes into a handle table.

Access to handle tables is serialized with a mutex. The level number associated
with the mutex is specified at the time the handle table is created. Also specified
at creation time are the initial size of the handle table, the memory pool type to
allocate the table from and the size of each entry in the handle table.

The size of each entry in the handle table is specified as a power of 2. The size
specifies how many 32-bit values are to be stored in each handle table entry. Thus
a size of zero, specifies 1 (==2**0) 32-bit value. A size of 2 specifies 4 (=2**2) 32-bit
values. The ability to support different sizes of handle table entries leads to some
polymorphic interfaces.

The polymorphism occurs in two of the interfaces, ExCreateHandle and
ExMapHandleToPointer. ExCreateHandle takes a handle table and a pointer. For
handle tables whose entry size is one 32-bit value, the pointer parameter will be
the value of the created handle. For handle tables whose entry size is more than
one, the pointer parameter is a pointer to the 32-bit handle values which will be
copied to the newly created handle table entry.

ExMapHandleToPointer takes a handle table and a handle parameter. For handle
tables whose entry size is one, it returns the 32-bit value stored in the handle table
entry. For handle tables whose entry size is more than one, it returns a pointer to
the handle table entry itself. In both cases, ExMapHandleToPointer LEAVES THE
HANDLE TABLE LOCKED. The caller must then call the ExUnlockHandleTable
function to unlock the table when they are done referencing the contents of the
handle table entry.

Free handle table entries are kept on a free list. The head of the free list is in the
handle table header. To distinguish free entries from busy entries, the low order
bit of the first 32-bit word of a free handle table entry is set to one. This means
that the value associated with a handle can't have the low order bit set.

11.1 ExCreateHandleTable

PVOID
ExCreateHandleTable(

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 39

IN ULONG InitialCountTableEntries,
IN ULONG CountTableEntriesToGrowBy,
IN ULONG LogSizeTableEntry,
IN ULONG TableMutexLevel,
IN ULONG SerialNumberMask
)

Routine Description:

This function creates a handle table for storing opaque pointers. A handle is an
index into a handle table.

Parameters:

InitialCountTableEntries - Initial size of the handle table.

CountTableEntriesToGrowBy - Number of entries to grow the handle table by when it
becomes full.

LogSizeTableEntry - Log, base 2, of the number of 32-bit values in each handle table
entry.

TableMutexLevel - The level number to associated with the mutex that is used to
synchronize access to the handle table.

SerialNumberMask - If non-zero then the last 32-bit value in each handle table entry
is supposed to contain a serial number and the value of this parameter is
used to mask off bits that are not part of the serial number value.

Return Value:

An opaque pointer to the handle table. Returns NULL if an error occurred. The
following errors can occur:

- Insufficient memory

11.2 ExLockHandleTable

VOID
ExLockHandleTable(

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 40

IN PVOID HandleTableHandle
)

Routine Description:

This function acquires the mutex for the specified handle table. After acquiring the
mutex, it then acquired the spin lock for the specified handle table and sets the
MutexOwned flag in the handle table to TRUE before releasing the spin lock.

The purpose of the dual level locking is so that ExMapHandleToPointer can do it's
work by just acquiring the spin lock.

Parameters:

HandleTableHandle - An opaque pointer to a handle table

Return Value:

None.

11.3 ExUnlockHandleTable

VOID
ExUnlockHandleTable(

IN PVOID HandleTableHandle,
IN BOOLEAN ReleaseMutex
)

Routine Description:

This function releases the spin lock associated the specified handle table. If the
ReleaseMutex parameter is TRUE then the mutex associated with the handle table
is also released, before releasing the spin lock.

Parameters:

HandleTableHandle - An opaque pointer to a handle table

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 41

ReleaseMutex - A flag indicated whether or not to release the mutex associated with
the specified handle table.

Return Value:

None.

11.4 ExDupHandleTable

PVOID
ExDupHandleTable(

IN PVOID HandleTableHandle,
IN EX_DUPLICATE_HANDLE_ROUTINE DupHandleProcedure OPTIONAL
)

Routine Description:

This function creates a duplicate copy of the specified handle table.

Parameters:

HandleTableHandle - An opaque pointer to a handle table

DupHandleProcedure - A pointer to a procedure to call for each valid handle in the
duplicated handle table.

Return Value:

An opaque pointer to the handle table. Returns NULL if an error occurred. The
following errors can occur:

- Insufficient memory

11.5 ExDestroyHandleTable

VOID
ExDestroyHandleTable(

IN PVOID HandleTableHandle,
IN EX_DESTROY_HANDLE_ROUTINE DestroyHandleProcedure OPTIONAL
)

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 42

Routine Description:

This function destorys the specified handle table. It first locks the handle table to
prevent others from accessing it, and then invalidates the handle table and frees
the memory associated with it.

Parameters:

HandleTableHandle - An opaque pointer to a handle table

DestroyHandleProcedure - A pointer to a procedure to call for each valid handle in the
handle table being destroyed.

Return Value:

None.

11.6 ExDumpHandleTable

VOID
ExDumpHandleTable(

IN PVOID HandleTableHandle,
IN EX_DUMP_HANDLE_ROUTINE DumpHandleProcedure OPTIONAL,
IN PVOID Stream OPTIONAL
)

Routine Description:

This function prints out a formatted dump of the specified handle table.

Parameters:

HandleTableHandle - an opaque pointer to a handle table.

DumpHandleProcedure - A pointer to a procedure to call for each valid handle in the
handle table being dumped.

Stream - I/O stream to send the output to. Defaults to stdout.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 43

Return Value:

None.

11.7 ExEnumHandleTable

BOOLEAN
ExEnumHandleTable(

IN PVOID HandleTableHandle,
IN EX_ENUMERATE_HANDLE_ROUTINE EnumHandleProcedure,
IN PVOID EnumParameter,
OUT PHANDLE Handle OPTIONAL
)

Routine Description:

This function enumerates all the valid handles in a handle table. For each valid
handle in the handle table, this functions calls an enumeration procedure specified
by the caller. If the enumeration procedure returns TRUE, then the enumeration is
stop, the current handle is returned to the caller via the optional Handle parameter
and this function returns TRUE to indicated that the enumeration stopped at a
specific handle.

Parameters:

HandleTableHandle - An opaque pointer to a handle table.

EnumHandleProcedure - A pointer to a procedure to call for each valid handle in the
handle table being enumerated.

EnumParameter - An unterpreted 32-bit value that is passed to the
EnumHandleProcedure each time it is called.

Handle - An optional pointer to a variable that will receive the Handle value that the
enumeration stopped at. Contents of the variable only valid if this function
returns TRUE.

Return Value:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 44

TRUE if the enumeration stopped at a specific handle. FALSE otherwise.

11.8 ExCreateHandle

HANDLE
ExCreateHandle(

IN PVOID HandleTableHandle,
IN PVOID Pointer
)

Routine Description:

This function create a handle in the specified handle table. If there is insufficient
room in the handle table for a new entry, then the handle table is reallocated to a
larger size.

Parameters:

HandleTableHandle - An opaque pointer to a handle table

Pointer - Initial value of the handle table entry if the entry size is one. The low order
bit must be zero. If the entry size is not one, then it is a pointer to an array of
32-bit values that are the initial value of the handle table entry. The number
of 32-bit values in the array is the size of each handle table entry. The low
order bit of the first 32-bit value in the array must be zero.

Return Value:

The handle created or NULL if an error occurred. The following errors can occur:

- Invalid handle table

- Low order bit of the first pointer is not zero

- Insufficient memory

11.9 ExDestroyHandle

BOOLEAN
ExDestroyHandle(

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 45

IN PVOID HandleTableHandle,
IN HANDLE Handle
)

Routine Description:

This function removes a handle from a handle table.

Parameters:

HandleTableHandle - An opaque pointer to a handle table

Handle - Handle returned by ExCreateHandle for this handle table

Return Value:

Returns TRUE if the handle was successfully deleted from the handle table.
Returns FALSE otherwise.

11.10 ExMapHandleToPointer

BOOLEAN
ExMapHandleToPointer(

IN PVOID HandleTableHandle,
IN HANDLE Handle,
OUT PVOID HandleValue
)

Routine Description:

This function maps a handle into a pointer. It always returns with the handle table
locked, so the caller must call ExUnlockHandleTable.

Parameters:

HandleTableHandle - An opaque pointer to a handle table

Handle - Handle returned by ExCreateHandle for this handle table

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 46

HandleValue - A pointer to a variable that is to receive the value of the handle. If the
passed handle table has a handle table entry size of one, then HandleValue is
the 32-bit value associated with the passed handle. If the handle table entry
size is more than one, then HandleValue is a pointer to the handle table entry
itself.

Return Value:

This function returns TRUE if the handle table mutex was acquired and FALSE if just
the handle table spin lock was acquired. The return value of this function should
be passed as the ReleaseMutex parameter to the ExUnlockHandleTable function.

If the returned value is FALSE and the HandleValue variable is set to NULL, then an
error occurred. The following errors can occur:

- Invalid handle table

- Invalid handle

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 47

12. Probe and Validate Arguments

This module contains the routine to probe variable length buffers for read or write
accessibility and to ensure correct alignment.

12.1 ProbeForRead

VOID
ProbeForRead(

IN PVOID Address,
IN ULONG Length,
IN ULONG Alignment
)

Routine Description:

This function probes a structure for read accessibility and ensures correct
alignment of the structure. If the structure is not accessible or has incorrect
alignment, then an exception is raised.

Parameters:

Address - Supplies a pointer to the structure to be probed.

Length - Supplies the length of the structure.

Alignment - Supplies the required alignment of the structure expressed as the
number of bytes in the primitive datatype (e.g., 1 for char, 2 for short, 4 for
long, and 8 for quad).

Return Value:

None.

12.2 ProbeForWrite

VOID
ProbeForWrite(

IN PVOID Address,
IN ULONG Length,

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 48

IN ULONG Alignment
)

Routine Description:

This function probes a structure for write accessibility and ensures correct
alignment of the structure. If the structure is not accessible or has incorrect
alignment, then an exception is raised.

Parameters:

Address - Supplies a pointer to the structure to be probed.

Length - Supplies the length of the structure.

Alignment - Supplies the required alignment of the structure expressed as the
number of bytes in the primitive datatype (e.g., 1 for char, 2 for short, 4 for
long, and 8 for quad).

Return Value:

None.

12.3 ProbeAndReadChar

CHAR
ProbeAndReadChar(

IN PCHAR Address
)

12.4 ProbeAndReadUchar

UCHAR
ProbeAndReadUchar(

IN PUCHAR Address
)

12.5 ProbeAndReadShort

SHORT

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 49

ProbeAndReadShort(
IN PSHORT Address
)

12.6 ProbeAndReadLong

LONG
ProbeAndReadLong(

IN PLONG Address
)

12.7 ProbeAndReadUlong

ULONG
ProbeAndReadUlong(

IN PULONG Address
)

12.8 ProbeAndReadQuad

QUAD
ProbeAndReadQuad(

IN PQUAD Address
)

12.9 ProbeAndReadUquad

UQUAD
ProbeAndReadUquad(

IN PUQUAD Address
)

12.10 ProbeAndReadHandle

HANDLE
ProbeAndReadHandle(

IN PHANDLE Address
)

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 50

12.11 ProbeAndReadBoolean

BOOLEAN
ProbeAndReadBoolean(

IN PBOOLEAN Address
)

12.12 ProbeForWriteChar

CHAR
ProbeForWriteChar(

IN PCHAR Address
)

12.13 ProbeForWriteUchar

UCHAR
ProbeForWriteUchar(

IN PUCHAR Address
)

12.14 ProbeForWriteShort

SHORT
ProbeForWriteShort(

IN PSHORT Address
)

12.15 ProbeForWriteUshort

USHORT
ProbeForWriteUshort(

IN PUSHORT Address
)

12.16 ProbeForWriteLong

LONG
ProbeForWriteLong(

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 51

IN PLONG Address
)

12.17 ProbeForWriteUlong

ULONG
ProbeForWriteUlong(

IN PULONG Address
)

12.18 ProbeForWriteQuad

QUAD
ProbeForWriteQuad(

IN PQUAD Address
)

12.19 ProbeForWriteUquad

UQUAD
ProbeForWriteUquad(

IN PUQUAD Address
)

12.20 ProbeForWriteHandle

HANDLE
ProbeForWriteHandle(

IN PHANDLE Address
)

12.21 ProbeForWriteBoolean

BOOLEAN
ProbeForWriteBoolean(

IN PBOOLEAN Address
)

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 52

12.22 ProbeAndWriteChar

CHAR
ProbeAndWriteChar(

IN PCHAR Address
)

12.23 ProbeAndWriteUchar

UCHAR
ProbeAndWriteUchar(

IN PUCHAR Address
)

12.24 ProbeAndWriteShort

SHORT
ProbeAndWriteShort(

IN PSHORT Address
)

12.25 ProbeAndWriteUshort

USHORT
ProbeAndWriteUshort(

IN PUSHORT Address
)

12.26 ProbeAndWriteLong

LONG
ProbeAndWriteLong(

IN PLONG Address
)

12.27 ProbeAndWriteUlong

ULONG
ProbeAndWriteUlong(

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 53

IN PULONG Address
)

12.28 ProbeAndWriteQuad

QUAD
ProbeAndWriteQuad(

IN PQUAD Address
)

12.29 ProbeAndWriteUquad

UQUAD
ProbeAndWriteUquad(

IN PUQUAD Address
)

12.30 ProbeAndWriteHandle

HANDLE
ProbeAndWriteHandle(

IN PHANDLE Address
)

12.31 ProbeAndWriteBoolean

BOOLEAN
ProbeAndWriteBoolean(

IN PBOOLEAN Address
)

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 54

13. Perform Restricted Interlock Operations

This module implements functions to support interlocked operations in a general
way such that all the data that is operated on can be pageable including the locks
themselves.

NOTE: The code in this module has been very carefully aligned such that no
interlocked routine can cross a page boundary. Care must be taken when making
any changes to this module to ensure that a page crossing does not occur.

13.1 ExInterlockedAddLong

LONG
ExInterlockedAddLong(

IN PLONG Addend,
IN LONG Increment,
IN PKSPIN_LOCK Lock
)

Routine Description:

This function performs an interlocked add of an increment value to an addend
variable of type long. The initial value of the addend variable is returned as the
function value.

Parameters:

Addend (r16) - Supplies a pointer to a variable whose value is to be adjusted by the
increment value.

Increment (r17) - Supplies the increment value to be added to the addend variable.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access to the
addend variable.

Return Value:

The initial value of the addend variable.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 55

13.2 ExInterlockedAddShort

SHORT
ExInterlockedAddShort(

IN PSHORT Addend,
IN SHORT Increment,
IN PKSPIN_LOCK Lock
)

Routine Description:

This function performs an interlocked add of an increment value to an addend
variable of type short. The initial value of the addend variable is returned as the
function value.

Parameters:

Addend (r16) - Supplies a pointer to a variable whose value is to be adjusted by the
increment value.

Increment (r17) - Supplies the increment value to be added to the addend variable.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access to the
addend variable.

Return Value:

The initial value of the addend variable.

13.3 ExInterlockedInsertHeadList

VOID
ExInterlockedInsertHeadList(

IN PLIST_ENTRY ListHead,
IN PLIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock
)

Routine Description:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 56

This function inserts an entry at the head of a doubly linked list so that access to
the list is synchronized in a multiprocessor system.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the doubly linked list into which an
entry is to be inserted.

ListEntry (r17) - Supplies a pointer to the entry to be inserted at the head of the list.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access to the
list.

Return Value:

None.

13.4 ExInterlockedInsertTailList

VOID
ExInterlockedInsertTailList(

IN PLIST_ENTRY ListHead,
IN PLIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock
)

Routine Description:

This function inserts an entry at the tail of a doubly linked list so that access to the
list is synchronized in a multiprocessor system.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the doubly linked list into which an
entry is to be inserted.

ListEntry (r17) - Supplies a pointer to the entry to be inserted at the tail of the list.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 57

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access to the
list.

Return Value:

None.

13.5 ExInterlockedRemoveHeadList

PLIST_ENTRY
ExInterlockedRemoveHeadList(

IN PLIST_ENTRY ListHead,
IN PKSPIN_LOCK Lock
)

Routine Description:

This function removes an entry from the head of a doubly linked list so that access
to the list is synchronized in a multiprocessor system. If there are no entries in the
list, then a value of NULL is returned. Otherwise, the address of the entry that is
removed is returned as the function value.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the doubly linked list from which
an entry is to be removed.

Lock (r17) - Supplies a pointer to a spin lock to be used to synchronize access to the
list.

Return Value:

The address of the entry removed from the list, or NULL if the list is empty.

13.6 ExInterlockedPopEntryList

PSINGLE_LIST_ENTRY
ExInterlockedPopEntryList(

IN PSINGLE_LIST_ENTRY ListHead,
IN PKSPIN_LOCK Lock

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 58

)

Routine Description:

This function removes an entry from the front of a singly linked list so that access
to the list is synchronized in a multiprocessor system. If there are no entries in the
list, then a value of NULL is returned. Otherwise, the address of the entry that is
removed is returned as the function value.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the singly linked list from which an
entry is to be removed.

Lock (r17) - Supplies a pointer to a spin lock to be used to synchronize access to the
list.

Return Value:

The address of the entry removed from the list, or NULL if the list is empty.

13.7 ExInterlockedPushEntryList

VOID
ExInterlockedPushEntryList(

IN PSINGLE_LIST_ENTRY ListHead,
IN PSINGLE_LIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock
)

Routine Description:

This function inserts an entry at the head of a singly linked list so that access to the
list is synchronized in a multiprocessor system.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the singly linked list into which an
entry is to be inserted.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 59

ListEntry (r17) - Supplies a pointer to the entry to be inserted at the head of the list.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access to the
list.

Return Value:

None.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 60

14. Allocate and Free Spin Locks

This module implements the executive functions to allocate and free spin locks.

14.1 ExAllocateSpinLock

VOID
ExAllocateSpinLock(

IN PKSPIN_LOCK SpinLock
)

Routine Description:

This function allocates and initializes a spin lock.

Parameters:

SpinLock - Supplies a pointer to a spin lock.

Return Value:

None.

14.2 ExFreeSpinLock

VOID
ExFreeSpinLock(

IN PKSPIN_LOCK SpinLock
)

Routine Description:

This function frees a previously allocated spin lock.

Parameters:

SpinLock - Supplies a pointer to a spin lock.

Return Value:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 61

None.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 62

15. Perform General Interlocked Operations

This module implements functions to support interlocked operations in a general
way such that all the data that is operated on can be pageable including the locks
themselves.

NOTE: The code in this module has been very carefully aligned such that no
interlocked routine can cross a page boundary. Care must be taken when making
any changes to this module to ensure that a page crossing does not occur.

15.1 RtlInterlockedAddLong

LONG
RtlInterlockedAddLong(

IN PLONG Addend,
IN LONG Increment,
IN PKSPIN_LOCK Lock
)

Routine Description:

This function performs an interlocked add of an increment value to an addend
variable of type long. The initial value of the addend variable is returned as the
function value.

Parameters:

Addend (r16) - Supplies a pointer to a variable whose value is to be adjusted by the
increment value.

Increment (r17) - Supplies the increment value to be added to the addend variable.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access to the
addend variable.

Return Value:

The initial value of the addend variable.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 63

15.2 RtlInterlockedAddShort

SHORT
RtlInterlockedAddShort(

IN PSHORT Addend,
IN SHORT Increment,
IN PKSPIN_LOCK Lock
)

Routine Description:

This function performs an interlocked add of an increment value to an addend
variable of type short. The initial value of the addend variable is returned as the
function value.

Parameters:

Addend (r16) - Supplies a pointer to a variable whose value is to be adjusted by the
increment value.

Increment (r17) - Supplies the increment value to be added to the addend variable.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access to the
addend variable.

Return Value:

The initial value of the addend variable.

15.3 RtlInterlockedInsertHeadList

VOID
RtlInterlockedInsertHeadList(

IN PLIST_ENTRY ListHead,
IN PLIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock
)

Routine Description:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 64

This function inserts an entry at the head of a doubly linked list so that access to
the list is synchronized in a multiprocessor system.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the doubly linked list into which an
entry is to be inserted.

ListEntry (r17) - Supplies a pointer to the entry to be inserted at the head of the list.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access to the
list.

Return Value:

None.

15.4 RtlInterlockedInsertTailList

VOID
RtlInterlockedInsertTailList(

IN PLIST_ENTRY ListHead,
IN PLIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock
)

Routine Description:

This function inserts an entry at the tail of a doubly linked list so that access to the
list is synchronized in a multiprocessor system.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the doubly linked list into which an
entry is to be inserted.

ListEntry (r17) - Supplies a pointer to the entry to be inserted at the tail of the list.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 65

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access to the
list.

Return Value:

None.

15.5 RtlInterlockedRemoveHeadList

PLIST_ENTRY
RtlInterlockedRemoveHeadList(

IN PLIST_ENTRY ListHead,
IN PKSPIN_LOCK Lock
)

Routine Description:

This function removes an entry from the head of a doubly linked list so that access
to the list is synchronized in a multiprocessor system. If there are no entries in the
list, then a value of NULL is returned. Otherwise, the address of the entry that is
removed is returned as the function value.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the doubly linked list from which
an entry is to be removed.

Lock (r17) - Supplies a pointer to a spin lock to be used to synchronize access to the
list.

Return Value:

The address of the entry removed from the list, or NULL if the list is empty.

15.6 RtlInterlockedRemoveHeadList

PLIST_ENTRY
RtlInterlockedRemoveHeadList(

IN PLIST_ENTRY ListHead,
IN PKSPIN_LOCK Lock

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 66

)

Routine Description:

This function removes an entry from the head of a doubly linked list so that access
to the list is synchronized in a multiprocessor system. If there are no entries in the
list, then a value of NULL is returned. Otherwise, the address of the entry that is
removed is returned as the function value.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the doubly linked list from which
an entry is to be removed.

Lock (r17) - Supplies a pointer to a spin lock to be used to synchronize access to the
list.

Return Value:

The address of the entry removed from the list, or NULL if the list is empty.

15.7 RtlInterlockedPopEntryList

PSINGLE_LIST_ENTRY
RtlInterlockedPopEntryList(

IN PSINGLE_LIST_ENTRY ListHead,
IN PKSPIN_LOCK Lock
)

Routine Description:

This function removes an entry from the front of a singly linked list so that access
to the list is synchronized in a multiprocessor system. If there are no entries in the
list, then a value of NULL is returned. Otherwise, the address of the entry that is
removed is returned as the function value.

Parameters:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 67

ListHead (r16) - Supplies a pointer to the head of the singly linked list from which an
entry is to be removed.

Lock (r17) - Supplies a pointer to a spin lock to be used to synchronize access to the
list.

Return Value:

The address of the entry removed from the list, or NULL if the list is empty.

15.8 RtlInterlockedPushEntryList

VOID
RtlInterlockedPushEntryList(

IN PSINGLE_LIST_ENTRY ListHead,
IN PSINGLE_LIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock
)

Routine Description:

This function inserts an entry at the head of a singly linked list so that access to the
list is synchronized in a multiprocessor system.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the singly linked list into which an
entry is to be inserted.

ListEntry (r17) - Supplies a pointer to the entry to be inserted at the head of the list.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access to the
list.

Return Value:

None.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 68

16. Perform Operations on Counted Strings

This module defines functions for manipulating counted strings (STRING). A
counted string is a data structure containing three fields. The Buffer field is a
pointer to the string itself. The MaximumLength field contains the maximum
number of bytes that can be stored in the memory pointed to by the Buffer field.
The Length field contains the current length, in bytes, of the string pointed to by
the Buffer field. Users of counted strings should not make any assumptions about
the existence of a null byte at the end of the string, unless the null byte is explicitly
included in the Length of the string.

16.1 RtlInitString

VOID
RtlInitString(

OUT PSTRING DestinationString,
IN PSZ SourceString OPTIONAL
)

Routine Description:

The RtlInitString function initializes a Windows NT counted string. The
DestinationString is initialized to point to the SourceString and the Length and
MaximumLength fields of DestinationString are initialized to the length of the
SourceString, which is zero if SourceString is not specified.

Parameters:

DestinationString - Pointer to the counted string to initialize

SourceString - Optional pointer to a null terminated string that the counted string is
to point to.

Return Value:

None.

16.2 RtlCopyString

VOID

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 69

RtlCopyString(
OUT PSTRING DestinationString,
IN PSTRING SourceString OPTIONAL
)

Routine Description:

The RtlCopyString function copies the SourceString to the DestinationString. If
SourceString is not specified, then the Length field of DestinationString is set to
zero. The MaximumLength and Buffer fields of DestinationString are not modified
by this function.

The number of bytes copied from the SourceString is either the Length of
SourceString or the MaximumLength of DestinationString, whichever is smaller.

Parameters:

DestinationString - Pointer to the destination string.

SourceString - Optional pointer to the source string.

Return Value:

None.

16.3 RtlCompareString

LONG
RtlCompareString(

IN PSTRING String1,
IN PSTRING String2,
IN BOOLEAN CaseInSensitive
)

Routine Description:

The RtlCompareString function compares two counted strings. The return value
indicates if the strings are equal or String1 is less than String2 or String1 is greater
than String2.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 70

The CaseInSensitive parameter specifies if case is to be ignored when doing the
comparison.

Parameters:

String1 - Pointer to the first string.

String2 - Pointer to the second string.

CaseInsensitive - TRUE if case should be ignored when doing the comparison.

Return Value:

Signed value that gives the results of the comparison:

Zero - String1 equals String2

< Zero - String1 less than String2

> Zero - String1 greater than String2

16.4 RtlEqualString

BOOLEAN
RtlEqualString(

IN PSTRING String1,
IN PSTRING String2,
IN BOOLEAN CaseInSensitive
)

Routine Description:

The RtlEqualString function compares two counted strings for equality.

The CaseInSensitive parameter specifies if case is to be ignored when doing the
comparison.

Parameters:

String1 - Pointer to the first string.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 71

String2 - Pointer to the second string.

CaseInsensitive - TRUE if case should be ignored when doing the comparison.

Return Value:

Boolean value that is TRUE if String1 equals String2 and FALSE otherwise.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 72

17. Debugging Support Functions

This module implements functions to support debugging Windows NT. Each
function executes a trap r31,r29,r0 instruction with a special value in R31. The
simulator decodes this trap instruction and dispatches to the correct piece of code
in the simulator based on the value in R31. See the simscal.c source file in the
simulator source directory.

17.1 DbgBreakPoint

VOID
DbgBreakPoint()

Routine Description:

This function executes a breakpoint instruction. Useful for enter the debugger
under program control.

Parameters:

None.

Return Value:

None.

17.2 DbgCommand

VOID
DbgCommand(

PCH Command,
ULONG Parameter
)

Routine Description:

This function passes a string to the debugger to execute as if it was type by the
user.

Parameters:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 73

Command - a pointer to a string that contains one or more debugger commands.
Multiple commands are separated by either a semicolon or newline
character.

Parameter - a 32 bit parameter that is stored in $9 simulator variable.

Return Value:

None.

17.3 DbgQueryInstructionCounter

ULONG
DbgQueryInstructionCounter()

Routine Description:

This function returns the current value of the i860 simulator's instruction counter.

Parameters:

None.

Return Value:

32 bit instruction counter.

17.4 DbgPrint

ULONG
DbgPrint(

IN PCH Format
)

Routine Description:

This function displays a formatted string on the debugging console. The syntax of
it's argments is the same as accepted by the Microsoft C Runtime printf routines
with the addition of the following format specifiers:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 74

S - argument is a PSTRING (pointer to STRING)

Parameters:

Format - specifies a pointer to the format string.

Remaining arguments are variable and depend upon the contents of the format
string. Maximum of 8 arguments may be specified.

Return Value:

Number of characters displayed on the debugging console.

17.5 DbgPrompt

ULONG
DbgPrompt(

IN PCH Prompt,
OUT PCH Response,
IN ULONG MaximumResponseLength
)

Routine Description:

This function displays the prompt string on the debugging console and then reads
a line of text from the debugging console. The line read is returned in the memory
pointed to by the second parameter. The third parameter specifies the maximum
number of characters that can be stored in the response area.

Parameters:

Prompt - specifies the text to display as the prompt.

Response - specifies where to store the response read from the debugging console.

Prompt - specifies the maximum number of characters that can be stored in the
Response buffer.

Return Value:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 75

Number of characters stored in the Response buffer. Includes the terminating
newline character, but not the null character after that.

17.6 DbgLoadImageFileSymbols

ULONG
DbgLoadImageFileSymbols(

IN PCH FileName
)

Routine Description:

This function attempts to load any symbolic debugging information from an image
file into the debugger.

Parameters:

FileName - specifies the name of the image file to load symbols from.

Return Value:

Returns 0 if the image file is not found or is not a valid image file. Otherwise
returns the entry point address from the image file header.

17.7 DbgSetDirBaseForImage

VOID
DbgSetDirBaseForImage(

IN PCH ImagePathName,
IN ULONG DirBase
)

Routine Description:

This function identifies the dirbase value to associate with an image file whose
sybols have been loaded with the DbgLoadImageFileSymbols function. The first
parameter should point to the path name returned by the
DbgLoadImageFileSymbols function. The second parameter is the 20 bit DTB
value that is associated with the process into which the image file was loaded.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 76

Parameters:

ImagePathName - specifies the fully qualified path name of the image file that has
been loaded into a Windows NT address space.

DirBase - specifies the 20 bit DTB value that is associated with the Windows NT
process that will run the image file.

Return Value:

None.

17.8 DbgKillDirBase

VOID
DbgKillDirBase(

IN ULONG DirBase
)

Routine Description:

This function tells the debugger when a particular process context is being
destroyed. This allows the debugger to remove any process specific breakpoints
from its breakpoint table.

Parameters:

DirBase - the 20 bit DTB value that is associated with the Windows NT process that
is being destroyed.

Return Value:

None.

17.9 DbgCheckpointSimulator

BOOLEAN
DbgCheckpointSimulator(

IN PCH FileName OPTIONAL
)

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Executive Support Routines Specification 77

Routine Description:

This function saves the entire state of the i860 simulator to the specified file. It
returns FALSE when the checkpoint operation is completed. It returns TRUE when
the function returns due to having been restarted.

Parameters:

FileName - an optional parameter that specifies the name of the file to save the
state of the simulator in. If not specified, then the file name defaults to the
image file name with a .CHK extension.

Return Value:

Returns FALSE when the checkpoint is complete. Returns TRUE if the simulator has
been restarted from the checkpoint file.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

	1. Introduction
	2. Get Information About Pages
	2.1 ExCreateBitMap
	2.2 DeleteBitMap
	2.3 ExInitializeBitMap
	2.4 ExClearAllBits
	2.5 ExSetAllBits
	2.6 ExFindClearBits
	2.7 ExFindSetBits
	2.8 ExFindClearBitsAndSet
	2.9 ExFindSetBitsAndClear
	2.10 ExClearBits
	2.11 ExSetBits
	2.12 ExFindLongestRunClear
	2.13 ExFindLongestRunSet
	2.14 ExCheckBit

	3. Determine Pool Type
	3.1 MmDeterminePoolType

	4. Allocate and Deallocate Pool
	4.1 ExLockPool
	4.2 ExUnlockPool
	4.3 InitializePool
	4.4 ExAllocatePool
	4.5 ExAllocatePoolWithQuota
	4.6 ExDeallocatePool

	5. Initialize and Extend Zone Buffer
	5.1 ExInitializeZone
	5.2 ExExtendZone

	6. Perform Interlocked Allocate and Free from Zone
	6.1 ExAllocateFromZone
	6.2 ExFreeToZone
	6.3 ExIsFullZone
	6.4 ExInterlockedAllocateFromZone
	6.5 ExInterlockedFreeToZone

	7. Zero and Move Memory
	7.1 ExZeroMemory
	7.2 ExMoveMemory

	8. Manage Memory for I/O
	8.1 MmProbeAndLockPages
	8.2 MmUnlockPages
	8.3 MmMapLockedPages
	8.4 MmUnmapLockedPages
	8.5 MmMapIoSpace
	8.6 MmUnmapIoSpace
	8.7 MmGetPhysicalAddress
	8.8 MmSizeOfMdl
	8.9 MmCreateMdl

	9. Is Address Valid
	9.1 MmIsAddressValid

	10. Perform Bit Map Operations
	10.1 PAGE_ALIGN
	10.2 BYTES_TO_PAGES
	10.3 ROUND_TO_PAGES
	10.4 BYTE_OFFSET
	10.5 ADDRESS_AND_SIZE_TO_SPAN_PAGES

	11. Manage Object Handles and Handle Tables
	11.1 ExCreateHandleTable
	11.2 ExLockHandleTable
	11.3 ExUnlockHandleTable
	11.4 ExDupHandleTable
	11.5 ExDestroyHandleTable
	11.6 ExDumpHandleTable
	11.7 ExEnumHandleTable
	11.8 ExCreateHandle
	11.9 ExDestroyHandle
	11.10 ExMapHandleToPointer

	12. Probe and Validate Arguments
	12.1 ProbeForRead
	12.2 ProbeForWrite
	12.3 ProbeAndReadChar
	12.4 ProbeAndReadUchar
	12.5 ProbeAndReadShort
	12.6 ProbeAndReadLong
	12.7 ProbeAndReadUlong
	12.8 ProbeAndReadQuad
	12.9 ProbeAndReadUquad
	12.10 ProbeAndReadHandle
	12.11 ProbeAndReadBoolean
	12.12 ProbeForWriteChar
	12.13 ProbeForWriteUchar
	12.14 ProbeForWriteShort
)
	12.15 ProbeForWriteUshort
	12.16 ProbeForWriteLong
	12.17 ProbeForWriteUlong
	12.18 ProbeForWriteQuad
	12.19 ProbeForWriteUquad
	12.20 ProbeForWriteHandle
	12.21 ProbeForWriteBoolean
	12.22 ProbeAndWriteChar
	12.23 ProbeAndWriteUchar
	12.24 ProbeAndWriteShort
	12.25 ProbeAndWriteUshort
	12.26 ProbeAndWriteLong
	12.27 ProbeAndWriteUlong
	12.28 ProbeAndWriteQuad
	12.29 ProbeAndWriteUquad
	12.30 ProbeAndWriteHandle
	12.31 ProbeAndWriteBoolean

	13. Perform Restricted Interlock Operations
	13.1 ExInterlockedAddLong
	13.2 ExInterlockedAddShort
	13.3 ExInterlockedInsertHeadList
	13.4 ExInterlockedInsertTailList
	13.5 ExInterlockedRemoveHeadList
	13.6 ExInterlockedPopEntryList
	13.7 ExInterlockedPushEntryList

	14. Allocate and Free Spin Locks
	14.1 ExAllocateSpinLock
	14.2 ExFreeSpinLock

	15. Perform General Interlocked Operations
	15.1 RtlInterlockedAddLong
	15.2 RtlInterlockedAddShort
	15.3 RtlInterlockedInsertHeadList
	15.4 RtlInterlockedInsertTailList
	15.5 RtlInterlockedRemoveHeadList
	15.6 RtlInterlockedRemoveHeadList
	15.7 RtlInterlockedPopEntryList
	15.8 RtlInterlockedPushEntryList

	16. Perform Operations on Counted Strings
	16.1 RtlInitString
	16.2 RtlCopyString
	16.3 RtlCompareString
	16.4 RtlEqualString

	17. Debugging Support Functions
	17.1 DbgBreakPoint
	17.2 DbgCommand
	17.3 DbgQueryInstructionCounter
	17.4 DbgPrint
	17.5 DbgPrompt
	17.6 DbgLoadImageFileSymbols
	17.7 DbgSetDirBaseForImage
	17.8 DbgKillDirBase
	17.9 DbgCheckpointSimulator

