
Portable Systems Group

Windows NT I/O System Specification

Author: Darryl E. Havens

Revision 1.7, May 1, 1995

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O Specification i

1. INTRODUCTION...

2. OVERVIEW...

3. USER APIS..
3.1 CREATE/OPEN FILE/DEVICE SERVICES...

3.1.1 Creating and Opening Files...
3.1.2 Opening Files..

3.2 FILE DATA SERVICES..
3.2.1 Reading Files...
3.2.2 Writing Files...

3.3 DIRECTORY MANIPULATION SERVICES...
3.3.1 Enumerating Files in a Directory..
3.3.2 Enumerating Files in an Ole Directory File...
3.3.3 Monitoring Directory Modifications...

3.4 FILE SERVICES..
3.4.1 Obtaining Information about a File..
3.4.2 Changing Information about a File...
3.4.3 Obtaining Extended Attributes for a File...
3.4.4 Changing Extended Attributes for a File..
3.4.5 Locking Byte Ranges in Files...
3.4.6 Unlocking Byte Ranges in Files..

3.5 FILE SYSTEM SERVICES...
3.5.1 Obtaining Information about a File System Volume...
3.5.2 Changing Information about a File System Volume...
3.5.3 Obtaining Quota Information about a File System Volume..
3.5.4 Changing Quota Information about a File System Volume...
3.5.5 Controlling File Systems..

3.6 MISCELLANEOUS SERVICES...
3.6.1 Flushing File Buffers...
3.6.2 Canceling Pending I/O on a File..
3.6.3 Miscellaneous I/O Control...
3.6.4 Deleting a File...
3.6.5 Querying the Attributes of a File..

3.7 I/O COMPLETION OBJECTS..
3.7.1 Creating/Opening I/O Completion Objects...
3.7.2 Operating on I/O Completion Objects...

4. NAMING CONVENTIONS..

5. APPENDIX A - TIME FIELD CHANGES...
5.1 LAST ACCESS TIME...
5.2 LAST MODIFY TIME..
5.3 LAST CHANGE TIME..

6. REVISION HISTORY...

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 1

1. Introduction

This specification describes the basic overall API for the I/O system of the Windows
NT operating system. The I/O system is responsible for the management of all input
and output operations in the system and for presenting the remainder of the system
with a uniform and device-independent view of the various devices connected to the
system.

The I/O system provides an interface for the user to perform I/O to various devices
attached to the machine. The I/O operations in this API provide the user with a rich
set of primitives to manipulate files and devices in such a way as to hide most of the
particulars of how the device actually works.

The I/O system also provides system programmers with the ability to write their own
device drivers for those devices that Windows NT does not support as part of its
regular SDK. This part of the I/O system is documented in the Windows NT Driver
Model Specification and is beyond the scope of this specification.

This specification does not attempt to exhaustively enumerate all error conditions
that occur on all paths or indicate the errors that can occur after calling an API.

2. Overview

The user interface model that Windows NT uses for I/O consists of several different
routines that perform such operations as Open, Read, Write, Close, etc. For other
operations that are not included in the general set of routines, there is an
NtDeviceIoControlFile service. This service allows device-dependent information to
be passed to and from the device in a well structured manner. Likewise, the
NtFsControlFile service which allows file-system-dependent information to be passed
to and from the file system in a well structured manner.

The I/O system is designed to support both OS/2 and POSIX I/O operations easily to
provide source code compatibility with those standards. This allows users familiar
with those systems to continue to program using those interfaces without having to
learn a new I/O programming model. The OS/2 and POSIX subsystems emulate the I/O
services on top of the Windows NT services.

To perform I/O operations in Windows NT, a file handle must be specified. File
handles are obtained by calling the NtCreateFile or NtOpenFile services. These
services either create or open a file and return a handle to it. Alternatively, they may
open a device directly and return a handle to the device. In each case the handle is
still referred to as a "file handle" throughout the description of the APIs in this
specification.

From the point of view of the object management system, a file is a persistent object.
That is, a file object is treated like any other object in the system except that it remains
intact across system boots. Handles to file objects, and therefore devices (depending
on how the "file" was opened) are usable in the object system.

Some of the I/O interfaces in Windows NT are synchronous and others are
asynchronous. For the latter type, it is up to the caller to wait for the I/O operation to

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 2

complete. This may be done in either an alertable or a non-alertable manner. A file
object in Windows NT is a waitable object and can therefore be used to synchronize
completion of an I/O operation on the file. When a request is made to perform an
operation on a file, the file object is set to the Not-Signaled state. When the operation
completes, the file object is set to the Signaled state.

Each asynchronous I/O service also optionally accepts an event and/or the address of
an Asynchronous Procedure Call (APC) to be executed when the operation completes.
If an event is specified, the system sets it to the Not-Signaled state when the I/O
operation is requested and sets it to the Signaled state when the I/O operation
completes. The system will not normally set both the File object and the event to the
Signaled state. That is, if an event is specified, then the event should be used for I/O
completion synchronization; otherwise the file object handle should be used.

If an APC is specified, the procedure is invoked when the I/O completes with a
parameter that is also supplied to the service. The procedure is also passed the
address of the I/O status block discussed below.

Likewise, it is also possible to synchronize the completion of I/O operations through
the use of I/O Completion objects. An I/O Completion object may be associated with a
file such that a pool of threads may wait on the completion of all I/O associated with
the object.

All service calls include the address of an I/O status block. This variable contains
information about the success or failure of the operation once the operation has been
completed. This allows the caller to determine the status of the operation once the file
object or the event has been set to the Signaled state, or the APC routine has been
invoked. Upon completion of the I/O operation the variable may also contain more
information that is service-dependent.

It should be noted that performing multiple operations on a file at the same time
requires that each operation be synchronized. That is, requesting two asynchronous
reads from a file and then waiting on the file object will not guarantee that both
operations have completed. In the same manner, using the same event to synchronize
these two operations will not work either. Each operation must have its own event
associated with it, or the caller must set up an APC which will be able to distinguish
between the completion of each request.

Using an I/O system design whose primary data movement operations can be totally
asynchronous makes writing faster programs easier. It frees the programmer from
inventing methods of passing I/O requests to another thread to gain parallelism. This
means that the main loop need not be blocked or concerned with the completion of
I/O operations until it absolutely requires the requested data.

This particular design also allows servers and network servers to be written so that it
is not necessary to dedicate a thread in the server to each request or to each client.
Because the APC routine can be executed any time the server thread is ready for it, a
single server thread can potentially perform I/O for an unlimited number of clients
using very few system resources.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 3

Since all potentially long I/O operations are asynchronous, a thread that is waiting on
an I/O operation in an alertable manner may fall out of the wait. This allows
programs to be written so that rundown and cleanup are much easier to control.
Likewise, because the user has a choice, programs can still be written to block in a
non-alertable manner and simply wait for the I/O operation to complete. More
information on alerts can be found in the Windows NT Process Structure specification.

The Windows NT I/O system provides one optimization that can be used to save
extraneous system calls. If the request for an operation is successfully queued to a
driver for completion later, then the return status from the service is
STATUS_PENDING. However, if the operation successfully completes before the
service returns because the driver immediately completed the operation, then a status
of STATUS_SUCCESS is returned.

It is also possible to write an application that ignores the fact that the Windows NT I/O
system is asynchronous by specifying that all I/O calls for a particular file object be
performed synchronously. Further, the I/O operations are selectively alertable or
non-alertable. This option is requested when the file is opened or created. If the I/O is
being performed with alerts enabled, then it is possible for the I/O operation to be
interrupted by an alert to the thread. It is also possible to specify that no alerts may
be taken during the I/O operation.

If an application is performing I/O to a file in an alertable manner, then it must be
written to be prepared for the I/O to fail because an alert occurred or an APC was
delivered. In either case the I/O operation must be restarted by invoking the API
again.

When the I/O system is performing synchronous I/O on a file object, it also maintains a
current file pointer context for the file. This file pointer may be read or written using
APIs provided by the I/O system. Furthermore, they are automatically updated
whenever the file is read or written according to the number of bytes transferred. It
is also possible to set the file pointer context on the read or write operation.

Performing synchronous I/O on a file object also means that the I/O to the file is
serialized. That is, if Thread A has issued an I/O operation on a file and Thread B
issues an I/O operation using the same file object, then Thread B will wait (alertable or
non-alertable, depending on how the file was opened) until Thread A's I/O completes.

All of these features help the user deal with the system and use it to perform I/O the
way that he wants to work. He can still take advantage of APC routines, for example,
even if he is performing synchronous I/O. However, he doesn't have to if that isn't
what he needs.

In order to access a file or a device, the caller must have permission to access the
device in the requested manner. For example, some devices are considered single
user devices. This is accomplished through the object management system in
Windows NT. The object that represents a device is called a device object. Device
objects may be created by device drivers using the exclusive attribute. This attribute
indicates that only one process may open the object. Any other attempt to open a
device from a process other than the "owning" process will fail. This implies that it is
possible for a process to "own" a device. Of course, since handles can be inherited by

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 4

child processes, then children of the owning process may share the device with the
parent process.

A file or a device may specify an Access Control List (ACL). An ACL is a list of Access
Control Entries (ACEs) that specify what access rights a user has to the file or device.
The user must have the requested access in order to successfully perform operations
on the object.

Windows NT also provides file sharing among threads within a process and between
processes. Because of the object architecture design used in Windows NT, it is
possible for all of the threads within a process to access a file that one of the threads
"opened" by using the returned file handle. Furthermore, a process that is created by
one of the threads may also have access to the file if the file object is opened so that its
handle is inheritable.

Finally, Windows NT provides file sharing by allowing multiple processes to open the
same file. A file can be opened so that other processes may read, write, or perform
both or neither operation on the file.

3. User APIs

The following sections present the user interface to the I/O system.

3.1 Create/Open File/Device Services

When a user wishes to access a file or a device, he must create or open it. This causes
a handle to be returned that can then be used to manipulate the file or device in
subsequent calls.

File handles are closed via the generic NtClose service. This service is discussed
elsewhere in the Windows NT documentation. It should be noted that, just like all
other system objects, a file is not actually deleted until all of the valid handles to it are
closed and no referenced pointers remain.

The user APIs that supports creating and opening files and opening devices is as
follows:

NtCreateFile - Create or open a file and return a file handle.
NtOpenFile - Open a file and return a file handle.

3.1.1 Creating and Opening Files

A file can be created or opened using the NtCreateFile service:

NTSTATUS
NtCreateFile(

OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PLARGE_INTEGER AllocationSize OPTIONAL,

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 5

IN ULONG FileAttributes,
IN ULONG ShareAccess,
IN ULONG CreateDisposition,
IN ULONG CreateOptions,
IN PVOID EaBuffer OPTIONAL,
IN ULONG EaLength
);

Parameters:

FileHandle - A pointer to a variable that receives the file handle value.

DesiredAccess - Specifies the type of access that the caller requires to the file.

DesiredAccess Flags

SYNCHRONIZE - The file handle may be waited on to synchronize with the
completion of the I/O operation.

DELETE - The file may be deleted.

READ_CONTROL - The ACL and ownership information associated with
the file may be read.

WRITE_DAC - The Discretionary ACL associated with the file may be
written.

WRITE_OWNER - Ownership information associated with the file may be
written.

FILE_READ_DATA - Data may be read from the file.

FILE_WRITE_DATA - Data may be written to the file.

FILE_EXECUTE - Data may be faulted into memory from the file via
paging I/O.

FILE_APPEND_DATA - Data may only be appended to the file.

FILE_READ_ATTRIBUTES - File attributes flags may be read.

FILE_WRITE_ATTRIBUTES - File attributes flags may be written.

FILE_READ_EA - Extended attributes associated with the file may be read.

FILE_WRITE_EA - Extended attributes associated with the file may be
written.

The three following values are the generic access types that the caller
may request. The mapping to specific access rights is given for each:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 6

GENERIC_READ - Maps to STANDARD_RIGHTS_READ, FILE_READ_DATA,
FILE_READ_ATTRIBUTES, and FILE_READ_EA.

GENERIC_WRITE - Maps to STANDARD_RIGHTS_WRITE,
FILE_WRITE_DATA, FILE_WRITE_ATTRIBUTES, FILE_WRITE_EA,
and FILE_APPEND_DATA.

GENERIC_EXECUTE - Maps to STANDARD_RIGHTS_EXECUTE,
SYNCHRONIZE, and FILE_EXECUTE.

For more information about the standard rights accesses, see the
Windows NT Local Security Specification.

If the file being created or opened is a directory file, as specified in the
CreateOptions argument, then the following types of access may be
requested:

FILE_LIST_DIRECTORY - Files in the directory may be listed.

FILE_TRAVERSE - The directory may be traversed. That is, it may be in
the pathname of a file.

FILE_READ_DATA, FILE_WRITE_DATA, FILE_EXECUTE, and
FILE_APPEND_DATA accesses are not valid when creating or opening a
directory file.

ObjectAttributes - A pointer to a structure that specifies the name of the file, a
root directory, a security descriptor, a quality of service descriptor, and a
set of file object attribute flags.

ObjectAttributes Structure

ULONG Length - Specifies the length of the object attributes structure.
This field must be equal to the size of an OBJECT_ATTRIBUTES
structure.

PUNICODE_STRING ObjectName - The name of the file to be created or
opened. This file specification must be a fully qualified file
specification or the name of a device, unless it is a file relative to
the directory specified by the next field.

HANDLE RootDirectory - Optionally specifies a handle to a directory. If
specified, then the name of the file specified by the ObjectName
field is a file specification relative to the directory file supplied by
this handle.

PSECURITY_DESCRIPTOR SecurityDescriptor - Optionally specifies the
security descriptor that should be applied to the file. The ACLs
specified by the security descriptor are only applied to the file if it
is created. If not supplied and the file is created, then the ACL
placed on the file is file-system-dependent, but most file systems

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 7

propagate some part of the ACL from the parent directory file
combined with the caller's default ACL.

PSECURITY_QUALITY_OF_SERVICE SecurityQualityOfService - Specifies
the access a server should be given to the client's security context.
This field is only used when a connection to a protected server is
established. It allows the caller to control which parts of his
security context are made available to the server and whether or
not the server may impersonate the caller.

ULONG Attributes - A set of flags that controls the file object attributes.

OBJ_INHERIT - Indicates that the handle to the file is to be inherited
by the new process when an NtCreateProcess operation is
performed to create a new process.

OBJ_CASE_INSENSITIVE - Indicates that the name lookup should
ignore the case of ObjectName rather than performing an
exact match search.

IoStatusBlock - A variable to receive the final completion status and information
about the operation. The actual action taken by the system is written to
the Information field of this variable.

AllocationSize - Optionally specifies the initial allocation size of the file in bytes.
The size has no effect unless the file is created, overwritten, or
superseded.

FileAttributes - Specifies the file attributes for the file. Any combination of flags
is acceptable except that all other flags override the normal file attribute,
FILE_ATTRIBUTE_NORMAL. File attributes are only applied to the file if it
is created, superseded, or, in some cases, overwritten. See the
description in the text below for more details.

FileAttributes Flags

FILE_ATTRIBUTE_NORMAL - A normal file should be created.

FILE_ATTRIBUTE_READONLY - A read-only file should be created.

FILE_ATTRIBUTE_HIDDEN - A hidden file should be created.

FILE_ATTRIBUTE_SYSTEM - A system file should be created.

FILE_ATTRIBUTE_ARCHIVE - The file should be marked so that it will be
archived.

FILE_ATTRIBUTE_TEMPORARY - A temporary should be created.

FILE_ATTRIBUTE_COMPRESSED - A compressed file should be created.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 8

FILE_ATTRIBUTE_OFFLINE - An off-line file should be created.

ShareAccess - Specifies the type of share access that the caller would like to the
file.

ShareAccess Flags

FILE_SHARE_READ - Other open operations may be performed on the file
for read access.

FILE_SHARE_WRITE - Other open operations may be performed on the
file for write access.

FILE_SHARE_DELETE - Other open operations may be performed on the
file for delete access.

CreateDisposition - Specifies the actions to be taken if the file does or does not
already exist.

CreateDisposition Values

FILE_SUPERSEDE - Indicates that if the file already exists then it should
be superseded by the specified file. If it does not already exist then
it should be created.

FILE_CREATE - Indicates that if the file already exists then the operation
should fail. If the file does not already exist then it should be
created.

FILE_OPEN - Indicates that if the file already exists it should be opened
rather than creating a new file. If the file does not already exist
then the operation should fail.

FILE_OPEN_IF - Indicates that if the file already exists, it should be
opened. If the file does not already exist then it should be created.

FILE_OVERWRITE - Indicates that if the file already exists it should be
opened and overwritten. If the file does not already exist then the
operation should fail.

FILE_OVERWRITE_IF - Indicates that if the file already exists it should be
opened and overwritten. If the file does not already exist then it
should be created.

CreateOptions - Specifies the options that should be used when creating or
opening the file.

CreateOptions Flags

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 9

FILE_DIRECTORY_FILE - Indicates that the file being created or opened is
a directory file. The CreateDisposition parameter must be set to one
of FILE_CREATE, FILE_OPEN, or FILE_OPEN_IF.

FILE_NON_DIRECTORY_FILE - Indicate that the file being opened may not
be a directory file.

FILE_WRITE_THROUGH - Indicates that services that write data to the file
must actually write the data to the file before the operation is
considered to be complete.

FILE_SEQUENTIAL_ONLY - Indicates that the file will only be accessed
sequentially.

FILE_RANDOM_ACCESS - Indicates that the file will be accessed randomly
so no sequential read ahead operations should be performed on
the file.

FILE_NO_INTERMEDIATE_BUFFERING - Indicates that no caching or
intermediate buffering is performed for the file.

FILE_SYNCHRONOUS_IO_ALERT - Indicates that all operations on the file
are performed synchronously. Any wait being performed on
behalf of the caller is subject to premature termination from alerts.
This flag also causes the I/O system to maintain the file position
context.

FILE_SYNCHRONOUS_IO_NONALERT - Indicates that all operations on the
file are performed synchronously. Waits in the system to
synchronize I/O queueing and completion are not subject to alerts.
This flag also causes the I/O system to maintain the file position
context.

FILE_CREATE_TREE_CONNECTION - Indicates that a tree connection is to
be created.

FILE_COMPLETE_IF_OPLOCKED - Indicates that the operation should
complete immediately with an alternate success code if the target
file is oplocked rather than blocking the caller's thread.

FILE_NO_EA_KNOWLEDGE - Indicates the if the EAs on an existing file
being opened indicate that the caller must understand EAs to
properly interpret the file, then the file open should fail because
the caller does not understand how to deal with EAs.

FILE_DELETE_ON_CLOSE - Indicates that the file should be deleted when
the last handle to it is closed.

FILE_OPEN_BY_FILE_ID - Indicates that the file name contains the name
of the device, and a 64-bit ID that is to be used to open the file.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 10

FILE_OPEN_FOR_BACKUP_INTENT - Indicates that the file is being opened
for backup intent, hence, the system should check for
SeBackupPrivilege or SeRestorePrivilege and grant the caller the
appropriate accesses to the file before checking the DesiredAccess
against the file's security descriptor.

FILE_TRANSACTED_MODE - Indicates that the file is to be opened in
transacted mode. This specifies that no changes to the file should
be visible to other openers of the file until the transaction is
committed.

FILE_RESERVE_OPFILTER - Indicates that a filter oplock should be
reserved on the file if possible. The first I/O operation on the file
must be an oplock request so that the caller can determine whether
or not the oplock was granted.

FILE_OPEN_OFFLINE_FILE - Indicates that if the target file has been
moved from primary storage and the target file is an off-line file,
then the marker itself is to be opened rather than retrieving the
actual file.

FILE_STORAGE_TYPE_SPECIFIED - Indicates that this CreateOptions
parameter specifies a storage type field.

FILE_STORAGE_TYPE_DEFAULT - Create/open a file of default
storage type.

FILE_STORAGE_TYPE_DIRECTORY - Create/open an enumerable
directory file.

FILE_STORAGE_TYPE_FILE - Create/open normal data file.

FILE_STORAGE_TYPE_DOCFILE - Create/open a document file.

FILE_STORAGE_TYPE_JUNCTION_POINT - Create/open a junction
point.

FILE_STORAGE_TYPE_CATALOG - Create/open a summary
catalogue.

FILE_STORAGE_TYPE_STRUCTURED_STORAGE - Create/open
structured storage.

FILE_STORAGE_TYPE_EMBEDDING - Create/open an embedding.

FILE_STORAGE_TYPE_STREAM - Create/open an alternate data
stream on a file.

EaBuffer - Optionally specifies a list of EAs that should be set on the file if it is
created. This is done as an atomic operation. That is, if an error occurs
setting the EAs on the file, then the file will not be created.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 11

EaLength - Supplies the length of the EaBuffer. If no buffer is supplied then this
value should be zero.

The I/O status block specified by the IoStatusBlock parameter has the following type
definition:

typedef struct _IO_STATUS_BLOCK {
NTSTATUS Status;
ULONG Information;

} IO_STATUS_BLOCK, *PIO_STATUS_BLOCK;

Field Description
Status Final status of the operation
Information Additional information about the operation

The NtCreateFile service either causes a new file (or directory) to be created, or it
opens an existing file or device. The action taken is dependent on the name of the
object being opened, whether the object already existed, and the specified create
disposition value. A file handle is returned that can be used by subsequent service
calls to manipulate the file itself or the data within the file.

There are two basic ways to specify the name of the file that is to be created/opened:

o - A fully qualified pathname. This method simply supplies the full file
specification for the file. This is done using the ObjectName field of the
ObjectAttributes structure. No RootDirectory handle may be specified.

o - A relative pathname. This method supplies the name of the file as a relative
pathname. The path is relative to the directory file represented by the handle
in the RootDirectory field of the ObjectAttributes structure.

Once the I/O operation is complete, the Information field of the I/O status block
contains information about the action actually taken by the system. That is, one of
FILE_SUPERSEDED, FILE_CREATED, FILE_OPENED, or FILE_OVERWRITTEN, is
returned in this field.

The SYNCHRONIZE desired-access flag must be set in order for the caller to wait on
the file handle to synchronize I/O completion. If this desired access is not specified,
then I/O completion must be synchronized through the use of an event or an APC
routine.

If FILE_EXECUTE is the only desired-access flag specified other than SYNCHRONIZE,
then the caller cannot directly read or write any data in the file using the returned file
handle. All operations on the file occur through the system pager in response to
instruction and data accesses.

If FILE_APPEND_DATA is the only desired-access flag specified other than
SYNCHRONIZE, then the caller can only write to the end of the file. Any offset
information on writes to the file is ignored. The file will automatically be extended as
necessary for these types of write operations.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 12

Specifying the FILE_WRITE_DATA desired-access flag for a file also allows writes
beyond the end of the file to occur. The file is also automatically extended for these
types of writes as well.

Files may be shared among threads within a process, or among a family of processes
through inheritance, by simply opening or creating the file. The file handle can then
be used to access the same file. Note that the OBJ_INHERIT object attribute flag must
be specified in the ObjectAttributes parameter in order for sharing to occur between
parent and child processes through use of the file handle.

Access to a file may be shared among separate cooperating processes or threads by
requesting that the file system open the file for shared access. This is accomplished
through the flags in the ShareAccess mode parameter. Provided that both file openers
have the privilege to access the file in the specified manner, the file can be
successfully opened and shared. If the caller does not specify FILE_SHARE_READ,
FILE_SHARE_WRITE, or FILE_SHARE_DELETE, then no other open operations may be
performed on the file.

In order for the file to be successfully opened, the requested access mode to the file
must be compatible with the way in which other opens to the file have been made.
That is, the desired access mode to the file must not conflict with the accesses that
other openers of the file have disallowed.

The FILE_SUPERSEDE disposition value specifies that if the file does not already exist,
it is to be created. If the file already exists, then it should be superseded. Superseding
a file requires that the accessor have delete access to the existing file. That is, the
existing file is effectively deleted and then recreated. This implies that if someone else
already has the file open, they have specified that the file may be deleted by another
file opener. This is done by specifying a ShareAccess parameter with the
FILE_SHARE_DELETE flag set. This type of disposition is consistent with the Unix style
of overwriting files.

The FILE_OVERWRITE_IF disposition value is much like the FILE_SUPERSEDE
disposition value. If the file exists, then it will be overwritten; if it does not already
exist then it will be created. Overwriting a file is semantically equivalent to a
supersede operation except that it requires write access to the file rather than delete
access. That is, the requestor must have write access to the file and if someone else
already has the file open, they must have specified that the file may be written by
another file opener. This is done by specifying a ShareAccess parameter with the
FILE_SHARE_WRITE flag set. Another difference between an overwrite and a
supersede is that the specified file attributes are logically OR'd with those already on
the file. That is, the caller may not turn off any flags already set in the attributes but
may turn others on. This style of overwriting files is consistent with DOS and OS/2.

The FILE_OVERWRITE disposition value performs exactly the same operation as a
FILE_OVERWRITE_IF, except that if the file does not already exist the operation will
fail.

The FILE_DIRECTORY_FILE option specifies that the file to be created or opened is a
directory file. If this option is specified, then the CreateDisposition parameter must be

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 13

set to one of FILE_CREATE, FILE_OPEN, or FILE_OPEN_IF. Likewise, the only create
options that may be specified are FILE_SYNCHRONOUS_IO_ALERT,
FILE_SYNCHRONOUS_IO_NONALERT, FILE_WRITE_THROUGH,
FILE_OPEN_FOR_BACKUP_INTENT, and FILE_OPEN_BY_FILE_ID. When a directory
file is created, the file system creates an appropriate structure on the disk to represent
an empty directory for that particular file system's on-disk structure. If this option
was specified and the file being opened is not a directory file, then the API will fail.

Conversely, the FILE_NON_DIRECTORY_FILE option specifies that the target file being
opened may not be a directory file. It must be a data file, device, volume, etc., or the
API is to fail.

It is also possible to further control the type of file, directory, structured storage, etc.
that one wishes to create or open by providing the FILE_STORAGE_TYPE_SPECIFIED
flag. This flag indicates that one of the FILE_STORAGE_TYPE_xxx values has been
supplied. Note that specifying FILE_DIRECTORY_FILE is equivalent to specifying
FILE_STORAGE_TYPE_SPECIFIED and also specifying
FILE_STORAGE_TYPE_DIRECTORY. Likewise, specifying FILE_NON_DIRECTORY_FILE
is equivalent to specifying FILE_STORAGE_TYPE_SPECIFIED and also specifying
FILE_STORAGE_TYPE_FILE.

The FILE_NO_INTERMEDIATE_BUFFER option specifies that the file system should not
perform any intermediate buffering on behalf of the caller. This causes several
restrictions to be placed on the caller's parameters to various service calls.

o - The byte offset parameter to read and write operations must be an integral
number of 512-byte blocks.

o - The length of the read or write operation must be an integral number of 512-
byte blocks. Note that specifying a read operation to a buffer whose length is
512 bytes may result in a smaller number of significant bytes being transferred
to the buffer because the end of the file was reached, however, the driver may
still be able to transfer a whole sector of data directly to the buffer.

o - Buffers must be aligned to that of the device. The device alignment
requirement can be determined by querying the file.

o - Files opened for this type of access may not be opened for
FILE_APPEND_DATA access.

o - The FILE_WRITE_THROUGH option is automatically set when intermediate
buffering is disabled.

o - Calls to set the file position pointer for files opened in this manner may only
specify offsets wto 512-byte sector boundaries.

The FILE_SYNCHRONOUS_IO_ALERT and FILE_SYNCHRONOUS_IO_NONALERT create
options allow the caller to specify that all I/O operations on this file are to be
performed synchronously as long as they occur through the file object referred to by
the returned handle. The system also maintains the current "file pointer context" for
the file when the file is opened/created with either of these options. Likewise, all I/O

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 14

on the file will be serialized across all threads and processes using the returned
handle or an inherited copy of the handle. The SYNCHRONIZE desired-access flag
must also be specified so that the I/O system can use the file object as a
synchronization object. Of course, these two options are mutually exclusive.

These two options also imply that the I/O system maintain an internal current file
position pointer. This pointer can be used by the read and write services. It can also
be set or read by other APIs described later in this document.

The FILE_CREATE_TREE_CONNECTION option specifies that a tree connection to a
remote node is to be created. For more information, see the Windows NT LAN
Manager Software specification.

The FILE_COMPLETE_IF_OPLOCKED option specifies that if the target file is currently
oplocked by another accessor of the file, that the operation should complete
immediately anyway without waiting for the oplock break operation to be completed.
The call to NtCreateFile completes once the oplock break operation has been started,
rather than blocking the caller's thread waiting for the break to complete. An
alternate success code is returned to the caller if an oplock break is in progress when
the service completes. This flag is mutually exclusive with the
FILE_RESERVE_OPFILTER flag. For more information on oplocks, see the Windows NT
Opportunistic Locking Design Note.

Setting the FILE_TRANSACTED_MODE option indicates that the file system and
Transaction Manager should work together to only allow other openers of the file to
see changes to the file when they are fully committed. This means that other openers
will not normally see any writes to the file unless the data has actually been
committed.

The FILE_RESERVE_OPFILTER option indicates that the caller would like to reserve a
filter oplock on the file, if possible. This flag is mutually exclusive with the
FILE_COMPLETE_IF_OPLOCKED flag. The first I/O request issued on the file must be
an oplock FSCTL to determine whether or not the oplock was actually reserved. For
more information on oplocks, see the Windows NT Opportunistic Locking Design Note.

A file is considered to have been moved from primary storage and a marker left in its
place if the target file’s FILE_ATTRIBUTE_OFFLINE attribute bit is set. A normal
attempt to open such a file causes the HSM(s) in the system to attempt to retrieve the
original file. However, the marker itself can be opened by specifying the
FILE_OPEN_OFFLINE_FILE option.

If a list of EAs is supplied through specifying an EaBuffer, then those EAs are applied
to the file as an atomic operation. Note that the EAs are only set on the file if the file is
created (this also includes supersede and overwrite operations). If setting the EAs on
the file incurs an error, then the file is not created, an appropriate error is returned,
and the Information field of the IoStatusBlock variable is set to the offset into the EA
buffer of the EA that caused the error.

The type of the contents of the EaBuffer is FILE_FULL_EA_INFORMATION. This type
has the following definition:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 15

typedef struct _FILE_FULL_EA_INFORMATION {
ULONG NextEntryOffset;
UCHAR Flags;
UCHAR EaNameLength;
USHORT EaValueLength;
CHAR EaName[];

} FILE_FULL_EA_INFORMATION;

Field Description
NextEntryOffset Offset, in bytes, to the next entry in the list
Flags Flags to be associated with the EA
EaNameLength Length of the EA’s name field, excluding null termination character
EaValueLength Length of the EA's value field
EaName The name of the EA

The flags currently defined for EAs are:

FILE_NEED_EA- This flag indicates that the caller must understand EAs in order to
understand the actual meaning or representation of the file. Files who have an EA
with this flag set cannot be seen by callers attempting to access the file with the
FILE_NO_EA_KNOWLEDGE CreateOption set.

The value field begins after the end of the EaName field of the structure, including a
single null character. The EaNameLength field does not include the null character in
the count Each entry in the list must be longword aligned. The NextEntryOffset field
specifies the number of bytes between the current entry and the next entry in the
buffer. If there are no more entries following the current entry, then the value of this
field is zero.

For more information, refer to the NtSetEaFile system service documented elsewhere
in this specification.

3.1.2 Opening Files

A file can be opened using the NtOpenFile service:

NTSTATUS
NtOpenFile(

OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG ShareAccess,
IN ULONG OpenOptions
);

Parameters:

FileHandle - A pointer to a variable that receives the file handle value.

DesiredAccess - Specifies the type of access that the caller requires to the file.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 16

DesiredAccess Flags

SYNCHRONIZE - The file handle may be waited on to synchronize with the
completion of the I/O operation.

DELETE - The file may be deleted.

READ_CONTROL - The ACL and ownership information associated with
the file may be read.

WRITE_DAC - The Discretionary ACL associated with the file may be
written.

WRITE_OWNER - Ownership information associated with the file may be
written.

FILE_READ_DATA - Data may be read from the file.

FILE_WRITE_DATA - Data may be written to the file.

FILE_EXECUTE - Data may be faulted into memory from the file via
paging I/O.

FILE_APPEND_DATA - Data may only be appended to the file.

FILE_READ_ATTRIBUTES - File attributes flags may be read.

FILE_WRITE_ATTRIBUTES - File attributes flags may be written.

FILE_READ_EA - Extended attributes associated with the file may be read.

FILE_WRITE_EA - Extended attributes associated with the file may be
written.

FILE_LIST_DIRECTORY - Files in the directory may be listed.

FILE_TRAVERSE - The directory may be traversed. That is, it may be in
the pathname of a file.

The three following values are the generic access types that the caller
may request. The mapping to specific access rights is given for each:

GENERIC_READ - Maps to STANDARD_RIGHTS_READ, FILE_READ_DATA,
FILE_READ_ATTRIBUTES, and FILE_READ_EA.

GENERIC_WRITE - Maps to STANDARD_RIGHTS_WRITE,
FILE_WRITE_DATA, FILE_WRITE_ATTRIBUTES, FILE_WRITE_EA,
and FILE_APPEND_DATA.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 17

GENERIC_EXECUTE - Maps to STANDARD_RIGHTS_EXECUTE,
SYNCHRONIZE, and FILE_EXECUTE.

For more information about standard rights accesses, see the Windows
NT Local Security Specification.

ObjectAttributes - A pointer to a structure that specifies the name of the file, a
root directory, and a set of file object attribute flags.

ObjectAttributes Structure

ULONG Length - Specifies the length of the object attributes structure.
This field must be equal to the size of an OBJECT_ATTRIBUTES
structure.

PUNICODE_STRING ObjectName - The name of the file to be opened. This
file specification must be a fully qualified file specification or the
name of a device, unless it is a file relative to the directory specified
by the next field.

HANDLE RootDirectory - Optionally specifies a handle to a directory. If
specified, then the name of the file specified by the ObjectName
field is a file specification relative to the directory file supplied by
this handle.

ULONG Attributes - A set of flags that controls the file object attributes.

OBJ_INHERIT - Indicates that the handle to the file is to be inherited
by the new process when an NtCreateProcess operation is
performed to create a new process.

OBJ_CASE_INSENSITIVE - Indicates that the name lookup should
ignore the case of ObjectName rather than performing an
exact match search.

IoStatusBlock - A variable to receive the final completion status and information
about the operation. The actual action taken by the system is written to
the Information field of this variable. For a more information on this
parameter see the NtCreateFile system service description.

ShareAccess - Specifies the type of share access that the caller would like to the
file.

ShareAccess Flags

FILE_SHARE_READ - Other open operations may be performed on the file
for read access.

FILE_SHARE_WRITE - Other open operations may be performed on the
file for write access.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 18

FILE_SHARE_DELETE - Other open operations may be performed on the
file for delete access.

OpenOptions - Specifies the options that should be used when opening the file.

OpenOptions Flags

FILE_DIRECTORY_FILE - Indicates that the file being opened must be a
directory file.

FILE_NON_DIRECTORY_FILE - Indicate that the file being opened may not
be a directory file.

FILE_WRITE_THROUGH - Indicates that services that write data to the file
must actually write the data to the file before the operation is
considered to be complete.

FILE_SEQUENTIAL_ONLY - Indicates that the file will only be accessed
sequentially.

FILE_RANDOM_ACCESS - Indicates that the file will be access randomly so
no read ahead operations should ever be performed on the file.

FILE_NO_INTERMEDIATE_BUFFERING - Indicates that no caching or
intermediate buffering is performed for the file.

FILE_SYNCHRONOUS_IO_ALERT - Indicates that all operations on the file
are performed synchronously. Any wait being performed on
behalf of the caller is subject to premature termination from alerts.
This flag also causes the I/O system to maintain the file position
context.

FILE_SYNCHRONOUS_IO_NONALERT - Indicates that all operations on the
file are performed synchronously. Waits in the system to
synchronize I/O queueing and completion are not subject to alerts.
This flag also causes the I/O system to maintain the file position
context.

FILE_COMPLETE_IF_OPLOCKED - Indicates that the operation should
complete immediately with an alternate success code if the target
file is oplocked rather than blocking the caller's thread.

FILE_NO_EA_KNOWLEDGE - Indicates that if the EAs on an existing file
being opened indicate that the caller must understand EAs to
properly interpret the file, then the file open should fail because
the caller does not understand how to deal with EAs.

FILE_DELETE_ON_CLOSE - Indicates that the file should be deleted when
the last handle to it is closed.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 19

FILE_OPEN_BY_FILE_ID - Indicates that the file name contains the name
of the device, and a 64-bit ID that is to be used to open the file.

FILE_OPEN_FOR_BACKUP_INTENT - Indicates that the file is being opened
for backup intent, hence, the system should check for
SeBackupPrivilege or SeRestorePrivilege and grant the caller the
appropriate accesses to the file before checking the DesiredAccess
against the file's security descriptor.

FILE_TRANSACTED_MODE - Indicates that the file is to be opened in
transacted mode. This specifies that no changes to the file should
be visible to other openers of the file until the transaction is
committed.

FILE_RESERVE_OPFILTER - Indicates that a filter oplock should be
reserved on the file if possible. The first I/O operation on the file
must be an oplock request so that the caller can determine whether
or not the oplock was granted.

FILE_OPEN_OFFLINE_FILE - Indicates that if the target file has been
moved from primary storage and the target file is an off-line file,
then the marker itself is to be opened rather than retrieving the
actual file.

FILE_STORAGE_TYPE_SPECIFIED - Indicates that this CreateOptions
parameter specifies a storage type field.

FILE_STORAGE_TYPE_DEFAULT - Create/open a file of default
storage type.

FILE_STORAGE_TYPE_DIRECTORY - Create/open an enumerable
directory file.

FILE_STORAGE_TYPE_FILE - Create/open normal data file.

FILE_STORAGE_TYPE_DOCFILE - Create/open a document file.

FILE_STORAGE_TYPE_JUNCTION_POINT - Create/open a junction
point.

FILE_STORAGE_TYPE_CATALOG - Create/open a summary
catalogue.

FILE_STORAGE_TYPE_STRUCTURED_STORAGE - Create/open
structured storage.

FILE_STORAGE_TYPE_EMBEDDING - Create/open an embedding.

FILE_STORAGE_TYPE_STREAM - Create/open an alternate data
stream on a file.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 20

The NtOpenFile service opens an existing file or device. A file handle is returned that
can be used by subsequent service calls to manipulate the file itself or the data within
the file.

There are two basic ways to specify the name of the file that is to be opened:

o - A fully qualified pathname. This method simply supplies the full file
specification for the file to be opened. This is done using the ObjectName field
of the ObjectAttributes structure. No RootDirectory handle may be specified.

o - A relative pathname. This method supplies the name of the file as a relative
pathname. The path is relative to the directory file represented by the handle
in the RootDirectory field of the ObjectAttributes structure.

Once the I/O operation is complete, the Information field of the I/O status block
contains information about the action taken by the system. That is, the Information
field will contain FILE_OPENED.

The SYNCHRONIZE desired-access flag must be set in order for the caller to wait on
the file handle to synchronize I/O completion. If this desired access is not specified,
then I/O completion must be synchronized through the use of an event or an APC
routine.

If FILE_EXECUTE is the only desired-access flag specified other than SYNCHRONIZE,
then the caller cannot directly read or write any data in the file using the returned file
handle. All operations on the file occur through the system pager in response to
instruction and data accesses.

If FILE_APPEND_DATA is the only desired-access flag specified other than
SYNCHRONIZE, then the caller can only write to the end of the file. Any offset
information on writes to the file is ignored. The file will automatically be extended as
necessary for these types of write operations.

Specifying the FILE_WRITE_DATA desired-access flag for a file also allows writes
beyond the end of the file to occur. The file is also automatically extended for these
types of writes as well.

Files may be shared among threads within a process, or among a family of processes
through inheritance, by simply opening or creating the file. The file handle can then
be used to access the same file. Note that the OBJ_INHERIT object attribute flag must
be specified in the ObjectAttributes parameter in order for sharing to occur between
parent and child processes through use of the file handle.

Access to a file may be shared among separate cooperating processes or threads by
requesting that the file system open the file for shared access. This is accomplished
through the flags in the ShareAccess mode parameter. Provided that both file openers
have the privilege to access the file in the specified manner, the file can be
successfully opened and shared. If the caller does not specify FILE_SHARE_READ,
FILE_SHARE_WRITE, or FILE_SHARE_DELETE, then no other open operations may be
performed on the file.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 21

In order for the file to be successfully opened, the requested access mode to the file
must be compatible with the way in which other opens to the file have been made.
That is, the desired access mode to the file must not conflict with the accesses that
other openers of the file have disallowed.

The FILE_DIRECTORY_FILE flag specifies that the file being opened must be a
directory file or the service will fail. Likewise, the FILE_NON_DIRECTORY_FILE flag
specifies that the service will fail if the file being opened is a directory file.

It is also possible to further control the type of file, directory, structured storage, etc.
that one wishes to create or open by providing the FILE_STORAGE_TYPE_SPECIFIED
flag. This flag indicates that one of the FILE_STORAGE_TYPE_xxx values has been
supplied. Note that specifying FILE_DIRECTORY_FILE is equivalent to specifying
FILE_STORAGE_TYPE_SPECIFIED and also specifying
FILE_STORAGE_TYPE_DIRECTORY. Likewise, specifying FILE_NON_DIRECTORY_FILE
is equivalent to specifying FILE_STORAGE_TYPE_SPECIFIED and also specifying
FILE_STORAGE_TYPE_FILE.

The FILE_NO_INTERMEDIATE_BUFFER option specifies that the file system should not
perform any intermediate buffering on behalf of the caller. This causes several
restrictions to be placed on the caller's parameters to various service calls.

o - The byte offset parameter to read and write operations must be an integral
number of 512-byte blocks.

o - The length of the read or write operation must be an integral number of 512-
byte blocks. Note that specifying a read operation to a buffer whose length is
512 bytes may result in a smaller number of significant bytes being transferred
to the buffer because the end of the file was reached, however, the driver may
still be able to transfer a whole sector of data directly to the buffer.

o - Buffers must be aligned to that of the device. The device alignment
requirement can be determined by querying the file.

o - Files opened for this type of access may not be opened for
FILE_APPEND_DATA access.

o - The FILE_WRITE_THROUGH option is automatically set when intermediate
buffering is disabled.

o - Calls to set the file position pointer for files opened in this manner may only
specify offsets to 512-byte sector boundaries.

o - All opens of the file must either enable or disable this feature. That is, no
mixed opens are permitted.

The FILE_SYNCHRONOUS_IO_ALERT and FILE_SYNCHRONOUS_IO_NONALERT open
options allow the caller to specify that all I/O operations on this file are to be
performed synchronously as long as they occur through the file object referred to by
the returned handle. The system also maintains the current "file pointer context" for
the file when the file is opened with either of these options. Likewise, all I/O on the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 22

file will be serialized across all threads and processes using the returned handle or an
inherited copy of the handle. The SYNCHRONIZE desired access flag must also be
specified so that the I/O system can use the file object as a synchronization object.

These two options also imply that the I/O system maintain an internal current file
position pointer. This pointer can be used by the read and write services. It can also
be set or read by other APIs described later in this document.

The FILE_COMPLETE_IF_OPLOCKED option specifies that if the target file is currently
oplocked by another accessor of the file, that the operation should complete
immediately anyway without waiting for the oplock break operation to be completed.
The call to NtOpenFile completes once the oplock break operation has been started,
rather than blocking the caller's thread waiting for the break to complete. An
alternate success code is returned to the caller if an oplock break is in progress when
the service completes. For more information on oplocks, see the Windows NT
Opportunistic Locking Design Note.

Setting the FILE_TRANSACTED_MODE option indicates that the file system and
Transaction Manager should work together to only allow other openers of the file to
see changes to the file when they are fully committed. This means that other openers
will not normally see any writes to the file unless the data has actually been
committed.

The FILE_RESERVE_OPFILTER option indicates that the caller would like to reserve a
filter oplock on the file, if possible. The first I/O request issued on the file must be an
oplock FSCTL to determine whether or not the oplock was actually reserved. For
more information on oplocks, see the Windows NT Opportunistic Locking Design Note.

A file is considered to have been moved from primary storage and a marker left in its
place if the target file’s FILE_ATTRIBUTE_OFFLINE attribute bit is set. A normal
attempt to open such a file causes the HSM(s) in the system to attempt to retrieve the
original file. However, the marker itself can be opened by specifying the
FILE_OPEN_OFFLINE_FILE option.

3.2 File Data Services

This section presents those services that read data from and write data to files. They
provide the functionality to perform I/O to files according to the options provided in
the open/create services.

The APIs that support reading and writing files are as follows:

NtReadFile - Read data from a file into a specified buffer.
NtWriteFile - Write data to a file from a specified buffer.

3.2.1 Reading Files

Data can be read from a file with the NtReadFile service:

NTSTATUS
NtReadFile(

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 23

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL
);

Parameters:

FileHandle - An open file handle to the file to read.

Event - An optional handle to an event to be set to the Signaled state when the
operation completes.

ApcRoutine - An optional procedure to be invoked once the operation
completes.

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was
specified, when the operation completes. This argument is required if an
ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status and information
about the operation. The number of bytes actually read from the file is
returned in the Information field of this variable. For more information
about this parameter see the NtCreateFile system service description.

Buffer - A pointer to a buffer to receive the bytes read from the file.

Length - The length of the specified Buffer in bytes. This is the number of bytes
that are read from the file unless the end of the file is reached.

ByteOffset - Supplies the starting byte offset within the file where the read
begins. An error is returned if an attempt is made to start the read
beyond the end of the file.

See the note below about the semantics of this parameter if the I/O system
is maintaining the current file pointer position.

Key - Optionally specifies a Key that is used to indicate the owner of a byte-
range lock. If the value of the Key and other conditions are met, then the
locked range is read.

The routine specified by the ApcRoutine parameter has the following type definition:

typedef
VOID
(*PIO_APC_ROUTINE) (

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 24

IN PVOID ApcContext,
IN PIO_STATUS_BLOCK IoStatusBlock
);

Parameters:

ApcContext - This parameter is the value of ApcContext in the call to the I/O
system service.

IoStatusBlock - This parameter is the pointer IoStatusBlock passed in the call to
the I/O system service.

The NtReadFile service begins reading from the ByteOffset byte within the file into the
specified Buffer. The read terminates under one of the following conditions:

o - The buffer is full. The number of bytes specified by the Length parameter
has been read. Therefore, no more data can be placed into the buffer without
an overflow.

o - During the read operation the end of the file is reached. There is no more
data in the file to be placed into the buffer.

If the file was opened or created without intermediate buffering by the file system,
there are several restrictions on the parameters supplied to this service. See the
descriptions of the NtCreateFile and NtOpenFile services for more information.

If FILE_SYNCHRONOUS_IO_ALERT or FILE_SYNCHRONOUS_IO_NONALERT are
specified as options when the file is opened/created, then the I/O system maintains the
current file position for the file. The caller may specify that the current file pointer
position be used instead of a specific byte offset within the file in one of two ways:

o - Specifying a ByteOffset parameter whose value is
FILE_USE_FILE_POINTER_POSITION rather than an actual byte offset within the
file.

o - Not specifying the ByteOffset parameter at all.

Either of these methods causes the read to occur from the byte offset within the file
according to the value of the current file pointer position. Once the read is complete,
the pointer position is updated according to the number of bytes that were read from
the file.

If the current file position is being maintained by the I/O system, then the caller may
still read directly from a location in the file. This automatically changes the current
file position to point to that position, performs the read, and then updates the position
according to the number of bytes actually read. This gives the caller an atomic "seek
and read" service. This is done by supplying the actual byte offset within the file to be
read.

The Key parameter can optionally be used to specify a key value that is used to
determine whether a locked range of bytes can be read by the caller. That is, locked

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 25

ranges of bytes have a key associated with them using the NtLockFile system service.
The Key parameter is one of the values that must exactly match the key associated
with the lock in order to read the locked range of bytes. More information can be
found later in this specification on byte range locking.

The NtReadFile service is also flexible enough to be invoked for most read functions
directly by an RPC stub routine that is emulating a system service on behalf of an
emulation subsystem. The OS/2 DosRead and POSIX read functions, for example, can
both be emulated by directly invoking this service.

This service requires FILE_READ_DATA access to the file.

Once the data has been read, the Event, if specified, will be set to the Signaled state. If
no Event parameter was specified, then the file object specified by the FileHandle will
be set to the Signaled state. If an ApcRoutine was specified, it is invoked with the
ApcContext and the address of the IoStatusBlock as its arguments.

3.2.2 Writing Files

Data can be written to a file with the NtWriteFile service:

NTSTATUS
NtWriteFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL
);

Parameters:

FileHandle - An open file handle to the file to write.

Event - An optional handle to an event to be set to the Signaled state when the
operation completes.

ApcRoutine - An optional procedure to be invoked once the operation
completes. For more information about this parameter see the
NtReadFile system service description.

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was
specified, when the operation completes. This argument is required if an
ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status and information
about the operation. The number of bytes actually written to the file is

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 26

returned in the Information field of this variable. For more information
about this parameter see the NtCreateFile system service description.

Buffer - A pointer to a buffer containing the data that should be written to the
file.

Length - The number of bytes to write to the file from the specified Buffer.

ByteOffset - Supplies the starting byte offset within the file where the write
begins.

The notes below describe other valid values that this parameter can
express.

Key - Optionally specifies a Key that it used to indicate the owner of a byte range
lock. If the value of the Key and other conditions are met, then the locked
range is written.

The NtWriteFile service begins writing Length bytes from the specified Buffer to the
byte within the file specified by the ByteOffset parameter.

If the write occurs to a file beyond the current end of file mark, then the file is
automatically extended and the end of file mark is updated. Any bytes not explicitly
written between the old end of file mark and the new end of file mark are defined to
be zero.

If the file is opened with only FILE_APPEND_DATA access, then the ByteOffset
parameter is ignored. The data contained in the Buffer, for Length bytes, is written to
the current end of the file.

If the file was opened or created without intermediate buffering by the file system,
there are several restrictions on the parameters supplied to this service. See the
descriptions of the NtCreateFile and NtOpenFile services for more information.

If FILE_SYNCHRONOUS_IO_ALERT or FILE_SYNCHRONOUS_IO_NONALERT are
specified when the file is opened or created, then the I/O system maintains the current
file position pointer. The caller may specify that the current file pointer position be
used instead of a specific byte offset within the file in one of two ways:

o - Specifying a ByteOffset parameter whose value is
FILE_USE_FILE_POINTER_POSITION rather than an actual byte offset within the
file.

o - Not specifying the ByteOffset parameter at all.

Either of these methods causes the write to occur from the byte offset within the file
according to the value of the current file pointer position context. Once the write is
complete, the pointer position is updated according to the number of bytes that were
written to the file.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 27

If the current file position is being maintained by the I/O system, then the caller may
still write directly to a location in the file. This automatically changes the current file
position to point to that position, performs the write, and then updates the position
according to the number of bytes written. This gives the user an atomic "seek and
write" service. This is done by supplying the actual byte offset within the file to be
written.

It is also possible to cause the write to take place at the current end of file. This can be
done regardless of whether the I/O system is maintaining file position information.
Specifying a value of FILE_WRITE_TO_END_OF_FILE for the ByteOffset parameter
causes this to occur.

The Key parameter can optionally be used to specify a key value that determines
whether a locked range of bytes can be written by the caller. That is, locked ranges of
bytes have a key associated with them using the NtLockFile system service. The Key
parameter is one of the values that must exactly match the lock specification
associated with the lock in order to be able to write the locked range of bytes. More
information can be found later in this specification on byte range locking.

The NtWriteFile service is also flexible enough to be invoked for most write functions
directly by an RPC stub routine executing on behalf of an operating system emulation
subsystem. The OS/2 DosWrite and POSIX write functions, for example, can both be
emulated by directly invoking these services.

This service requires either FILE_WRITE_DATA or FILE_APPEND_DATA access to
the file. Note that having only FILE_APPEND_DATA access to the file does not allow
the caller to write anywhere in the file except at the current end of file mark, while
having FILE_WRITE_DATA access to a file does not preclude the caller from writing
to or beyond the end of the file.

Once the data has been written, the Event, if specified, will be set to the Signaled state.
If no Event parameter was specified, then the file object specified by the FileHandle
will be set to the Signaled state. If an ApcRoutine was specified, it is invoked with the
ApcContext and the address of the IoStatusBlock as its arguments.

3.3 Directory Manipulation Services

This section presents those services that manipulate directories within the file system.

The APIs that permit directory manipulation are as follows:

NtQueryDirectoryFile - Enumerate files within a directory.
NtNotifyChangeDirectoryFile - Monitor directory for modifications.
NtQueryOleDirectoryFile - Enumerate streams and embeddings in the OLE

name space.

3.3.1 Enumerating Files in a Directory

The files within a directory can be enumerated using the NtQueryDirectoryFile
service:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 28

NTSTATUS
NtQueryDirectoryFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID FileInformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FileInformationClass,
IN BOOLEAN ReturnSingleEntry,
IN PUNICODE_STRING FileName OPTIONAL,
IN BOOLEAN RestartScan
);

Parameters:

FileHandle - A file handle to an open directory file.

Event - An optional handle to an event to be set to the Signaled state when the
operation completes.

ApcRoutine - An optional procedure to be invoked once the operation
completes. For more information about this parameter see the
NtReadFile system service description.

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was
specified, when the operation completes. This argument is required if an
ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status and information
about the operation. The number of bytes actually written to the
specified Buffer is stored in the Information field of this variable. For
more information about this parameter see the NtCreateFile system
service description.

FileInformation - A pointer to a buffer to receive information about the files in
the directory. The contents of this buffer are defined by the
FileInformationClass parameter below.

Length - The length of the specified buffer in bytes.

FileInformationClass - Specifies the type of information that is returned in the
FileInformation buffer. The type of information in the buffer is defined by
the following type codes.

FileInformationClass Values

FileNamesInformation - Specifies that names of files in the directory are
written to the FileInformation buffer.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 29

FileDirectoryInformation - Specifies that basic directory information
about the files is written to the FileInformation buffer.

FileFullDirectoryInformation - Specifies that all of the directory
information about the files is written to the FileInformation buffer.

FileBothDirectoryInformation - Specifies that all of the directory
information about the files is written to the FileInformation buffer,
including both of the file's names.

FileOleDirectoryInformation - Specifies that OLE directory information
about the files is written to the FileInformation buffer.

ReturnSingleEntry - A BOOLEAN value that, if TRUE, indicates that only a single
entry should be returned.

FileName - An optional file name within the specified directory. This parameter
may only be specified on the first call to the service. It selects the files in
the directory that the query calls return. The specification may contain
wildcard characters.

RestartScan - A BOOLEAN value that, if TRUE, indicates that the scan should be
restarted from the beginning. This causes the directory operation to
restart the scan from the beginning of the directory.

The NtQueryDirectoryFile function operates on a directory file specified by the
FileHandle parameter. The service returns information about files in the specified
directory. The ReturnSingleEntry parameter specifies that only a single entry should
be returned rather than filling the buffer. The actual number of files whose
information is returned, is the smallest of the following:

o - One entry, if the ReturnSingleEntry parameter is TRUE.

o - The number of files whose information fits into the specified buffer.

o - The number of files that exist in the directory according to the wildcard file
specification. This defaults to all of the files in the directory.

File systems supported by Windows NT return information about files in directories
in either random or alphabetically ascending order. It is possible to receive
information about a specific file by specifying the name of the file as the FileName
parameter without using any wildcard characters.

If information about multiple files is returned, then each entry in the buffer will be
aligned on a longword or quadword boundary, depending on the type of information
being returned. Each type of information class returned begins with the byte offset
required to find the next entry in the buffer. If this value is zero, then there are no
more entries following the current entry. Note that there are no entries in the buffer
only if the service completes with an error.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 30

The normal operation of this service is to return all of the files in the directory. A
wildcard specification may be supplied the first time the service is called to select a
subset of the files in the directory. This is done by supplying a wildcard file
specification in the FileName parameter the first time the service is invoked once the
directory file has been opened. Once a wildcard pattern has been supplied, all
subsequent NtQueryDirectoryFile calls using the same directory handle operate only
on those files which match the pattern. That is, restarting the listing will return the
first entry in the directory that matches the pattern.

A wildcard file specification may only be supplied the first time that the service is
invoked. If no wildcard specification is supplied, the file system assumes all of the
files in the directory are selected. Wildcard file specifications must be consistent with
those used in OS/2 V2.0.

Likewise, the FileInformationClass parameter specified the first time indicates the type
of information about the files in the directory that is to be returned. Once an
information class is established, it may not be changed in subsequent calls to the
service. That is, all subsequent calls must pass the same information class as the first
call to the service for a given handle.

The information that is returned in the buffer is defined by the following type codes
and structures.

FileNamesInformation Format by File Information Class

FileNamesInformation - Data type is FILE_NAMES_INFORMATION.

typedef struct _FILE_NAMES_INFORMATION {
ULONG NextEntryOffset;
ULONG FileIndex;
ULONG FileNameLength;
WCHAR FileName[];

} FILE_NAMES_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
FileIndex Index in the directory of this entry
FileNameLength Length of the file name in bytes
FileName Name of the file

The information returned for this information class is returned longword
aligned, and the FileInformation buffer itself must be longword aligned.

FileDirectoryInformation - Data type is FILE_DIRECTORY_INFORMATION.

typedef struct _FILE_DIRECTORY_INFORMATION {
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 31

LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
WCHAR FileName[];

} FILE_DIRECTORY_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
FileIndex The file index of this file in the directory
CreationTime Date/time that the file was created
LastAccessTime Date/time that the file was last accessed
LastWriteTime Date/time that the file was last written
ChangeTime Date/time that the file was last changed
EndOfFile Offset to first free byte in the default data stream, in bytes
AllocationSize Allocated size of all data streams in the file, in bytes
FileAttributes Attributes of the file
FileNameLength Length of the name of the file
FileName Name of the file

The information returned for this information class is returned quadword
aligned, and the FileInformation buffer itself must be quadword aligned.

All dates and times are returned in the standard Windows NT system-time
format.

The file attributes field can be a combination of the following flags:

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

The FILE_ATTRIBUTE_NORMAL flag will never be returned in combination
with any other flag.

FileFullDirectoryInformation - Data type is FILE_FULL_DIR_INFORMATION.

typedef struct _FILE_FULL_DIR_INFORMATION {
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 32

LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaSize;
WCHAR FileName[];

} FILE_FULL_DIR_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
FileIndex The file index of this file in the directory
CreationTime Date/time that the file was created
LastAccessTime Date/time that the file was last accessed
LastWriteTime Date/time that the file was last written
ChangeTime Date/time that the file was last changed
EndOfFile Offset to first free byte in the default data stream, in bytes
AllocationSize Allocated size of all data streams in the file, in bytes
FileAttributes Attributes of the file
FileNameLength Length of the name of the file
EaSize Size of the EA's associated with the file
FileName Name of the file

The information returned for this information class is returned quadword
aligned, and the FileInformation buffer itself must be quadword aligned.

All dates and times are returned in the standard Windows NT system-time
format.

The file attributes field can be a combination of the following flags:

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

The FILE_ATTRIBUTE_NORMAL flag will never be returned in combination
with any other flag.

FileBothDirectoryInformation - Data type is FILE_BOTH_DIR_INFORMATION.

typedef struct _FILE_BOTH_DIR_INFORMATION {
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 33

LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaSize;
CCHAR ShortNameLength;
WCHAR ShortName[12];
WCHAR FileName[];

} FILE_BOTH_DIR_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
FileIndex The file index of this file in the directory
CreationTime Date/time that the file was created
LastAccessTime Date/time that the file was last accessed
LastWriteTime Date/time that the file was last written
ChangeTime Date/time that the file was last changed
EndOfFile Offset to first free byte in the default data stream, in bytes
AllocationSize Allocated size of all data streams in the file, in bytes
FileAttributes Attributes of the file
FileNameLength Length of the name of the file
EaSize Size of the EA's associated with the file
ShortNameLength Length of the 8.3 name of the file
ShortName 8.3 name of the file
FileName Name of the file

The information returned for this information class is returned quadword
aligned, and the FileInformation buffer itself must be quadword aligned.

All dates and times are returned in the standard Windows NT system-time
format.

The file attributes field can be a combination of the following flags:

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

The FILE_ATTRIBUTE_NORMAL flag will never be returned in combination
with any other flag.

FileOleDirectoryInformation - Data type is FILE_OLE_DIR_INFORMATION.

typedef struct _FILE_OLE_DIR_INFORMATION {

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 34

ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
FILE_STORAGE_TYPE StorageType;
GUID OleClassId;
ULONG OleStateBits;
BOOLEAN IsExplorable;
BOOLEAN HasExplorableChildren;
BOOLEAN ApplicationIsExplorable;
BOOLEAN ApplicationHasExplorableChildren;
BOOLEAN ContentIndexDisable;
BOOLEAN InheritContentIndexDisable;
WCHAR FileName[];

} FILE_OLE_DIR_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
FileIndex The index of this file on the volume
CreationTime Date/time that the file was created
LastAccessTime Date/time that the file was last accessed
LastWriteTime Date/time that the file was last written
ChangeTime Date/time that the file was last changed
EndOfFile Offset to first free byte in the file
AllocationSize Total allocation size of file, including children
FileAttributes Attributes of the file
FileNameLength Length of the name of the file
StorageType Storage type of the file
OleClassId OLE class ID
OleStateBits OLE state bits
IsExplorable Indicates whether or not object is
explorable
HasExplorableChildren Indicates whether or not object has explorable
children
ApplicationHasExplorableChildren Application-maintained version of above
flag
ContentIndexDisable Indicates whether content indexing has been
disabled
InheritContentIndexDisable Indicates whether content indexing disable is
inheritable
FileName Name of the entry

The information returned for this information class is returned quadword
aligned, and the FileInformation buffer itself must be quadword aligned.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 35

All dates and times are returned in the standard Windows NT system-time
format.

The file attributes field can be a combination of the following flags:

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

The FILE_ATTRIBUTE_NORMAL flag will never be returned in combination
with any other flag.

The possible values for the storage type field are defined by the
FILE_STORAGE_TYPE enumerated type:

typedef enum _FILE_STORAGE_TYPE {
StorageTypeDirectory,
StorageTypeFile,
StorageTypeDocfile,
StorageTypeJunctionPoint,
StorageTypeCatalog,
StorageTypeStructuredStorage,
StorageTypeEmbedding,
StorageTypeStream

} FILE_STORAGE_TYPE;

FILE_LIST_DIRECTORY access to the directory is required in order to obtain the
above information about files in the specified directory.

As in OS/2 today, users should not depend on any preconceived ideas about the length
of file names in Windows NT. Because the system supports multiple file system types
and will support more in the future, it is difficult to tell just what form file names may
take. However, this service guarantees that for Windows NT V3.1, a buffer that is
large enough to contain at least one FILE_BOTH_DIR_INFORMATION structure and has
256 Unicode characters for a file name will be large enough to receive at least one
directory entry of any size.

Likewise, a buffer that is large enough to contain at least one name should be at least
256 Unicode characters for the file name itself, plus the size of the remainder of the
structure.

Notice that it is legal for the caller to specify the RestartScan parameter on a
subsequent call to the NtQueryDirectoryFile service to have the service restart from
the beginning of the directory listing. This causes the scan of the directory to be
restarted from the beginning of the list. Notice also that since the file handle may be

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 36

shared between separate threads within a process, or in threads across processes
when the handle is inherited, not all of the directory entries may necessarily be seen
by a single thread. That is, the context being maintained to determine which entry
should be returned is common among the threads. Therefore, if one thread obtains a
directory entry, then the next thread to ask for an entry will obtain the next entry, not
the same entry as the first thread.

Once the directory operation has completed, the Event, if specified, will be set to the
Signaled state. If no Event parameter was specified, then the file object specified by
the FileHandle will be set to the Signaled state. If an ApcRoutine was specified, it is
invoked with the ApcContext and the address of the IoStatusBlock as its arguments.

3.3.2 Enumerating Files in an Ole Directory File

The files within an Ole directory file can be enumerate using the
NtQueryOleDirectoryFile service:

NTSTATUS
NtQueryOleDirectoryFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID FileInformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FileInformationClass,
IN BOOLEAN ReturnSingleEntry,
IN PUNICODE_STRING FileName OPTIONAL,
IN BOOLEAN RestartScan
);

Parameters:

FileHandle - A file handle to an open container about which information is to be
returned.

Event - An optional handle to an event to be set to the Signaled state when the
operation completes.

ApcRoutine - An optional procedure to be invoked once the operation
completes. For more information about this parameter see the
NtReadFile system service description.

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was
specified, when the operation completes. This argument is required if an
ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status and information
about the operation. The number of bytes actually written to the
specified Buffer is stored in the Information field of this variable. For

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 37

more information about this parameter see the NtCreateFile system
service description.

FileInformation - A pointer to a buffer to receive information about the OLE
embeddings and streams in the container. The contents of this buffer are
defined by the FileInformationClass parameter below.

Length - The length of the specified buffer in bytes.

FileInformationClass - Specifies the type of information that is returned in the
FileInformation buffer. The type of information in the buffer is defined by
the following type codes.

FileInformationClass Values

FileDirectoryInformation - Specifies that basic information about the OLE
embeddings and streams is written to the FileInformation buffer.

FileOleDirectoryInformation - Specifies that comprehensive OLE
information about the OLE embeddings and streams is written to
the FileInformation buffer.

ReturnSingleEntry - A BOOLEAN value that, if TRUE, indicates that only a single
entry should be returned.

FileName - An optional name within the specified container. This parameter
may only be specified on the first call to the service. It selects the
embeddings and streams in the container that the query calls return. The
specification may contain wildcard characters.

RestartScan - A BOOLEAN value that, if TRUE, indicates that the scan should be
restarted from the beginning. This causes the directory operation to
restart the scan from the beginning of the container.

The NtQueryOleDirectoryFile function operates on a container specified by the
FileHandle parameter. The service returns information about OLE embeddings and
streams in the specified container. The ReturnSingleEntry parameter specifies that
only a single entry should be returned rather than filling the buffer. The actual
number of files whose information is returned, is the smallest of the following:

o - One entry, if the ReturnSingleEntry parameter is TRUE.

o - The number of entries whose information fits into the specified buffer.

o - The number of entries that exist in the container according to the wildcard
specification. This defaults to all of the entries in the container.

If information about multiple entries is returned, then each entry in the buffer will be
aligned on a longword or quadword boundary, depending on the type of information
being returned. Each type of information class returned begins with the byte offset
required to find the next entry in the buffer. If this value is zero, then there are no

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 38

more entries following the current entry. Note that there are no entries in the buffer
only if the service completes with an error.

The normal operation of this service is to return all of the entries in the container. A
wildcard specification may be supplied the first time the service is called to select a
subset of the entries in the container. This is done by supplying a wildcard
specification in the FileName parameter the first time the service is invoked once the
container has been opened. Once a wildcard pattern has been supplied, all
subsequent NtQueryOleDirectoryFile calls using the same handle operate only on
those entries which match the pattern. That is, restarting the listing will return the
first entry in the container that matches the pattern.

A wildcard specification may only be supplied the first time that the service is
invoked. If no wildcard specification is supplied, the file system assumes all of the
entries in the container are selected. Wildcard specifications must be consistent with
those used in OS/2 V2.0.

Likewise, the FileInformationClass parameter specified the first time indicates the type
of information about the entries in the container that is to be returned. Once an
information class is established, it may not be changed in subsequent calls to the
service. That is, all subsequent calls must pass the same information class as the first
call to the service for a given handle.

The information that is returned in the buffer is defined by the following type codes
and structures.

FileNamesInformation Format by File Information Class

FileDirectoryInformation - Data type is FILE_DIRECTORY_INFORMATION.

typedef struct _FILE_DIRECTORY_INFORMATION {
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
WCHAR FileName[];

} FILE_DIRECTORY_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
FileIndex The index of this entry in the container
CreationTime Date/time that the entry was created
LastAccessTime Date/time that the entry was last accessed
LastWriteTime Date/time that the entry was last written
ChangeTime Date/time that the entry was last changed

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 39

EndOfFile Offset to first free byte in the default data stream, in bytes
AllocationSize Total allocated size of the OLE embedding or stream in bytes
FileAttributes Attributes of the OLE embedding or stream
FileNameLength Length of the name of the entry
FileName Name of the entry

The information returned for this information class is returned quadword
aligned, and the FileInformation buffer itself must be quadword aligned.

All dates and times are returned in the standard Windows NT system-time
format.

The file attributes field can be a combination of the following flags if the object
is an embedding. Otherwise, the file attributes field will be zero.

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

The FILE_ATTRIBUTE_NORMAL flag will never be returned in combination
with any other flag.

FileOleDirectoryInformation - Data type is FILE_OLE_DIR_INFORMATION.

typedef struct _FILE_OLE_DIR_INFORMATION {
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
FILE_STORAGE_TYPE StorageType;
GUID OleClassId;
ULONG OleStateBits;
BOOLEAN IsExplorable;
BOOLEAN HasExplorableChildren;
BOOLEAN ApplicationIsExplorable;
BOOLEAN ApplicationHasExplorableChildren;
BOOLEAN ContentIndexDisable;
BOOLEAN InheritContentIndexDisable;
WCHAR FileName[];

} FILE_OLE_DIR_INFORMATION;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 40

Field Description
NextEntryOffset Offset to the next entry in bytes
FileIndex The index of this object on the volume
CreationTime Date/time that the entry was created
LastAccessTime Date/time that the entry was last accessed
LastWriteTime Date/time that the entry was last written
ChangeTime Date/time that the entry was last changed
EndOfFile Offset to first free byte in the default data
stream, in bytes
AllocationSize Allocated size of the OLE embedding or stream
in bytes
FileAttributes Attributes of the OLE embedding or
stream
FileNameLength Length of the name of the entry
StorageType Storage type of the entry
OleClassId OLE class ID
OleStateBits OLE state bits
IsExplorable Indicates whether or not object is
explorable
HasExplorableChildren Indicates whether or not object has explorable
children
ApplicationHasExplorableChildren Application-maintained version of above
flag
ContentIndexDisable Indicates whether content indexing has been
disabled
InheritContentIndexDisable Indicates whether CI disable should be inherited
FileName Name of the entry

The information returned for this information class is returned quadword
aligned, and the FileInformation buffer itself must be quadword aligned.

All dates and times are returned in the standard Windows NT system-time
format.

The file attributes field can be a combination of the following flags if the object
is an embedding. Otherwise it will be zero.

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

The FILE_ATTRIBUTE_NORMAL flag will never be returned in combination
with any other flag.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 41

The possible values for the storage type field are defined by the
FILE_STORAGE_TYPE enumerated type:

typedef enum _FILE_STORAGE_TYPE {
StorageTypeDirectory,
StorageTypeFile,
StorageTypeDocfile,
StorageTypeJunctionPoint,
StorageTypeCatalog,
StorageTypeStructuredStorage,
StorageTypeEmbedding,
StorageTypeStream

} FILE_STORAGE_TYPE;

FILE_LIST_DIRECTORY access to the container is required in order to obtain the
above information about OLE embeddings and streams in the specified container.

In the case of the NtQueryOleDirectoryFile, users can depend on the maximum
length of a file name being 31 Unicode characters, because that is the maximum
length defined by OLE. Therefore, the name of any stream, property set, embedding,
etc., is guaranteed to be a maximum of 31 Unicode characters because this API only
operates on OLE objects.

Likewise, a buffer that is large enough to contain at least one name should be at least
31 Unicode characters for the file name itself, plus the size of the remainder of the
structure.

Notice that it is legal for the caller to specify the RestartScan parameter on a
subsequent call to the NtQueryOleDirectoryFile service to have the service restart
from the beginning of the listing. This causes the scan of the container to be restarted
from the beginning of the list. Notice also that since the file handle may be shared
between separate threads within a process, or in threads across processes when the
handle is inherited, not all of the entries may necessarily be seen by a single thread.
That is, the context being maintained to determine which entry should be returned is
common among the threads. Therefore, if one thread obtains an entry, then the next
thread to ask for an entry will obtain the next entry, not the same entry as the first
thread.

Once the operation has completed, the Event, if specified, will be set to the Signaled
state. If no Event parameter was specified, then the file object specified by the
FileHandle will be set to the Signaled state. If an ApcRoutine was specified, it is
invoked with the ApcContext and the address of the IoStatusBlock as its arguments.

3.3.3 Monitoring Directory Modifications

Directory modifications can be monitored using the NtNotifyChangeDirectoryFile
service:

NTSTATUS
NtNotifyChangeDirectoryFile(

IN HANDLE FileHandle,

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 42

IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN ULONG CompletionFilter,
IN BOOLEAN WatchTree
);

Parameters:

FileHandle - A handle to an open directory file.

Event - An optional handle to an event to be set to the Signaled state when the
operation completes.

ApcRoutine - An optional procedure to be invoked once the operation
completes. For more information about this parameter see the
NtReadFile system service description.

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was
specified, when the operation completes. This argument is required if an
ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status. For more
information about this parameter see the NtCreateFile system service
description.

Buffer - A variable to receive the name(s) of the file(s) that changed in the
specified target directory.

Length - Specifies the length of the Buffer.

CompletionFilter - Specifies a set of flags that indicate the types of operations on
the directory or files in the directory that cause the I/O request to
complete. The following are the valid flags for this parameter:

CompletionFilter Flags

FILE_NOTIFY_CHANGE_FILE_NAME - Specifies that the I/O operation
should be completed if a file is added, deleted, or renamed.

FILE_NOTIFY_CHANGE_DIR_NAME - Specifies that the I/O operation
should be completed if a subdirectory is added, deleted, or
renamed.

FILE_NOTIFY_CHANGE_NAME - Specifies that the I/O operation should be
completed if a file or a subdirectory is added, deleted, or renamed.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 43

FILE_NOTIFY_CHANGE_ATTRIBUTES - Specifies that the I/O operation
should be completed if the attributes of a file or subdirectory is
changed.

FILE_NOTIFY_CHANGE_SIZE - Specifies that the I/O operation should be
completed if the allocation size or end of file for a file or
subdirectory is changed.

FILE_NOTIFY_CHANGE_LAST_WRITE - Specifies that the I/O operation
should be completed if the last write date/time for a file or
subdirectory is changed.

FILE_NOTIFY_CHANGE_LAST_ACCESS - Specifies that the I/O operation
should be completed if the last access date/time for a file or
subdirectory is changed.

FILE_NOTIFY_CHANGE_CREATION - Specifies that the I/O operation
should be completed if the creation date/time for a file or
subdirectory is changed.

FILE_NOTIFY_CHANGE_EA - Specifies that the I/O operation should be
completed if the EAs for a file or subdirectory are changed.

FILE_NOTIFY_CHANGE_SECURITY - Specifies that the I/O operation should
be completed if the security information for a file or subdirectory is
changed.

FILE_NOTIFY_CHANGE_STREAM_NAME - Specifies that the I/O operation
should be completed if the name of an alternate data stream is
changed.

FILE_NOTIFY_CHANGE_STREAM_SIZE - Specifies that the I/O operation
should be completed if the size of an alternated data stream is
changed.

FILE_NOTIFY_CHANGE_STREAM_WRITE - Specifies that the I/O operation
should be completed if an alternate data stream is changed due to a
write operation.

WatchTree - A BOOLEAN value that, if TRUE, specifies that all changes to files
below the directory should also be reported.

The NtNotifyChangeDirectoryFile service notifies the caller when files in the
directory or directory tree specified by the FileHandle are modified. It also returns
the name(s) of the file(s) that changed. All names are specified relative to the
directory that the handle represents. The service completes once the directory or
directory tree has been modified based on the supplied CompletionFilter. The service
is a "single shot" and therefore needs to be reinvoked to watch the directory for
changes again.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 44

The operation of this service begins by opening a directory for
FILE_LIST_DIRECTORY access. Once the handle is returned, the
NtNotifyChangeDirectoryFile service may be invoked to begin watching files and
subdirectories in the specified target for changes. The first time the service is
invoked, the Length parameter supplies the size not only of the user's Buffer, but also
the buffer that will be used by the file system to store names of files that have
changed. Likewise, the CompletionFile and WatchTree parameters on the first call
indicate how notification should operate for all calls using the supplied FileHandle.
These two parameters are ignored on subsequent calls to the API.

Once a modification is made that should be reported, the system will complete the
service. The names of the files that have changed since the last time the service was
called will be placed into the caller's output buffer. The Information field of the I/O
status block indicates the number of bytes that were written to the output buffer. If
too many files have changed since the last time the service was called, then zero bytes
will be written to the buffer and an alternate status code is returned in the Status field
of the I/O status block. For the latter case, the application must enumerate the files in
the directory or directory tree to note changes.

The format of the data written to the output Buffer is defined by the following
structure:

typedef struct _FILE_NOTIFY_INFORMATION {
ULONG NextEntryOffset;
ULONG Action;
ULONG FileNameLength;
WCHAR FileName[];

} FILE_NOTIFY_INFORMATION;

Field Description
NextEntryOffset Offset, in bytes, to the next entry in the list
Action Description of what happened to cause this entry
FileNameLength Length of the file name that changed
FileName Name of the file that changed

The value of the Action field is defined as one of the following:

Value Description
FILE_ADDED The file was added to the directory
FILE_REMOVED The file was removed from the directory
FILE_MODIFIED The file was modified
FILE_RENAMED_OLD_NAME The name of the file that was renamed
FILE_RENAMED_NEW_NAME The new name of the file that was renamed

When a file is renamed within a single directory, then two entries will be placed into
the output buffer: the old name of the file and the new name of the file. If the file is
renamed from the directory being monitored to another directory, then only a single
entry will be placed into the output buffer with an action type of Removed.

This service requires FILE_LIST_DIRECTORY access to the directory file that was
actually modified. If the operation is watching a directory tree, then the caller must

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 45

have FILE_TRAVERSE access to all intervening directories from the grandparent of
the modified file, to the directory specified by the FileHandle parameter. It is possible
to bypass security checks to all directories if the caller has the
SeNotifyChangePrivilege privilege.

It should be noted that because of the use of both symbolic and hard links within
some file systems, the results of changes to directories within a tree may be
unpredictable. That is, some changes may only be seen because the FileHandle used
refers to a point in the tree through which the change was actually made. Changes
made to a point lower in the tree may not be seen because the path used to make the
change did not traverse the directory referred to by the FileHandle.

It should also be noted that this API may not be implemented by some older network
servers. In this case, the API will return a status indicating that it is not implemented.
Applications using this API should be prepared to enumerate directories or directory
trees in this case.

Once a modification is made to the directory or directory tree, the Event, if specified,
will be set to the Signaled state. If no Event parameter was specified, then the file
object specified by the FileHandle will be set to the Signaled state. If an ApcRoutine
was specified, it is invoked with the ApcContext and the address of the IoStatusBlock
as its arguments.

3.4 File Services

This section presents those services that control files and obtain and change
information about files.

The APIs that perform these functions are as follows:

NtQueryInformationFile - Obtain information about a file.
NtSetInformationFile - Change information on a file.
NtQueryEaFile - Obtain extended attributes for a file.
NtSetEaFile - Set extended attributes for a file.
NtLockFile - Lock a byte range within a file.
NtUnlockFile - Unlock a byte range within a file.

3.4.1 Obtaining Information about a File

Information about a file may be obtained using the NtQueryInformationFile service:

NTSTATUS
NtQueryInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID FileInformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FileInformationClass
);

Parameters:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 46

FileHandle - A handle to an open file.

IoStatusBlock - A variable to receive the final completion status and information
about the operation. The number of bytes actually written to the
specified Buffer is stored in the Information field of this variable. For
more information about this parameter see the NtCreateFile system
service description.

FileInformation - A pointer to a buffer to receive the desired information about
the file. The contents of this buffer are defined by the
FileInformationClass parameter described below.

Length - The length of the FileInformation buffer in bytes.

FileInformationClass - Specifies the type of information that should be returned
about the file. The information returned in the FileInformation buffer is
defined by the following type codes:

FileInformationClass Values

FileBasicInformation - Returns basic information about the specified file.
FILE_READ_ATTRIBUTES access to the file is required. Also see
the NtQueryAttributesFile service description.

FileStandardInformation - Returns standard information about the
specified file. No specific access to the file is required; that is, this
information is available as long as the file is open.

FileInternalInformation - Returns file system internal information about
the file. No specific access to the file is required; that is, this
information is available as long as the file is open.

FileEaInformation - Returns the size of the extended attributes structures
associated with the file. No specific access to the file is required;
that is, this information is available as long as the file is open.

FileAccessInformation - Returns the access that the caller has to the file.
No specific access to the file is required; that is, this information is
available as long as the file is open.

FileNameInformation - Returns the volume-relative name of the file. No
specific access to the file is required; that is, this information is
available as long as the file is open.

FilePositionInformation - Returns the current file position for the file.
FILE_READ_DATA or FILE_WRITE_DATA access to the file is
required.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 47

FileModeInformation - Returns information about how the file is open for
the specified file handle. No specific access to the file is required;
that is, this information is available as long as the file is open.

FileAlignmentInformation - Returns information about the alignment
requirements for buffers being read or written to the file. This is
useful when the file has been opened without intermediate
buffering enabled. No specific access to the file is required; that is,
this information is available as long as the file is open.

FileAllInformation - Returns all of the above information in one structure.
FILE_READ_ATTRIBUTES access to the file is required to obtain
this information. In order for the file position information to be
returned, the accessor must have either FILE_READ_DATA or
FILE_WRITE_DATA access to the file.

FileAlternateNameInformation - Returns the DOS format 8.3 alternate
name for the file, if it has one.

FileStreamInformation - Returns the names of the alternate data streams
for the file, if any exist.

FileCompressionInformation - Returns the compression information about
a file. No specific access to the file is required; that is, this
information is available as long as the file is open.

FileOleInformation - Returns the OLE-specific information about a file.
FILE_READ_ATTRIBUTES access to the file is required to obtain
this information.

FileOleAllInformation - Returns the all of the OLE-specific information
about a file. FILE_READ_ATTRIBUTES access to the file is required
to obtain this information. In order for the file position
information to be returned, the accessor must have either
FILE_READ_DATA or FILE_WRITE_DATA access to the file.

The NtQueryInformationFile service returns information about the specified file.
The information returned in the buffer is defined by the following type codes and
structures. Note that the fields that are not supported for a given device or file system
are returned as zero. For example, the FAT file system does not support a creation
time, so this field is set to zero.

FileInformation Format by File Information Class

FileBasicInformation - Data type is FILE_BASIC_INFORMATION.

typedef struct _FILE_BASIC_INFORMATION {
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 48

ULONG FileAttributes;
} FILE_BASIC_INFORMATION;

Field Description
CreationTime Date/time that the file was created
LastAccessTime Date/time that the file was last accessed
LastWriteTime Date/time that the file was last written
ChangeTime Date/time that the file was last changed
FileAttributes Attributes of the file

All dates and times are returned in the standard Windows NT system-time
format.

The file attributes field can be a combination of the following flags:

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

Note that the FILE_ATTRIBUTE_NORMAL attribute will never be returned in
combination with any other attributes, as all other attributes override this
attribute. Also see the NtQueryAttributesFile service description.

FileStandardInformation - Data type is FILE_STANDARD_INFORMATION.

typedef struct _FILE_STANDARD_INFORMATION {
LARGE_INTEGER AllocationSize;
LARGE_INTEGER EndOfFile;
DEVICE_TYPE DeviceType;
ULONG NumberOfLinks;
BOOLEAN DeletePending;
BOOLEAN Directory;

} FILE_STANDARD_INFORMATION;

Field Description
AllocationSize Allocated size of the file in bytes
EndOfFile Offset to the first free byte in the file
DeviceType Device type code
NumberOfLinks Number of hard links to the file
DeletePending Indicates whether the file is marked for deletion
Directory Indicates whether the file is a directory

The end of file field specifies the byte offset to the end of the file. Note that
because this value is zero-based, it actually refers to the first free byte in the
file; that is, it is the offset to the next byte after the last valid byte in the file.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 49

Device types have the following valid values:

FILE_DEVICE_BATTERY
FILE_DEVICE_BEEP
FILE_DEVICE_BUS_EXTENDER
FILE_DEVICE_CD_ROM
FILE_DEVICE_CD_ROM_FILE_SYSTEM
FILE_DEVICE_CONTROLLER
FILE_DEVICE_DATALINK
FILE_DEVICE_DFS
FILE_DEVICE_DISK
FILE_DEVICE_DISK_FILE_SYSTEM
FILE_DEVICE_FILE_SYSTEM
FILE_DEVICE_INPORT_PORT
FILE_DEVICE_KEYBOARD
FILE_DEVICE_MAILSLOT
FILE_DEVICE_MIDI_IN
FILE_DEVICE_MIDI_OUT
FILE_DEVICE_MOUSE
FILE_DEVICE_MULTI_UNC_PROVIDER
FILE_DEVICE_NAMED_PIPE
FILE_DEVICE_NETWORK
FILE_DEVICE_NETWORK_BROWSER
FILE_DEVICE_NETWORK_FILE_SYSTEM
FILE_DEVICE_NETWORK_REDIRECTOR
FILE_DEVICE_NULL
FILE_DEVICE_PARALLEL_PORT
FILE_DEVICE_PHYSICAL_NETCARD
FILE_DEVICE_PRINTER
FILE_DEVICE_SCANNER
FILE_DEVICE_SCREEN
FILE_DEVICE_SERIAL_MOUSE_PORT
FILE_DEVICE_SERIAL_PORT
FILE_DEVICE_SOUND
FILE_DEVICE_STREAMS
FILE_DEVICE_TAPE
FILE_DEVICE_TAPE_FILE_SYSTEM
FILE_DEVICE_TRANSPORT
FILE_DEVICE_UNKNOWN
FILE_DEVICE_VIDEO
FILE_DEVICE_VIRTUAL_DISK
FILE_DEVICE_WAVE_IN
FILE_DEVICE_WAVE_OUT
FILE_DEVICE_8042_PORT

No specific access is required to obtain this information about the file; that is,
this information is obtainable as long as the file is open.

FileInternalInformation - Data type is FILE_INTERNAL_INFORMATION.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 50

typedef struct _FILE_INTERNAL_INFORMATION {
LARGE_INTEGER IndexNumber;

} FILE_INTERNAL_INFORMATION;

Field Description
IndexNumber A file system unique file identifier

No specific access to the file is required to obtain this information about the file;
that is, this information is obtainable as long as the file is open.

FileEaInformation - Data type is FILE_EA_INFORMATION.

typedef struct _FILE_EA_INFORMATION {
ULONG EaSize;

} FILE_EA_INFORMATION;

Field Description
EaSize Size of file's extended attributes in bytes

No specific access to the file is required to obtain this information about the file;
that is, this information is obtainable as long as the file is open.

FileAccessInformation - Data type is FILE_ACCESS_INFORMATION.

typedef struct _FILE_ACCESS_INFORMATION {
ACCESS_MASK AccessFlags;

} FILE_ACCESS_INFORMATION;

Field Description
AccessFlags Access that the caller has to the file

The valid flags that may be set in the AccessFlags field are as follows:

SYNCHRONIZE
DELETE
READ_CONTROL
WRITE_DAC
WRITE_OWNER
FILE_READ_EA
FILE_WRITE_EA
FILE_READ_ATTRIBUTES
FILE_WRITE_ATTRIBUTES
FILE_READ_DATA
FILE_WRITE_DATA
FILE_EXECUTE
FILE_APPEND_DATA

If the file is a directory, then the FILE_READ_DATA through
FILE_APPEND_DATA flags are invalid. They are replaced by the following
valid values:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 51

FILE_LIST_DIRECTORY
FILE_TRAVERSE

No specific access to the file is required to obtain this information about the file;
that is, this information is available as long as the file is open.

FileNameInformation - Data type is FILE_NAME_INFORMATION.

typedef struct _FILE_NAME_INFORMATION {
ULONG FileNameLength;
WCHAR FileName[];

} FILE_NAME_INFORMATION;

Field Description
FileNameLength Length of the file name in bytes
FileName Name of the file

No specific access to the file is required to obtain this information about the file;
that is, this information is available as long as the file is open.

FilePositionInformation - Data type is FILE_POSITION_INFORMATION.

typedef struct _FILE_POSITION_INFORMATION {
LARGE_INTEGER CurrentByteOffset;

} FILE_POSITION_INFORMATION;

Field Description
CurrentByteOffset Current byte offset within the file

In order for the information to be valid, the file must have been opened or
created specifying synchronous I/O.

FILE_READ_DATA or FILE_WRITE_DATA access to the file is required to
obtain this information about the file.

FileModeInformation - Data type is FILE_MODE_INFORMATION.

typedef struct _FILE_MODE_INFORMATION {
ULONG Mode;

} FILE_MODE_INFORMATION;

Field Description
Mode Current open mode of file handle to the file

The mode flags that may be returned are as follows:

FILE_WRITE_THROUGH
FILE_SEQUENTIAL_ONLY
FILE_NO_INTERMEDIATE_BUFFERING
FILE_SYNCHRONOUS_IO_ALERT

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 52

FILE_SYNCHRONOUS_IO_NONALERT
FILE_DELETE_ON_CLOSE

Note that only one of the synchronous I/O flags will be returned.

No specific access to the file is required to obtain this information about the file;
that is, this information is available as long as the file is open.

FileAlignmentInformation - Data type is FILE_ALIGNMENT_INFORMATION.

typedef struct _FILE_ALIGNMENT_INFORMATION {
ULONG AlignmentRequirement;

} FILE_ALIGNMENT_INFORMATION;

Field Description
AlignmentRequirement Buffer alignment required by device

The value of this field is one of the following:

FILE_BYTE_ALIGNMENT
FILE_WORD_ALIGNMENT
FILE_LONG_ALIGNMENT
FILE_QUAD_ALIGNMENT
FILE_OCTA_ALIGNMENT
FILE_32_BYTE_ALIGNMENT
FILE_64_BYTE_ALIGNMENT
FILE_128_BYTE_ALIGNMENT
FILE_256_BYTE_ALIGNMENT
FILE_512_BYTE_ALIGNMENT

No specific access to the file is required to obtain this information about the file;
that is, this information is available as long as the file is open.

FileAllInformation - Data type is FILE_ALL_INFORMATION.

typedef struct _FILE_ALL_INFORMATION {
FILE_BASIC_INFORMATION BasicInformation;
FILE_STANDARD_INFORMATION StandardInformation;
FILE_INTERNAL_INFORMATION InternalInformation;
FILE_EA_INFORMATION EaInformation;
FILE_ACCESS_INFORMATION AccessInformation;
FILE_POSITION_INFORMATION PositionInformation;
FILE_MODE_INFORMATION ModeInformation;
FILE_ALIGNMENT_INFORMATION AlignmentInformation;
FILE_NAME_INFORMATION NameInformation;

} FILE_ALL_INFORMATION;

Field Description
BasicInformation Basic information
StandardInformation Standard information
InternalInformation Internal information

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 53

EaInformation Extended attributes size information
AccessInformation Access information
PositionInformation Current position information
ModeInformation Mode information
AlignmentInformation Alignment requirement information
NameInformation File name information

Notice that the position information will be valid only if the file was opened or
created using one of the synchronous I/O options.

FILE_READ_ATTRIBUTES access to the file is required to obtain this
information. If the file was opened for synchronous I/O, then the position
information will only be valid if the accessor has either FILE_READ_DATA or
FILE_WRITE_DATA access to the file.

FileAlternateNameInformation - Data type is FILE_NAME_INFORMATION.

typedef struct _FILE_NAME_INFORMATION {
ULONG FileNameLength;
WCHAR FileName[];

} FILE_NAME_INFORMATION;

Field Description
FileNameLength Length of the file name in bytes
FileName Name of the file

No specific access to the file is required to obtain this information about the file;
that is, this information is available as long as the file is open. Note that some
files do not have alternate names.

FileStreamInformation - Data type is FILE_STREAM_INFORMATION.

typedef struct _FILE_STREAM_INFORMATION {
ULONG NextEntryOffset;
ULONG StreamNameLength;
LARGE_INTEGER StreamSize;
LARGE_INTEGER StreamAllocationSize;
WCHAR StreamName;

} FILE_STREAM_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
StreamNameLength Length of the name of the stream in bytes
StreamSize Size of the stream
StreamAllocationSize Allocation size of the stream
StreamName Name of the stream

No specific access to the file is required to obtain this information about the file;
that is, this information is obtainable as long as the file is open.

FileCompressionInformation - Data type is FILE_COMPRESSION_INFORMATION.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 54

typedef struct _FILE_COMPRESSION_INFORMATION {
LARGE_INTEGER CompressedFileSize;
USHORT CompressionFormat;

} FILE_COMPRESSION_INFORMATION;

Field Description
CompressedFileSize Size of the compressed file in bytes
CompressionFormat Compression algorithm code

No specific access to the file is required to obtain this information about the file;
that is, this information is available as long as the file is open. Note that if the
file is not compressed, then the CompressionFormat field is set to zero.

FileOleInformation - Data type is FILE_OLE_INFORMATION.

typedef struct _FILE_OLE_INFORMATION {
FILE_OLE_CLASSID_INFORMATION OleClassIdInformation;
FILE_OBJECTID_INFORMATION ObjectIdInformation;
FILE_STORAGE_TYPE StorageType;
ULONG OleStateBits;
BOOLEAN ApplicationIsExplorable;
BOOLEAN ApplicationHasExplorableChildren;
BOOLEAN ContentIndexDisable;
BOOLEAN InheritContentIndexDisable;

} FILE_OLE_INFORMATION;

Field Description
OleClassIdInformation OLE class ID for the file
ObjectIdInformation Object ID for the file
OleStateBits OLE state bits for file
ApplicationIsExplorable Application-defined notion of
explorability
ApplicationHasExplorableChildren Application-defined notion of children’s
explorability
ContentIndexDisable Enable/disable content indexing
InheritContentIndexDisable Enable/disable content indexing of children

The possible values for the storage type field are defined by the
FILE_STORAGE_TYPE enumerated type:

typedef enum _FILE_STORAGE_TYPE {
StorageTypeDirectory,
StorageTypeFile,
StorageTypeDocfile,
StorageTypeJunctionPoint,
StorageTypeCatalog,
StorageTypeStructuredStorage,
StorageTypeEmbedding,
StorageTypeStream

} FILE_STORAGE_TYPE;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 55

FILE_READ_ATTRIBUTES access to the file is required to obtain this
information.

FileOleAllInformation - Data type is FILE_OLE_ALL_INFORMATION.

typedef struct _FILE_OLE_ALL_INFORMATION {
FILE_BASIC_INFORMATION BasicInformation;
FILE_STANDARD_INFORMATION StandardInformation;
FILE_INTERNAL_INFORMATION InternalInformation;
FILE_EA_INFORMATION EaInformation;
FILE_ACCESS_INFORMATION AccessInformation;
FILE_POSITION_INFORMATION PositionInformation;
FILE_MODE_INFORMATION ModeInformation;
FILE_ALIGNMENT_INFORMATION AlignmentInformation;
USN Usn;
FILE_OLE_CLASSID_INFORMATION OleClassIdInformation;
FILE_OBJECTID_INFORMATION ObjectIdInformation;
FILE_STORAGE_TYPE StorageType;
ULONG OleStateBits;
ULONG OleId;
ULONG NumberOfStreamReferences;
ULONG StreamIndex;
BOOLEAN IsExplorable;
BOOLEAN HasExplorableChildren;
BOOLEAN ApplicationExplorable;
BOOLEAN ApplicationHasExplorableChildren;
BOOLEAN ContentIndexDisable;
BOOLEAN InheritContentIndexDisable;
FILE_NAME_INFORMATION NameInformation;

} FILE_OLE_ALL_INFORMATION;

Field Description
BasicInformation Basic information
StandardInformation Standard information
InternalInformation Internal information
EaInformation Extended attributes size information
AccessInformation Access information
PositionInformation Current position information
ModeInformation Mode information
AlignmentInformation Alignment requirement information
Usn Update sequence number
OleClassIdInformation OLE Class ID for the file
ObjectIdInformation Object ID for the file
StorageType Storage type of the file
OleStateBits OLE state flags
OleId OLE ID for the file
NumberOfStreamReferences Reference count for the stream
StreamIndex Volume index for this stream
IsExplorable Indicates whether the file is
explorable

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 56

HasExplorableChildren Indicates whether the file has explorable
children
ApplicationExplorable Application version of explorable
ApplicationHasExplorableChildren Application version of explorable children
ContentIndexDisable Indicates whether content indexing is
disabled
InheritContextIndexDisable Indicates whether CI disable state is
inherited
NameInformation File name information

The possible values for the storage type field are defined by the
FILE_STORAGE_TYPE enumerated type:

typedef enum _FILE_STORAGE_TYPE {
StorageTypeDirectory,
StorageTypeFile,
StorageTypeDocfile,
StorageTypeJunctionPoint,
StorageTypeCatalog,
StorageTypeStructuredStorage,
StorageTypeEmbedding,
StorageTypeStream

} FILE_STORAGE_TYPE;

Notice that the position information will be valid only if the file was opened or
created using one of the synchronous I/O options.

FILE_READ_ATTRIBUTES access to the file is required to obtain this
information. If the file was opened for synchronous I/O, then the position
information will only be valid if the accessor has either FILE_READ_DATA or
FILE_WRITE_DATA access to the file.

Once the information about the file has been returned, the caller can determine how
much information was actually returned by examining the Information field of the
IoStatusBlock variable.

3.4.2 Changing Information about a File

The information about a file may be changed using the NtSetInformationFile service:

NTSTATUS
NtSetInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID FileInformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FileInformationClass
);

Parameters:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 57

FileHandle - A handle to an open file.

IoStatusBlock - A variable to receive the final completion status. For more
information about this parameter see the NtCreateFile system service
description.

FileInformation - A pointer to a buffer that contains the information about the
file to be changed. The contents of this buffer are defined by the
FileInformationClass parameter described below.

Length - The length of the FileInformation buffer in bytes.

FileInformationClass - Specifies the type of information that is contained in the
FileInformation buffer. The type of information in the buffer is defined by
the following type codes.

FileInformationClass Values

FileBasicInformation - Changes the basic information about the specified
file. FILE_WRITE_ATTRIBUTES access to the file is required to
perform this operation.

FileRenameInformation - Specifies that the name of the file should be
changed to a new name. The caller must be able to remove the
directory entry for the file in the current directory and therefore
DELETE access is required to the file. The caller must also be able
to write to the new parent directory. See the notes below for
further information.

FileLinkInformation - Specifies that a new link be added for the file. The
caller must be able to write to the new directory file. See the notes
below for further information.

FileDispositionInformation - Specifies that the file should be marked for
delete. Once all of the handles to the file have been closed, if the
link count for the file is zero, then the file is deleted. Even if the
link count is nonzero, at least the directory entry will be deleted.
DELETE access to the file is required to perform this operation.
Also see the NtDeleteFile service description.

FilePositionInformation - Specifies a new byte offset as the current
position in the file. FILE_READ_DATA or FILE_WRITE_DATA
access to the file is required to perform this operation. The file
must also have been opened or created using one of the
synchronous I/O options.

FileModeInformation - Specifies that a new mode for the specified handle
be set. See the notes below for further information.

FileAllocationInformation - Truncates or extends the allocated size of the
file. FILE_WRITE_DATA access to the file is required to perform

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 58

this operation. Note that truncating the allocation size of the file
may affect the end of file mark for the file as well.

FileEndOfFileInformation - Truncates or extends the amount of valid data
in the file by moving the current end of file. FILE_WRITE_DATA
access to the file is required to perform this operation.

FileCopyOnWrite - Links two streams together until such time as one is
written. No specific access right is required to set this information
on the file; that is, it is possible to change this information about
the file as long as the caller has a valid handle.

FileCompletionInformation - Associates an I/O completion object with the
specified file object. This allows synchronization of I/O request
completions through the use of an I/O completion object.

FileMoveClusterInformation - Moves data from one file to the end of
another file. FILE_WRITE_DATA access to the file is required to
peform this operation

FileOleClassIdInformation - Sets the OLE class ID for the file.
FILE_WRITE_ATTRIBUTES access to the file is required to perform
this operation.

FileOleStateBitsInformation - Sets the OLE state bits for the file.
FILE_WRITE_ATTRIBUTES access to the file is required to perform
this operation.

FileApplicationExplorableInformation - Changes the application view of
whether or not the object is explorable.
FILE_WRITE_ATTRIBUTES access to the file is required to perform
this operation.

FileApplicationExplorableChildrenInformation - Changes the application
view of whether or not the object has explorable children.
FILE_WRITE_ATTRIBUTES access to the file is required to perform
this operation.

FileObjectIdInformation - Changes the object ID for the file.
FILE_WRITE_ATTRIBUTES access to the file is required to perform
this operation.

FileContextIndexInformation - Changes whether or not the file is to be
content indexed. FILE_WRITE_ATTRIBUTES access to the file is
required to perform this operation.

FileInheritContentIndexInformation - Changes whether or not the children
of this file are to be content indexed. FILE_WRITE_ATTRIBUTES
access to the file is required to perform this operation.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 59

FileOleInformation - Change the OLE information about the file.
FILE_WRITE_ATTRIBUTES access to the file is required to perform
this operation.

The NtSetInformationFile service changes information about a file. The information
in the buffer is defined by the following type and structure. Note that the fields that
are not supported for a given device or file system are ignored. For example, the FAT
file system does not support a creation time, so this field is ignored on an
NtSetInformationFile service call.

FileInformation Format by File Information Class

FileBasicInformation - Data type is FILE_BASIC_INFORMATION.

typedef struct _FILE_BASIC_INFORMATION {
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
ULONG FileAttributes;

} FILE_BASIC_INFORMATION;

Field Description
CreationTime Date/time that the file was created
LastAccessTime Date/time that the file was last accessed
LastWriteTime Date/time that the file was last written
ChangeTime Date/time that the file was last changed
FileAttributes Attributes of the file

All dates and times are specified in the standard Windows NT system time
format.

The file attributes field can be a combination of the following values:

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

Note that the FILE_ATTRIBUTE_NORMAL attribute is overridden by all other
file attributes flags.

If a field is set to zero, NtSetInformationFile does not change the information
about the file for that field.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 60

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation.

FileRenameInformation - Data type is FILE_RENAME_INFORMATION.

typedef struct _FILE_RENAME_INFORMATION {
BOOLEAN ReplaceIfExists;
HANDLE RootDirectory;
ULONG FileNameLength;
WCHAR FileName[];

} FILE_RENAME_INFORMATION;

Field Description
ReplaceIfExists Replace target file if it exists; else fail
RootDirectory Root directory of target file name
FileNameLength Length of the file name in bytes
FileName Name of the file

This operation requires DELETE access to the current file so that the directory
entry may be removed from the current parent directory. The caller must also
have the appropriate access to create the new entry in the new parent directory
file.

The file name may be specified in one of three different ways. No wildcards
may ever be specified.

o - A simple file name. For this case, the file is simply renamed within the
same directory. That is, the name of the file changes but not its location.

o - A fully qualified file name. In this case, the file changes not only its
name but its location as well.

o - A relative file name. In this case, the RootDirectory field contains a
handle to the target directory for the rename operation. The file name
itself must be a simple file name.

FileDispositionInformation - Data type is FILE_DISPOSITION_INFORMATION.

typedef struct _FILE_DISPOSITION_INFORMATION {
BOOLEAN DeleteFile;

} FILE_DISPOSITION_INFORMATION;

Field Description
DeleteFile Delete the file on close

DELETE access to the file is required to perform this operation.

It should be noted that if the file is deleted, the only legal subsequent operation
on the file through the open file handle is to close the file using the NtClose
system service.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 61

Also see the NtDeleteFile service description.

FileLinkInformation - Data type is FILE_NAME_INFORMATION.

typedef struct _FILE_NAME_INFORMATION {
ULONG FileNameLength;
WCHAR FileName[];

} FILE_NAME_INFORMATION;

Field Description
FileNameLength Length of the file name in bytes
FileName Name of the file

No specific access to the file is required to add a link to the file, the file must
simply be open. However, the caller must be able to create the new link in the
specified target directory.

The file name must be a fully qualified file specification.

FilePositionInformation - Data type is FILE_POSITION_INFORMATION.

typedef struct _FILE_POSITION_INFORMATION {
LARGE_INTEGER CurrentByteOffset;

} FILE_POSITION_INFORMATION;

Field Description
CurrentByteOffset Current byte offset within the file

If the file was opened or created with no intermediate buffering, then the new
value of the byte offset must be an integral number of 512 bytes.

FILE_READ_DATA or FILE_WRITE_DATA access to the file is required to
change this information about the file, and the file must be opened for
synchronous I/O.

FileModeInformation - Data type is FILE_MODE_INFORMATION.

typedef struct _FILE_MODE_INFORMATION {
ULONG Mode;

} FILE_MODE_INFORMATION;

Field Description
Mode Current open mode of file handle to the file

The mode flags that may be changed are as follows:

FILE_WRITE_THROUGH
FILE_SEQUENTIAL_ONLY
FILE_SYNCHRONOUS_IO_ALERT
FILE_SYNCHRONOUS_IO_NONALERT

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 62

Note that it is only possible to switch between the two different types of
synchronous I/O. It is not possible to either switch to or from synchronous I/O,
nor is it possible to specify both types.

If the file has been opened with intermediate buffering disabled, the
FILE_WRITE_THROUGH flag cannot be turned off. That is, it is forced on by the
I/O system. This flag is ignored on a set operation in this case.

Users should be aware that changing this information about the file also
changes the access mode for all handles referring to the same file object. That
is, all handles referring to the object that are duplicated or inherited are also
affected by this access change.

No specific access to the file is required to change this information about the
file; that is, this information is available as long as the file is open.

FileAllocationInformation - Data type is FILE_ALLOCATION_INFORMATION.

typedef struct _FILE_ALLOCATION_INFORMATION {
LARGE_INTEGER AllocationSize;

} FILE_ALLOCATION_INFORMATION;

Field Description
AllocationSize The absolute allocation size of the file in bytes

FILE_WRITE_DATA access to the file is required to perform this operation.
Setting the allocation size of the file to some number of bytes less than the
current end of file mark causes the current end of file mark to be moved to the
end of the allocated size of the file.

FileEndOfFileInformation - Data type is FILE_END_OF_FILE_INFORMATION.

typedef struct _FILE_END_OF_FILE_INFORMATION {
LARGE_INTEGER EndOfFile;

} FILE_END_OF_FILE_INFORMATION;

Field Description
EndOfFile The absolute new end of file position

Extending the file beyond the current end of file causes pad bytes of zeroes to
be written to the new intermediate bytes.

FILE_WRITE_DATA access to the file is required to perform this operation.

FileCopyOnWrite - Data type is FILE_COPY_ON_WRITE_INFORMATION.

typedef struct _FILE_COPY_ON_WRITE_INFORMATION {
BOOLEAN ReplaceIfExists;
HANDLE RootDirectory;
ULONG FileNameLength;
WCHAR FileName[];

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 63

} FILE_COPY_ON_WRITE_INFORMATION;

Field Description
ReplaceIfExists Replace the target if it exists, else fail
RootDirectory Root directory of target file name
FileNameLength Length of the file name in bytes
FileName Name of the file

No specific access to the file is required to change this information about the
file; that is, it is possible to change this information about the file as long as the
caller has a valid handle to the file.

FileCompletionInformation - Data type is FILE_COMPLETION_INFORMATION.

typedef struct _FILE_COMPLETION_INFORMATION {
HANDLE Port;
ULONG Key;

} FILE_COMPLETION_INFORMATION;

Field Description
Port Handle to the I/O completion object to associate with the file
Key Caller-defined value to be associated with this completion
object

No specific access to the file is required to change this information about the
file; that is, it is possible to change this information about the file as long as the
caller has a valid handle to the file.

FileMoveClusterInformation - Data type is FILE_MOVE_CLUSTER_INFORMATION.

typedef struct _FILE_MOVE_CLUSTER_INFORMATION {
ULONG ClusterCount;
HANDLE RootDirectory;
ULONG FileNameLength;
WCHAR FileName[];

} FILE_MOVE_CLUSTER_INFORMATION;

Field Description
ClusterCount Count of clusters to be moved
RootDirectory Root directory of target file name
FileNameLength Length of the file name in bytes
FileName File name of the target

FILE_WRITE_DATA access to the file is required to perform this operation.
Setting the move cluster information on a file causes moves ClusterCount
clusters to the end of the specified target file.

FileOleClassIdInformation - Data type is FILE_OLE_CLASS_ID_INFORMATION.

typedef struct _FILE_OLE_CLASS_ID_INFORMATION {
GUID ClassId;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 64

} FILE_OLE_CLASS_ID_INFORMATION;

Field Description
ClassId ID of the code that understands this file’s format

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation. Setting the OLE class ID on a file changes the association of
application to the file.

FileOleStateBitsInformation - Data type is FILE_OLE_STATE_BITS_INFORMATION.

typedef struct _FILE_OLE_STATE_BITS_INFORMATION {
ULONG StateBits;
ULONG StateBitsMask;

} FILE_OLE_STATE_BITS_INFORMATION;

Field Description
StateBits OLE state bit information
StateBitsMask Mask to be applied to state bits

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation. Setting the OLE state bits on a file changes the value of the file’s state
bits. The state bits are treated as opaque data to the file system with the
exception of the FILE_ENABLE_DOCFILE_FORMAT bit which causes a document
file to be treated as a single stream rather than as separately addressible
streams.

FileApplicationExplorableInformation - Data type is BOOLEAN.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation. Setting the BOOLEAN flag indicates that the application believes that
the object represented by the file handle is explorable.

FileApplicationExplorableChildrenInformation - Data type is BOOLEAN.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation. Setting the BOOLEAN flag indicates that the application believes that
the object represented by the file handle has explorable children.

FileObjectIdInformation - Data type is FILE_OBJECT_ID_INFORMATION.

typedef struct _FILE_OBJECT_ID_INFORMATION {
OBJECTID ObjectId;

} FILE_OBJECT_ID_INFORMATION;

Field Description
ObjectId Object ID for the file

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation. Setting the Object ID for a file changes the unique ID for the file on
the volume.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 65

FileContextIndexInformation - Data type is BOOLEAN.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation. Setting the BOOLEAN flag disables content indexing for the file.

FileInheritContentIndexInformation - Data type is BOOLEAN.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation. Setting the BOOLEAN flag disables content indexing for the children
of the file.

FileOleInformation - Data type is FILE_OLE_INFORMATION.

typedef struct _FILE_OLE_INFORMATION {
FILE_OLE_CLASSID_INFORMATION OleClassIdInformation;
FILE_OBJECTID_INFORMATION ObjectIdInformation;
FILE_STORAGE_TYPE StorageType;
ULONG OleStateBits;
BOOLEAN ApplicationIsExplorable;
BOOLEAN ApplicationHasExplorableChildren;
BOOLEAN ContentIndexDisable;
BOOLEAN InheritContentIndexDisable;

} FILE_OLE_INFORMATION;

Field Description
OleClassIdInformation OLE class ID for the file
ObjectIdInformation Object ID for the file
OleStateBits OLE state bits for file
ApplicationIsExplorable Application-defined notion of
explorability
ApplicationHasExplorableChildren Application-defined notion of children’s
explorability
ContentIndexDisable Enable/disable content indexing
InheritContentIndexDisable Enable/disable content indexing of children

The possible values for the storage type field are defined by the
FILE_STORAGE_TYPE enumerated type:

typedef enum _FILE_STORAGE_TYPE {
StorageTypeDirectory,
StorageTypeFile,
StorageTypeDocfile,
StorageTypeJunctionPoint,
StorageTypeCatalog,
StorageTypeStructuredStorage,
StorageTypeEmbedding,
StorageTypeStream

} FILE_STORAGE_TYPE;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 66

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation.

3.4.3 Obtaining Extended Attributes for a File

The extended attributes for a file may be obtained using the NtQueryEaFile service:

NTSTATUS
NtQueryEaFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN BOOLEAN ReturnSingleEntry,
IN PVOID EaList OPTIONAL,
IN ULONG EaListLength,
IN PULONG EaIndex OPTIONAL,
IN BOOLEAN RestartScan
);

Parameters:

FileHandle - A handle to an open file.

IoStatusBlock - A variable to receive the final completion status and information
about the operation. The length, in bytes, that were written to the Buffer
is returned in the Information field of this variable. For more
information about this parameter see the NtCreateFile system service
description.

Buffer - A pointer to a buffer to receive extended attributes for the file.

Length - The length of the specified buffer in bytes.

ReturnSingleEntry - A BOOLEAN value that, if TRUE, indicates that only a single
entry should be returned.

EaList - An optional list of extended attributes whose name/value pair is
returned in the Buffer. If this parameter is supplied, only those EAs
matching the names of the EAs in the list are returned.

EaListLength - Supplies the length of the EaList, if one was specified. If no
EaList was specified, this parameter should be zero.

EaIndex - An optional index to an EA whose name/value pair is to be returned.
The buffer is filled beginning with the EA associated with the index value.

RestartScan - A BOOLEAN value that indicates, if TRUE, that the scan should be
restarted from the beginning. This causes the query operation to restart
the scan from the beginning of the extended attributes list.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 67

The NtQueryEaFile function obtains extended attributes for the file represented by
the file handle. Only complete extended attribute name/value pairs are returned. No
partial attribute, such as only the name, is ever written into the buffer. The actual
number of EAs returned is the smallest of the following:

o - One entry, if the ReturnSingleEntry parameter is TRUE.

o - The number of EAs that fit into the specified buffer.

o - The number of EAs that exist, or the number of EAs that match the list of EAs
supplied by the optional EaList parameter.

NtQueryEaFile may be invoked multiple times to fill the buffer with EAs from the file.
It is possible that the EAs for the file were modified between calls to get more EAs.
Due to the sharing semantics defined by OS/2, with which this API is compatible, it is
not possible to guarantee that the EAs were not modified.

If the optional EaList parameter is specified, then only the information for those EAs
specified in the list is returned. Further, if this parameter is specified, then the
EaIndex parameter is ignored.

The EaIndex parameter may optionally be specified to return EAs on the file beginning
with an EA other than the first EA in the list.

If multiple EAs are returned, then the structure for each EA in the buffer will be
aligned on a longword boundary. Each EA in the list begins with a NextEntryOffset
field that specifies the number of bytes from the base of the current entry to the start
of the next entry. If there are no more entries following the current entry, then the
value of this field is zero.

The information that is returned in the Buffer is defined by the following structure:

typedef struct _FILE_FULL_EA_INFORMATION {
ULONG NextEntryOffset;
UCHAR Flags;
UCHAR EaNameLength;
USHORT EaValueLength;
CHAR EaName[];

} FILE_FULL_EA_INFORMATION;

Field Description
NextEntryOffset Offset, in bytes, to the next entry in the list
Flags Flags to be associated with the EA
EaNameLength Length of the EA's name field
EaValueLength Length of the EA's value field
EaName The name of the EA

The flags currently defined for EAs are:

FILE_NEED_EA

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 68

The value field begins after the end of the EaName field of the structure, including a
single null character. The null character is not included in the EaNameLength field.

The value of the EA can be located then, by adding the length of the EA name to the
address of the EaName field, and adding one.

The type of the EaList parameter is defined by the following structure:

typedef struct _FILE_GET_EA_INFORMATION {
ULONG NextEntryOffset;
UCHAR EaNameLength;
CHAR EaName[];

} FILE_GET_EA_INFORMATION;

Field Description
NextEntryOffset Offset, in bytes, to the next entry in the list
EaNameLength Length of the EA's name field
EaName The name of the EA to be retrieved

The NextEntryOffset field, like its FILE_FULL_EA_INFORMATION counterpart, is the
offset in bytes from the current entry in the list to the start of the next entry, if there is
one. If there are no more entries in the list, then the value of this field is zero.

The EaList parameter defines the list of the EAs whose information is to be returned.
This selects a proper subset of the EAs and only those EAs are returned.

FILE_READ_EA access to the file is required in order to obtain information about the
extended attributes associated with the file.

If an error, such as an invalid character is found in an EA name field, is encountered,
then the Information field in the I/O status block contains the byte offset from the base
of the Buffer to the offending EA entry that caused the failure.

Once extended attributes for the file have been written to the Buffer, the Information
field of the IoStatusBlock variable can be examined to determine how many bytes of
extended attributes information were actually returned.

3.4.4 Changing Extended Attributes for a File

The extended attributes associated with a file may be changed using the NtSetEaFile
service:

NTSTATUS
NtSetEaFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID Buffer,
IN ULONG Length
);

Parameters:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 69

FileHandle - A handle to an open file.

IoStatusBlock - A variable to receive the final completion status. For more
information about this parameter see the NtCreateFile system service
description.

Buffer - A pointer to a buffer that contains the extended attributes to be applied
to the file.

Length - The length of the specified buffer in bytes.

The NtSetEaFile service changes the extended attributes on the file using the EAs
specified by the Buffer parameter.

The information specified by the Buffer parameter is defined by the following
structure.

typedef struct _FILE_FULL_EA_INFORMATION {
ULONG NextEntryOffset;
UCHAR Flags;
UCHAR EaNameLength;
USHORT EaValueLength;
CHAR EaName[];

} FILE_FULL_EA_INFORMATION;

Field Description
NextEntryOffset Offset, in bytes, to the next entry in the list
Flags Flags to be associated with the EA
EaNameLength Length of the EA's name field
EaValueLength Length of the EA's value field
EaName The name of the EA

The flags currently defined for EAs are:

FILE_NEED_EA

The value field begins after the end of the EaName field of the structure, including a
single null character. The null character is not included in the EaNameLength field.

If multiple EAs are contained in the buffer, then the structure for each entry is
longword aligned. The NextEntryOffset field contains the byte offset to the start of the
next entry in the buffer. If there are no more entries past the current entry, then this
field is zero.

EAs are applied to the file such that if the EA does not exist, then it is added. If the EA
does exist, it is replaced. An entry whose EaValueLength field is zero indicates that
the EA whose name matches the entry is to be deleted from the list of EAs on the file.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 70

If an error occurs changing the EAs on the file, then the Information field in the I/O
status block contains the byte offset from the base of the Buffer to the offending EA
entry that caused the failure.

FILE_WRITE_EA access to the file is required in order to change the extended
attributes associated with the file.

3.4.5 Locking Byte Ranges in Files

A byte range within a file may be locked using the NtLockFile service:

NTSTATUS
NtLockFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PLARGE_INTEGER ByteOffset,
IN PLARGE_INTEGERLength,
IN ULONG Key,
IN BOOLEAN FailImmediately,
IN BOOLEAN ExclusiveLock
);

Parameters:

FileHandle - A handle to an open file.

Event - An optional handle to an event to be set to the Signaled state when the
operation completes.

ApcRoutine - An optional procedure to be invoked once the operation
completes. For more information about this parameter see the
NtReadFile system service description

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was
specified, when the operation completes. This argument is required if an
ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status. For more
information about this parameter see the NtCreateFile system service
description.

ByteOffset - Specifies the starting byte offset of the file where the lock should
begin.

Length - The length of the byte range to lock, in bytes.

Key - A value to be associated with the lock range for further identification.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 71

FailImmediately - A BOOLEAN value that indicates whether the service will
return immediately if the lock cannot be obtained (TRUE), or whether the
service will wait indefinitely until the lock is acquired (FALSE).

ExclusiveLock - A BOOLEAN value that indicates the type of lock that is applied
to the byte range. If the value is TRUE, then the lock is exclusive;
otherwise, the lock is shared.

The NtLockFile service is used to lock the specified byte range for the file. The range
locked is for the specified file, and is controlled by the following:

o - the ByteOffset of the file

o - the Length of the byte range

o - the Key value associated with the byte range

o - the invoking process

Locks are not inherited by child processes when they are created. They are owned by
the process that acquired the lock. Locks may be manipulated and "owned" by
separate threads within a process as thread-specific locks by specifying non-zero
values for the Key parameter in each thread.

There are two types of locks on files, shared and exclusive. A shared lock allows read-
only access by any process attempting to read the locked range, including the owning
process. Shared locks may also overlap. Exclusive locks allow read/write access by
only the owning process and by access to any other process. Exclusive locks may not
overlap either shared locks or other exclusive locks.

Locks owned by a given process are unlocked once all of the handles to the specified
file have been closed by that process. The locks are not released in any particular
order.

It is not an error to specify a range that either spans or even begins after the end of
the file. These types of locks can be used to synchronize access to the end of the file or
for appending data to the file.

FILE_READ_DATA or FILE_WRITE_DATA access is required to the file to request a
lock.

3.4.6 Unlocking Byte Ranges in Files

A byte range within a file may be unlocked using the NtUnlockFile service:

NTSTATUS
NtUnlockFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PLARGE_INTEGER ByteOffset,
IN PLARGE_INTEGER Length,

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 72

IN ULONG Key
);

Parameters:

FileHandle - A handle to an open file.

IoStatusBlock - A variable to receive the final completion status. For more
information about this parameter see the NtCreateFile system service
description.

ByteOffset - The byte offset of the file whose corresponding lock is released.
This value must exactly match the byte offset of the lock.

Length - The length of the locked byte range that is released. This value must
exactly match the length of the lock.

Key - The value associated with the lock range for further identification. This
value must exactly match the key of the lock.

The NtUnlockFile service is used to unlock the specified byte range for the file. The
lock parameters must exactly match those of the acquired lock. If the parameters
exactly match those of the locked range, then the lock is released.

Only the process that owns the lock may unlock the byte range.

3.5 File System Services

This section presents those services that obtain information about file systems and
control them.

The APIs that perform these functions are as follows:

NtQueryVolumeInformationFile - Obtain information about a file system
volume.

NtSetVolumeInformationFile - Change information about a file system
volume.

NtQueryQuotaInformationFile Obtain quota information about a file system
volume.

NtSetQuotaInformationFile - Change quota information about a file system
volume.

NtFsControlFile - General file system control interface.

3.5.1 Obtaining Information about a File System Volume

Information about a file system volume may be obtained using the
NtQueryVolumeInformationFile service:

NTSTATUS
NtQueryVolumeInformationFile(

IN HANDLE FileHandle,

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 73

OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID FsInformation,
IN ULONG Length,
IN FS_INFORMATION_CLASS FsInformationClass
);

Parameters:

FileHandle - A handle to an open file, device, directory, or volume for which
volume information is returned.

IoStatusBlock - A variable to receive the final completion status and information
about the operation. The length, in bytes, of the data written to the
FsInformation buffer is returned in the Information field of this variable.
For more information about this parameter see the NtCreateFile system
service description.

FsInformation - A pointer to a buffer to receive information about the specified
volume. The contents of this buffer are defined by the FsInformationClass
parameter described below.

Length - The length of the FsInformation buffer in bytes.

FsInformationClass - Specifies the type of information that should be returned
about the volume. The information in the FsInformation buffer is defined
by the following type codes.

FsInformationClass Values

FileFsVolumeInformation - Returns information about the volume that is
currently "mounted" on the specified device. No specific access to
the volume is required to obtain this information.

FileFsSizeInformation - Returns information about the size and the free
space on the volume. No specific access to the volume is required
to obtain this information.

FileFsDeviceInformation - Returns information about the device upon
which the volume is actually mounted, or the device to which the
handle directly refers. No specific access to the volume is required
to obtain this information.

FileFsAttributeInformation - Returns attribute information about the file
system responsible for the volume. No specific access to the
volume is required to obtain this information.

FileFsControlInformation - Returns file system control information about
the volume. No specific access to the volume is require to obtain
this information.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 74

The NtQueryVolumeInformationFile service returns information about the volume
specified by the FileHandle parameter. The information returned in the buffer is
defined by the following type codes and structures.

FsInformation Format by Fs Information Class

FileFsVolumeInformation - Data type is FILE_FS_VOLUME_INFORMATION.

typedef struct _FILE_FS_VOLUME_INFORMATION {
LARGE_INTEGER VolumeCreationTime;
ULONG VolumeSerialNumber;
ULONG VolumeLabelLength;
BOOLEAN SupportsObjects;
WCHAR VolumeLabel[];

} FILE_FS_VOLUME_INFORMATION;

Field Description
VolumeCreationTime Date/time the volume was created
VolumeSerialNumber Serial number of the volume
VolumeLabelLength Length of the name of the volume
SupportsObjects File system supports object-oriented file system objects
VolumeLabel Name of the volume

No specific access to the volume is required to obtain this information about the
volume; that is, this information is available as long as the volume is accessed
through an open handle to the volume or device itself, or to a file or directory
on the volume.

FileFsSizeInformation - Data type is FILE_FS_SIZE_INFORMATION.

typedef struct _FILE_FS_SIZE_INFORMATION {
LARGE_INTEGER TotalAllocationUnits;
LARGE_INTEGER AvailableAllocationUnits;
ULONG SectorsPerAllocationUnit;
ULONG BytesPerSector;

} FILE_FS_SIZE_INFORMATION;

Field Description
TotalAllocationUnits Total allocation units on volume
AvailableAllocationUnits Free allocation units on volume
SectorsPerAllocationUnit Number of sectors in each allocation unit
BytesPerSector Number of bytes in each sector

No specific access to the volume is required to obtain this information about the
volume; that is, this information is available as long as the volume is accessed
through an open handle to the volume or device itself, or to a file or directory
on the volume.

FileFsDeviceInformation - Data type is FILE_FS_DEVICE_INFORMATION.

typedef struct _FILE_FS_DEVICE_INFORMATION {

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 75

DEVICE_TYPE DeviceType;
ULONG Characteristics;

} FILE_FS_DEVICE_INFORMATION;

Field Description
DeviceType Type of the target device
Characteristics Characteristcs of the target device

Device types have the following valid values:

FILE_DEVICE_BATTERY
FILE_DEVICE_BEEP
FILE_DEVICE_BUS_EXTENDER
FILE_DEVICE_CD_ROM
FILE_DEVICE_CD_ROM_FILE_SYSTEM
FILE_DEVICE_CONTROLLER
FILE_DEVICE_DATALINK
FILE_DEVICE_DFS
FILE_DEVICE_DISK
FILE_DEVICE_DISK_FILE_SYSTEM
FILE_DEVICE_FILE_SYSTEM
FILE_DEVICE_INPORT_PORT
FILE_DEVICE_KEYBOARD
FILE_DEVICE_MAILSLOT
FILE_DEVICE_MIDI_IN
FILE_DEVICE_MIDI_OUT
FILE_DEVICE_MOUSE
FILE_DEVICE_MULTI_UNC_PROVIDER
FILE_DEVICE_NAMED_PIPE
FILE_DEVICE_NETWORK
FILE_DEVICE_NETWORK_BROWSER
FILE_DEVICE_NETWORK_FILE_SYSTEM
FILE_DEVICE_NETWORK_REDIRECTOR
FILE_DEVICE_NULL
FILE_DEVICE_PARALLEL_PORT
FILE_DEVICE_PHYSICAL_NETCARD
FILE_DEVICE_PRINTER
FILE_DEVICE_SCANNER
FILE_DEVICE_SCREEN
FILE_DEVICE_SERIAL_MOUSE_PORT
FILE_DEVICE_SERIAL_PORT
FILE_DEVICE_SOUND
FILE_DEVICE_STREAMS
FILE_DEVICE_TAPE
FILE_DEVICE_TAPE_FILE_SYSTEM
FILE_DEVICE_TRANSPORT
FILE_DEVICE_UNKNOWN
FILE_DEVICE_VIDEO
FILE_DEVICE_VIRTUAL_DISK
FILE_DEVICE_WAVE_IN
FILE_DEVICE_WAVE_OUT

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 76

FILE_DEVICE_8042_PORT

Device characteristics have the following valid flags:

Flag Meaning
FILE_REMOVABLE_MEDIA Device supports removable media
FILE_READ_ONLY_DEVICE Device is a read-only device
FILE_FLOPPY_DISKETTE Media in device is a floppy diskette
FILE_WRITE_ONCE_MEDIA Device supports write once media
FILE_REMOTE_DEVICE Device is a remote device
FILE_DEVICE_IS_MOUNTED Device is currently mounted
FILE_VIRTUAL_VOLUME Device volume is virtual

No specific access to the volume is required to obtain this information about the
volume; that is, this information is available as long as the volume is accessed
through an open handle to the volume or device itself, or to a file or directory
on the volume.

FileFsAttributeInformation - Data type is FILE_FS_ATTRIBUTE_INFORMATION.

typedef struct _FILE_FS_ATTRIBUTE_INFORMATION {
ULONG FileSystemAttributes;
LONG MaximumComponentNameLength;
ULONG FileSystemNameLength;
WCHAR FileSystemName;

} FILE_FS_ATTRIBUTE_INFORMATION;

Field Description
FileSystemAttributes Attributes of the volume's owning file
system
MaximumComponentNameLength Maximum length of each file name
component
FileSystemNameLength The length of the file system's name
FileSystemName The name of the file system

File system attributes have the following valid flags:

Flag Meaning
FILE_CASE_SENSITIVE_SEARCH Supports case sensitive searches
FILE_CASE_PRESERVED_NAMES Supports preserving name case on disk
FILE_UNICODE_ON_DISK Stores UNICODE characters on disk
FILE_PERSISTENT_ACLS Stores ACLs on disk
FILE_FILE_COMPRESSION Supports file compression
FILE_VOLUME_IS_COMPRESSED Handle refers to a compressed volume

No specific access to the volume is required to obtain this information about the
volume; that is, this information is available as long as the volume is accessed
through an open handle to the volume or device itself, or to a file or directory
on the volume.

FileFsControlInformation - Data type is FILE_FS_CONTROL_INFORMATION {

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 77

typedef struct _FILE_FS_CONTROL_INFORMATION {
LARGE_INTEGER FreeSpaceStartFiltering;
LARGE_INTEGER FreeSpaceThreshold;
LARGE_INTEGER FreeSpaceStopFiltering;
LARGE_INTEGER DefaultQuotaThreshold;
LARGE_INTEGER DefaultQuotaLimit;
LARGE_INTEGER DeletionLogSizeLimit;
ULONG FileSystemControlFlags;

} FILE_FS_CONTROL_INFORMATION;

Field Description
FreeSpaceStartFiltering Amount of space required to begin
content indexing
FreeSpaceThreshold Amount of space remaining to generate
popup
FreeSpaceStopFiltering Amount of space remaining to stop content
indexing
DefaultQuotaThreshold Default quota threshold for volume
DefaultQuotaLimit Default quota limit for volume
DeletionLogSizeLimit Size of deletion file log
FileSystemControlFlags Flags to control this volume

File system control flags consist of the following valid flag values:

Flag Meaning
FILE_VC_QUOTA_NONE No quota information maintained
FILE_VC_QUOTA_TRACK Quotas are being tracked on volume
FILE_VC_QUOTA_ENFORCE Quotas are being enforced on
volume
FILE_VC_QUOTAS_INCOMPLETE Volume quotas are incomplete
FILE_VC_CONTENT_INDEX_DISABLED Content indexing disabled
FILE_VC_LOG_QUOTA_THRESHOLDLog quota threshold reached event
FILE_VC_LOG_QUOTA_LIMIT Log quota limit reached event
FILE_VC_LOG_VOLUME_THRESHOLD Log volume free space threshold
event
FILE_VC_LOG_VOLUME_LIMIT Log volume free space limit event

No specific access to the volume is required to obtain this information about the
volume; that is, this information is available as long as the volume is accessed
through an open handle to the volume or device itself, or to a file or directory
on the volume.

Once the information about the volume has been returned, the Information field of the
IoStatusBlock variable can be examined to determine the number of bytes of volume
information actually written to the FsInformation buffer.

3.5.2 Changing Information about a File System Volume

Information about a file system volume may be changed using the
NtSetVolumeInformationFile service:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 78

NTSTATUS
NtSetVolumeInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID FsInformation,
IN ULONG Length,
IN FS_INFORMATION_CLASS FsInformationClass
);

Parameters:

FileHandle - A handle to an open volume for which information is changed.

IoStatusBlock - A variable to receive the final completion status. For more
information about this parameter see the NtCreateFile system service
description.

FsInformation - A pointer to a buffer that contains the information about the file
system to be changed. The contents of this buffer are defined by the
FsInformationClass parameter described below.

Length - The length of the FsInformation buffer in bytes.

FsInformationClass - Specifies the type of information that should be changed
about the file system. The information in the FsInformation buffer is
defined by the following type codes.

FsInformationClass Values

FileFsLabelInformation - Changes the volume label on the volume that is
currently "mounted" on the specified device. FILE_WRITE_DATA
access to the device or volume is required.

FileFsControlInformation - Changes the file system control information for
the volume that is currently “mounted” on the specified device.
FILE_WRITE_DATA access to the device or volume is required.

The NtSetVolumeInformationFile service changes information about the volume
"mounted" on the device specified by the FileHandle parameter. The information to
be changed is in the FsInformation buffer. Its contents are defined by the following
type codes and structures.

FsInformation Format by Fs Information Class

FileFsLabelInformation - Data type is FILE_FS_LABEL_INFORMATION.

typedef struct _FILE_FS_LABEL_INFORMATION {
ULONG VolumeLabelLength;
WCHAR VolumeLabel[];

} FILE_FS_LABEL_INFORMATION;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 79

Field Description
VolumeLabelLength Length of the name of the volume
VolumeLabel Name of the volume

FILE_WRITE_DATA access to the device or volume is required to change this
information.

FileFsControlInformation - Data type is FILE_FS_CONTROL_INFORMATION {

typedef struct _FILE_FS_CONTROL_INFORMATION {
LARGE_INTEGER FreeSpaceStartFiltering;
LARGE_INTEGER FreeSpaceThreshold;
LARGE_INTEGER FreeSpaceStopFiltering;
LARGE_INTEGER DefaultQuotaThreshold;
LARGE_INTEGER DefaultQuotaLimit;
LARGE_INTEGER DeletionLogSizeLimit;
ULONG FileSystemControlFlags;

} FILE_FS_CONTROL_INFORMATION;

Field Description
FreeSpaceStartFiltering Amount of space required to begin
content indexing
FreeSpaceThreshold Amount of space remaining to generate
popup
FreeSpaceStopFiltering Amount of space remaining to stop content
indexing
DefaultQuotaThreshold Default quota threshold for volume
DefaultQuotaLimit Default quota limit for volume
DeletionLogSizeLimit Size of deletion file log
FileSystemControlFlags Flags to control this volume

File system control flags consist of the following valid flag values:

Flag Meaning
FILE_VC_QUOTA_NONE No quota information maintained
FILE_VC_QUOTA_TRACK Quotas are being tracked on volume
FILE_VC_QUOTA_ENFORCE Quotas are being enforced on
volume
FILE_VC_QUOTAS_INCOMPLETE Volume quotas are incomplete
FILE_VC_CONTENT_INDEX_DISABLED Content indexing disabled
FILE_VC_LOG_QUOTA_THRESHOLDLog quota threshold reached event
FILE_VC_LOG_QUOTA_LIMIT Log quota limit reached event
FILE_VC_LOG_VOLUME_THRESHOLD Log volume free space threshold
event
FILE_VC_LOG_VOLUME_LIMIT Log volume free space limit event

FILE_WRITE_DATA access to the volume is required in order to change the file
system control information.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 80

3.5.3 Obtaining Quota Information about a File System Volume

Quota information about a file system volume may be obtained using the
NtQueryQuotaInformationFile service:

NTSTATUS
NtQueryQuotaInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN BOOLEAN ReturnSingleEntry,
IN PVOID SidList OPTIONAL,
IN ULONG SidListLength,
IN PSID StartSid OPTIONAL,
IN BOOLEAN RestartScan
);

Parameters:

FileHandle - An open handle to an open file, directory, device, or volume whose
quota information is to be returned.

IoStatusBlock - A variable to receive the final completion status and information
about the operation. Service calls that return information, return the
length of the data written to the output buffer in the Information field of
this variable. For more information about this parameter see the
NtCreateFile system service description.

Buffer - A pointer to a buffer to receive the requested quota information about
the specified volume.

Length - Specifies the length of the Buffer parameter in bytes.

ReturnSingleEntry - A BOOLEAN value that, if TRUE, indicates that only a single
quota entry should be returned.

SidList - An optional list of entries whose quota entries are returned in the
Buffer. If this parameter is supplied, only those quota entries matching
the SIDs in the list are returned.

SidListLength - Supplies the length of the SidList, if one was specified. If no
SidList was specified, this parameter should be zero.

StartSid - An optional SID that specifies a quota entry to be rewound to during a
RestartScan operation. The first quota entry returned is the entry
following the entry specified by the SID.

RestartScan - A BOOLEAN value that, if TRUE, indicates that the scan should be
restarted from the beginning, or alternately from the entry following the
StartSid entry. This causes the query to restart the scan from the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 81

beginning or from the entry following the quota entry for the specified
SID.

The NtQueryQuotaInformationFile function obtains quota entry information for the
volume represented by the file handle. Only complete quota entries are returned.
The actual number of quota entries returned is the smallest of the following:

o - One entry, if the ReturnSingleEntry parameter is TRUE.

o - One entry, if the only entry visible is the entry for the current thread’s SID.

o - The number of quota entries that fit into the specified buffer.

o - The number of quota entries that exist, or the number of entries that match
the list of entries supplied by the optional SidList parameter.

NtQueryQuotaInformationFile may be invoked multiple times to fill the buffer with
quota entries for the volume. It is possible that the quota entries for the volume were
modified between calls to get more entries, unless the volume is locked.

If the optional SidList parameter is specified, then only the quota information for
those SIDs specified in the list is returned. Specifying a SID which has no
corresponding quota information on the volume causes an entry to be returned with
all zeroes for the quota fields. Futher, if this parameter is specified, then the StartSid
parameter is ignored. Finally, if a SidList is specified, the output buffer will be filled
with as many matching entries as possible. If they do not fit, then the caller should
invoke the service again, changing the start of the list to the point where the last
service left off.

For example, if the caller passed in a SidList with entries for SIDs A, B, C, D, and E, and
the output buffer was only large enough for the file system to return entries for SIDs
A, B, and C, then the caller should invoke the service again specifying SIDs D and E.
Because the list is self-describing, this can be easily accomplished by simply changing
the starting pointer and adjusting the SidListLength parameter.

The StartSid parameter may optionally be specified to return quota entries for the
volume beginning with an entry other than the first quota entry. If a StartSid is
specified, and the RestartScan parameter is specified, then the quota entries returned
will be start with the quota entry for the entry after the one selected by the StartSid
parameter.

If multiple quota entries are returned, then the structure for each entry in the buffer
will be aligned on a longword boundary. Each entry in the list begins with a
NextEntryOffset field that specifies the number of bytes from the base of the current
entry to the start of the next entry. If there are no more entries following the current
entry, then the value of this field is zero.

The format of the SidList information buffer is defined by the following structure:

typedef struct _FILE_GET_QUOTA_INFORMATION {
ULONG NextEntryOffset;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 82

ULONG SidLength;
SID Sid;

} FILE_GET_QUOTA_INFORMATION, *PFILE_GET_QUOTA_INFORMATION;

Field Description
NextEntryOffset Offset, in bytes, to the next entry in the list
SidLength Length, in bytes, of the SID
Sid SID of entry to be returned

No special access to the volume is required in order to obtain quota information about
the volume. The FileHandle may refer to either the volume, or a file or directory
anywhere on the volume to which the caller has some access.

Once quota entries for the volume have been written to the Buffer, the Information
field of the IoStatusBlock variable can be examined to determine how many bytes of
quota information were actually returned.

3.5.4 Changing Quota Information about a File System Volume

Quota information about a file system volume may be changed using the
NtSetQuotaInformationFile service:

NTSTATUS
NtSetQuotaInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID Buffer,
IN ULONG Length
);

Parameters:

FileHandle - A handle to a volume whose quota entries are to be changed.

IoStatusBlock - A variable to receive the final completion status. For more
information about this parameter see the NtCreateFile system service
description.

Buffer - A opinter to a buffer that contains the quota entry information to be
applied to the volume.

Length - The length of the specified buffer in bytes.

The NtSetQuotaInformationFile service changes the quota information on a volume
using the quota entries specified by the Buffer parameter.

The information specified by the Buffer parameter is defined by the following
structure:

typedef struct _FILE_QUOTA_INFORMATION {
ULONG NextEntryOffset;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 83

ULONG SidLength;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER QuotaUsed;
LARGE_INTEGER QuotaThreshold;
LARGE_INTEGER QuotaLimit;
SID Sid;

} FILE_QUOTA_INFORMATION, *PFILE_QUOTA_INFORMATION;

Field Description
NextEntryOffset Offset, in bytes, to the next entry in the list
SidLength Length, in bytes, of the SID
ChangeTime Time that the quota entry was last changed
QuotaUsed Amount of disk space used
QuotaThreshold Amount of disk space useable without incurring an event
QuotaLimit Amount of disk space permitted to be used
Sid SID of this quota entry

If multiple quota entries are contained in the buffer, then the structure for each entry
is longword aligned. The NextEntryOffset field contains the byte offset to the start of
the next entry in the buffer. If there are no more entries past the current entry, then
this field is zero.

If an error occurs changing the quotas on the volume, then the Information field in the
I/O status block contains the byte offset from the vase of the Buffer to the offending
quota entry that caused the failure.

FILE_WRITE_DATA access to the volume is required in order to change the quota
information associated with the volume.

3.5.5 Controlling File Systems

Information may be passed between applications and file systems using the
NtFsControlFile service:

NTSTATUS
NtFsControlFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG FsControlCode,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength
);

Parameters:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 84

FileHandle - An open file handle to the file or device to whose file system the
control information should be given.

Event - An optional handle to an event to be set to the Signaled state when the
operation completes.

ApcRoutine - An optional procedure to be invoked once the operation
completes. For more information about this parameter see the
NtReadFile system service description.

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was
specified, when the operation completes. This argument is required if an
ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status and information
about the operation. Service calls that return information, return the
length of the data written to the output buffer in the Information field of
this variable. For more information about this parameter see the
NtCreateFile system service description.

FsControlCode - A code that indicates which file system control function is to be
executed.

InputBuffer - An optional pointer to a buffer that contains the information to be
given to the target file system. This information is file-system-specific.

InputBufferLength - The length of the InputBuffer in bytes. If the buffer is not
supplied, then this value is ignored.

OutputBuffer - An optional pointer to a buffer that is to receive the file-system-
dependent return information from the target file system.

OutputBufferLength - The length of the OutputBuffer in bytes. If the buffer is not
supplied, then this value is ignored.

The NtFsControlFile service is a file-system-dependent interface that extends the
control that applications have over various components within the system. This API
provides a consistent view of the input and output data to the system while still
providing the application and file system drivers a file-system-dependent method of
specifying a communications interface.

The type of access that the caller needs to the file is dependent on the actual operation
being performed.

3.6 Miscellaneous Services

This section presents those service that provide miscellaneous functionality for files
and devices.

The APIs that perform these functions are as follows:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 85

NtFlushBuffersFile - Flushes all buffered and cached data out to the file.
NtCancelIoFile - Cancels all I/O operations on a file.
NtDeviceIoControlFile - Miscellaneous device control.

3.6.1 Flushing File Buffers

Buffered data may be flushed out to the file using the NtFlushBuffersFile service:

NTSTATUS
NtFlushBuffersFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock
);

Parameters:

FileHandle - An open file handle to a file.

IoStatusBlock - A variable to receive the final completion status. For more
information about this parameter see the NtCreateFile system service
description.

The NtFlushBuffersFile service causes all buffered data to be written to the file.

FILE_WRITE_DATA or FILE_APPEND_DATA access to the file is required to perform
this service.

3.6.2 Canceling Pending I/O on a File

Pending I/O operations on a file may be canceled using the NtCancelIoFile service:

NTSTATUS
NtCancelIoFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock
);

Parameters:

FileHandle - An open file handle to a file.

IoStatusBlock - A variable to receive the final completion status. For more
information about this parameter see the NtCreateFile system service
description.

The NtCancelIoFile service causes all pending I/O for the specified file to be marked
as canceled. Most types of operations can be canceled immediately, while others may
continue toward completion before they are actually canceled. For example, once a
DMA disk drive has begun a transfer, the operation cannot be canceled by a device
driver, but to the caller it will appear as if the operation had effectively been canceled.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 86

Only those pending operations that were issued by the current thread using the
specified handle are canceled. Any operations issued for the file by any other thread
or any other process continues normally.

No specific access to the file is required in order to use this service since the caller is
only canceling those operations that he requested in the first place.

All pending I/O operations complete with a status that indicates that the operation was
canceled.

3.6.3 Miscellaneous I/O Control

Various operations may be performed on files to control the file, or the device
associated with the file, using the NtDeviceIoControlFile service:

NTSTATUS
NtDeviceIoControlFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG IoControlCode,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength
);

Parameters:

FileHandle - An open file handle to the file or device to which the control
information should be given.

Event - An optional handle to an event to be set to the Signaled state when the
operation completes.

ApcRoutine - An optional procedure to be invoked once the operation
completes. For more information about this parameter see the
NtReadFile system service description.

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was
specified, when the operation completes. This argument is required if an
ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status and information
about the operation. Service calls that return information, return the
length of the data written to the output buffer in the Information field of
this variable. For more information about this parameter see the
NtCreateFile system service description.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 87

IoControlCode - A code that indicates which device I/O control function is to be
executed.

InputBuffer - An optional pointer to a buffer that contains the information to be
given to the target device. This information is device-dependent.

InputBufferLength - The length of the InputBuffer in bytes. If the buffer is not
supplied, then this value is ignored.

OutputBuffer - An optional pointer to a buffer that is to receive the device-
dependent return information from the target device.

OutputBufferLength - The length of the OutputBuffer in bytes. If the buffer is not
supplied, then this value is ignored.

The NtDeviceIoControlFile service is a device-dependent interface that extends the
control that applications have over various devices within the system. This API
provides a consistent view of the input and output data to the system while still
providing the application and the driver a device-dependent method of specifying a
communications interface.

The type of access that the caller needs to the file is dependent on the actual operation
being performed.

Once the service has completed, the Event, if specified, will be set to the Signaled state.
If no Event parameter was specified, then the file object specified by the FileHandle
will be set to the Signaled state. If an ApcRoutine was specified, it is invoked with the
ApcContext and the address of the IoStatusBlock as its arguments.

3.6.4 Deleting a File

A file can be deleted using the NtDeleteFile service:

NTSTATUS
NtDeleteFile(

IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters:

ObjectAttributes - A pointer to a structure that specifies the name of the file, a
root directory, and a set of file object attribute flags.

ObjectAttributes Structure

ULONG Length - Specifies the length of the object attributes structure.
This field must be equal to the size of an OBJECT_ATTRIBUTES
structure.

PUNICODE_STRING ObjectName - The name of the file to be deleted. This
file specification must be a fully qualified file specification or the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 88

name of a device, unless it is a file relative to the directory specified
by the next field.

HANDLE RootDirectory - Optionally specifies a handle to a directory. If
specified, then the name of the file specified by the ObjectName
field is a file specification relative to the directory file supplied by
this handle.

ULONG Attributes - A set of flags that controls the file object attributes.

OBJ_CASE_INSENSITIVE - Indicates that the name lookup should
ignore the case of ObjectName rather than performing an
exact match search.

The NtDeleteFile service allows the caller to delete a file. DELETE access to the
target file is required. This service is equivalent to calling NtOpenFile,
NtSetInformationFile with a file information class of FileDispositionInformation, and
NtClose. However, this service is faster because less ring transitions are made.

3.6.5 Querying the Attributes of a File

The attributes of a file can be queried using the NtQueryAttributesFile service:

NTSTATUS
NtQueryAttributesFile(

IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PFILE_BASIC_INFORMATION FileInformation
);

Parameters:

ObjectAttributes - A pointer to a structure that specifies the name of the file, a
root directory, and a set of file object attribute flags.

ObjectAttributes Structure

ULONG Length - Specifies the length of the object attributes structure.
This field must be equal to the size of an OBJECT_ATTRIBUTES
structure.

PUNICODE_STRING ObjectName - The name of the file to be queried.
This file specification must be a fully qualified file specification or
the name of a device, unless it is a file relative to the directory
specified by the next field.

HANDLE RootDirectory - Optionally specifies a handle to a directory. If
specified, then the name of the file specified by the ObjectName
field is a file specification relative to the directory file supplied by
this handle.

ULONG Attributes - A set of flags that controls the file object attributes.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 89

OBJ_CASE_INSENSITIVE - Indicates that the name lookup should
ignore the case of ObjectName rather than performing an
exact match search.

FileInformation - A variable to receive the basic information about the file.

The NtQueryAttributesFile service allows the caller to query the basic information
about a file. FILE_READ_ATTRIBUTES access to the target file is required. This
service is equivalent to calling NtOpenFile, NtQueryInformationFile with a file
information class of FileBasicInformation, and NtClose. However, this service is faster
because less ring transitions are made.

The information that is returned in the FileInformation buffer is defined by the
following structure:

typedef struct _FILE_BASIC_INFORMATION {
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
ULONG FileAttributes;

} FILE_BASIC_INFORMATION;

Field Description
CreationTime Date/time that the file was created
LastAccessTime Date/time that the file was last accessed
LastWriteTime Date/time that the file was last written
ChangeTime Date/time that the file was last changed
FileAttributes Attributes of the file

All dates and times are specified in the standard Windows NT system time format.

The file attributes field can be a combination of the following values:

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

3.7 I/O Completion Objects

This section describes the creation and use of completion objects.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 90

3.7.1 Creating/Opening I/O Completion Objects

When a user wishes to synchronize the completion of I/O through the use of
completion objects, he must first create or open an I/O completion object. Creating or
opening a completion object causes the system to return a handle to the specified
object.

I/O completion object handles are closed via the generic NtClose service. This service
is discussed elsewhere in the Windows NT documentation. It should be noted that,
just like all other system objects, a completion object is not actually deleted until all of
the valid handles to it are closed and no referenced pointers remain.

The user APIs that support creating and opening completion objects are as follows:

NtCreateIoCompletion - Create or open an I/O completion object and return a
handle.
NtOpenIoCompletion - Open an existing I/O completion object and return a
handle.

3.7.1.1 Create/Open I/O Completion Objects

An I/O completion object can be created or opened using the NtCreateIoCompletion
service:

NTSTATUS
NtCreateIoCompletion(

OUT PHANDLE IoCompletionHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
IN ULONG Count OPTIONAL
);

Parameters:

IoCompletionHandle - A pointer to a variable that receives the I/O completion
object handle value.

DesiredAccess - Specifies the type of access that the caller requires to the
completion object.

DesiredAccess Flags

SYNCHRONIZE - The completion object handle may be waited.

IO_COMPLETION_QUERY_STATE - The completion object may be queried.

IO_COMPLETION_MODIFY_STATE - The completion object may be
modified.

The three following values are the generic access types that the caller
may request. The mapping to specific access rights is given for each:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 91

GENERIC_READ - Maps to STANDARD_RIGHTS_READ and
IO_COMPLETION_QUERY_STATE.

GENERIC_WRITE - Maps to STANDARD_RIGHTS_WRITE and
IO_COMPLETION_MODIFY_STATE.

GENERIC_EXECUTE - Maps to STANDARD_RIGHTS_EXECUTE and
SYNCHRONIZE.

ObjectAttributes - A pointer to a structure that specifies the name of completion
object, a root directory, a security descriptor, a quality of service
descriptor, and a set of completion object attribute flags.

ObjectAttributes Structure

ULONG Length - Specifies the length of the object attributes structure.
This field must be equal to the size of an OBJECT_ATTRIBUTES
structure.

PUNICODE_STRING ObjectName - The name of the completion object to
be created or opened. This object name specification must be a
fully qualified path, unless it is relative to the object directory
specified by the next field.

HANDLE RootDirectory - Optionally specifies a handle to a directory. If
specified, then the name of the completion object specified by the
ObjectName field is a path specification relative to the directory
object supplied by this handle.

PSECURITY_DESCRIPTOR SecurityDescriptor - Optionally specifies the
security descriptor that should be applied to the I/O completion
object. The ACLs specified by the security descriptor are only
applied to the object if it is created. If not supplied and the
completion object is created, then the ACL placed on the
completion object is formed from a combination of the ACL on the
parent directory of the object and the current default ACL for the
creating process.

PSECURITY_QUALITY_OF_SERVICE SecurityQualityOfService - Specifies
the access a server should be given to the client's security context.
This field is only used when a connection to a protected server is
established. It allows the caller to control which parts of his
security context are made available to the server and whether or
not the server may impersonate the caller.

ULONG Attributes - A set of flags that controls the file object attributes.

OBJ_INHERIT - Indicates that the handle to the I/O completion
object is to be inherited by the new process when an

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 92

NtCreateProcess operation is performed to create a new
process.

OBJ_CASE_INSENSITIVE - Indicates that the name lookup should
ignore the case of ObjectName rather than performing an
exact match search.

OBJ_EXCLUSIVE - Indicates that the I/O completion object is to be
created such that no other opens to the object may be
performed.

OBJ_OPENIF - Indicates that if the I/O completion object already
exists then it is to be opened; otherwise it is to be created.

Count - An optional value that supplies the maximum number of threads that
should be concurrently active. If this parameter is not specified, then the
number of processors is used.

The NtCreateIoCompletion service either causes a new I/O completion object to be
created, or it opens an existing completion object. The action taken is dependent on
the name of the object being opened, and whether the object already existed, and the
value of the OBJ_OPENIF ObjectAttributes flag. If the object is created, then the
maximum target concurrent thread count is set to the value specified by the Count
parameter. A handle to the I/O completion object with the DesiredAccess is returned.

Once the caller has established a handle to an I/O completion object, he can then
associate the completion object with a file, via the NtSetInformationFile system
service. As each request for the file is completed, the I/O system stores a completion
message in the I/O completion object.

Each completion message consists of a caller-determined key identifying the target
file, a caller-supplied CompletionContext pointer, which was passed as ApcContext to
the asynchronous Nt...File service when the request was originally issued, and a
pointer to the returned I/O status block for the completed request.

3.7.1.2 Open I/O Completion Objects

An I/O completion object can be opened using the NtOpenIoCompletion service:

NTSTATUS
NtOpenIoCompletion(

OUT PHANDLE IoCompletionHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters:

IoCompletionHandle - A pointer to a variable that receives the I/O completion
object handle value.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 93

DesiredAccess - Specifies the type of access that the caller requires to the
completion object.

DesiredAccess Flags

SYNCHRONIZE - The completion object handle may be waited.

IO_COMPLETION_QUERY_STATE - The completion object may be queried.

IO_COMPLETION_MODIFY_STATE - The completion object may be
modified.

The three following values are the generic access types that the caller
may request. The mapping to specific access rights is given for each:

GENERIC_READ - Maps to STANDARD_RIGHTS_READ and
IO_COMPLETION_QUERY_STATE.

GENERIC_WRITE - Maps to STANDARD_RIGHTS_WRITE and
IO_COMPLETION_MODIFY_STATE.

GENERIC_EXECUTE - Maps to STANDARD_RIGHTS_EXECUTE and
SYNCHRONIZE.

ObjectAttributes - A pointer to a structure that specifies the name of completion
object, a root directory, a security descriptor, a quality of service
descriptor, and a set of completion object attribute flags.

ObjectAttributes Structure

ULONG Length - Specifies the length of the object attributes structure.
This field must be equal to the size of an OBJECT_ATTRIBUTES
structure.

PUNICODE_STRING ObjectName - The name of the completion object to
be opened. This object name specification must be a fully qualified
path, unless it is relative to the object directory specified by the
next field.

HANDLE RootDirectory - Optionally specifies a handle to a directory. If
specified, then the name of the completion object specified by the
ObjectName field is a path specification relative to the directory
object supplied by this handle.

ULONG Attributes - A set of flags that controls the file object attributes.

OBJ_INHERIT - Indicates that the handle to the I/O completion
object is to be inherited by the new process when an
NtCreateProcess operation is performed to create a new
process.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 94

OBJ_CASE_INSENSITIVE - Indicates that the name lookup should
ignore the case of ObjectName rather than performing an
exact match search.

The NtOpenIoCompletion service opens an existing I/O completion object and
returns a handle to it through the IoCompletionHandle parameter.

As with the NtCreateIoCompletion service, once the caller has established a handle
to an I/O completion object, he can then associate the completion object with a file, via
the NtSetInformationFile system service. As each request for the file is completed,
the I/O system stores a completion message in the I/O completion object.

Each completion message consists of a caller-determined key identifying the target
file, a caller-supplied CompletionContext pointer, which was passed as ApcContext to
the asynchronous Nt...File service when the request was originally issued, and a
pointer to the returned I/O status block for the completed request.

3.7.2 Operating on I/O Completion Objects

This section presents those services that manipulate I/O completion objects. The APIs
that support operations on I/O completion objects are as follows:

NtQueryIoCompletion - Query the state of an I/O completion object.
NtSetIoCompletion - Inserts a message onto an I/O completion object.
NtRemoveIoCompletion - Removes an entry from an I/O completion object.

3.7.2.1 Querying Completion Objects

The state of an I/O completion object can be queried using the NtQueryIoCompletion
service:

NTSTATUS
NtQueryIoCompletion(

IN HANDLE IoCompletionHandle,
IN IO_COMPLETION_INFORMATION_CLASS IoCompletionInformationClass,
OUT PVOID IoCompletionInformation,
IN ULONG IoCompletionInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters:

IoCompletionHandle - Supplies a handle to an open I/O completion object to be
queried.

IoCompletionInformationClass - Specifies the type of information that should be
returned about the I/O completion object. The information returned in
the IoCompletionInformation buffer is defined by the following type
codes:

IoCompletionInformationClass Values

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 95

IoCompletionBasicInformation - Returns basic information about the
specified I/O completion object. IO_COMPLETION_QUERY_STATE
access to the object is required.

IoCompletionInformation - A pointer to a buffer to receive the desired
information about the I/O completion object. The contents of this buffer
are defined by the IoCompletionInformationClass parameter described
above.

IoCompletionInformationLength - The length of the IoCompletionInformation
buffer in bytes.

ReturnLength - An optional pointer to a variable to receive the actual number of
bytes of information returned in the IoCompletionInformation buffer.

The NtQueryIoCompletion service returns information about the specified I/O
completion object. The information in the buffer is defined by the following type
codes and structures.

IoCompletionInformation Format by I/O Completion Information Class

IoCompletionBasicInformation - Data type is IO_COMPLETION_BASIC_INFORMATION.

typedef struct _IO_COMPLETION_BASIC_INFORMATION {
LONG Depth;

} IO_COMPLETION_BASIC_INFORMATION;

Field Description
Depth Depth, in messages, of the I/O completion object

IO_COMPLETION_QUERY_STATE access to the I/O completion object is
required to obtain this information.

Once the information about the object has been returned, the caller can determine
how much information was actually returned by examining the variable passed in as
the ReturnLength parameter, if one was passed.

3.7.2.2 Setting Completion Objects

A completion message can be manually queued to an I/O completion object using the
NtSetIoCompletion service:

NTSTATUS
NtSetIoCompletion(

IN HANDLE IoCompletionHandle,
IN ULONG KeyContext,
IN PVOID ApcContext,
IN NTSTATUS IoStatus,
IN ULONG IoStatusInformation
);

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 96

Parameters :

IoCompletionHandle - A handle to the I/O completion port.

KeyContext - Supplies the key contex that is returned during a call to
NtRemoveIoCompletion.

ApcContext - Supplies the APC context that is returned during a call to
NtRemoveIoCompletion.

IoStatus - Supplies the status data that will be returned in the Status field of the
I/O status block during a call to NtRemoveIoCompletion.

IoStatusInformation - Supplies the information data that will be returned in the
Information field of the I/O status block during a call to
NtRemoveIoCompletion.

The NtSetIoCompletion service allows the caller to insert an I/O completion message
into the completion object manually. This allows threads that are waiting on
messages to arrive to be awakened to deal with a particular work item posted by the
caller. Note that no I/O was actually performed to cause the completion message to be
read by the remover of the item.

3.7.2.3 Removing Messages from Completion Objects

An I/O completion message can be removed from an I/O completion object using the
NtRemoveIoCompletion service:

NTSTATUS
NtRemoveIoCompletion(

IN HANDLE IoCompletionHandle,
OUT PVOID *KeyContext,
OUT PVOID *ApcContext,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PLARGE_INTEGER Timeout OPTIONAL
);

Parameters:

IoCompletionHandle - A handle to the I/O completion port.

KeyContext - Supplies a pointer to a variable to receive the key contex that was
specified when the I/O completion object was associated with a file object.

ApcContext - Supplies a pointer to a variable to receive the context that was
specified when the I/O was issued. This value was passed in as the
ApcContext parameter when the I/O was queued.

IoStatus - Supplies a pointer to a variable that receives the final I/O completion
status from the I/O operation.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 97

Timeout - Supplies a pointer to an optional time out value.

The NtRemoveIoCompletion service removes a single I/O completion message from
the completion object. If an entry is removed, then the KeyContext, ApcContext, and
IoStatus variables receive the information about the I/O operation that was
completed. The Status field of the IoStatus variable indicates whether or not the I/O
operation was successfully completed. Note that this is separate from the return
value from this service, which indicates whether or not a completion message was
successfully removed from the completion object.

If there are no entries in the completion object, or if there are already Count threads
concurrently ready and/or running due to other completion messages having been
removed, then the calling thread will wait for another message according to the
Timeout parameter. This parameter is treated in the normal manner of all time-out
values in Windows NT.

4. Naming Conventions

Devices in Windows NT are named according to a very simple set of rules. There are
three general rules:

1) If there can only be one device of the specified type in the system, such as the
PC subsystem keyboard, then the name of the device is simply the device type
name.

2) If there can be more than one device of the specified type in the system, such
as a floppy, then the name of the device is the device type name followed by a
decimal number that indicates which device of that type it is.

3) For devices such as disks, which can be partitioned, the name of the partition
is the name of the device followed by \Partition and a decimal number
representing which partition on the disk it is. The first partition on a disk is
called \Partition1. The name that refers to the entire device for partitioned
media is \Partition0.

For example, the following are valid Windows NT device names.

o - \Device\Floppy2
o - \Device\Harddisk1\Partition3
o - \Device\Keyboard
o - \Device\Mouse

Note that all of the above device names are in a directory called the \Device directory.
All device names in Windows NT reside in this object directory by convention. Any
valid object directory operations can be used to determine the names of the devices
on the system, provided the caller has the appropriate privileges and access to the
object directory.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 98

5. Appendix A - Time Field Changes

This section contains a list of those APIs that implicitly change the various time fields
associated with a file.

5.1 Last Access Time

The Last Access Time field for a file is implicitly changed under the following
conditions:

o - NtQueryDirectoryFile - The directory file's time field is updated.

o - NtCreateFile - The file's time field is set if the file was created.

o - NtReadFile - The file's time field is updated.

5.2 Last Modify Time

o - NtCreateFile - If the file was created, superseded, or overwritten, then the
file's time field is updated. If the file was created or superseded then the
parent directory's time field is also updated.

o - NtSetInformationFile

- FileLinkInformation - The directory file containing the name of the
link's time field is updated.

- FileDispositionInformation - The time field of the directory that
contains the file is updated.

- FileRenameInformation - The old and the new parent directory file's
times are updated.

o - NtWriteFile - The file's time field is updated.

5.3 Last Change Time

o - NtCreateFile - If the file was created, superseded, or overwritten, then the
file's time field is updated. If the file was created or superseded then the
parent directory's time field is also updated.

o - NtSetInformationFile

- FileLinkInformation - The time field of both the file and the directory
containing the name of the link are updated.

- FileDispositionInformation - The time field of both the file and the
directory containing the file are updated.

- FileRenameInformation - The time field of both the old and the new
parent directories are updated.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 99

- FileAllocationInformation - The file's time field is updated.

- FileEndOfFileInformation - The file's time field is updated.

o - NtWriteFile - The file's time field is updated.

o - NtSetSecurityObject - The file's time field is updated.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 100

6. Revision History

Original Draft 1.0, March 21, 1989

Revision Draft 1.1, March 31, 1989

- Fixed spelling, grammar and numbering problems.
- Incorporated initial review comments.
- Removed all APIs that didn't use file handles.
- Rewrote overview section dealing with file objects.
- Added access right types to services.
- Redesigned NtCreateFile service.
- Removed NtOpenFile service.
- Revamped NtQueryDirectoryFile service.
- Added more types to NtQueryInformationFile service.
- Added more types to NtSetInformationFile service.
- Performed general fixup on most other services.
- Added description of DISPATCH_LEVEL driver context.
- Changed device work queues to device queues.
- Redesigned communication region protocol.
- Planned section on volume verification.

Revision Draft 1.2, May 12, 1989

- Allow setting of owner in NtSetInformationFile.
- Removed device info from NtQueryFsInformationFile.
- Changed NtQueryFsInformationFile to QueryVolume.
- Changed NtSetFsInformationFile to SetVolume.
- Added ChangeTime to appropriate structures.
- Added I/O provided time-out functions.
- Remove mount entry point from file systems.
- Fleshed out section on volume verification.
- Wrote section on error logging and handling.
- Wrote section on naming conventions.
- Added "subsystem input" section for terminals.
- Wrote section on network service description.
- Added directory access options.
- Fixed access type names.
- Make all byte offsets block/byte offsets.

o Read pointer
o Write pointer
o File allocation size
o End of file marker

- Add new security access types.
- Flesh out Miscellaneous I/O APIs.
- Change FILE_READ and _WRITE back again.

Revision Draft 1.3, October 9, 1989

- Split specification into two separate specs.
- Redo attributes again for security changes (twice).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 101

- Add "names" type to NtQueryDirectoryFile since other API was
dropped by object manager.

- Change APC parameter to context and make PVOID.
- Add AscendingDirectories flag to volume info.
- Make file objects waitable objects.
- Make block/byte values zero-based.
- Add synchronous I/O.
- Only signal file handle if no event specified.
- Fix FILEINFO and FSINFO to be like all other APIs.
- Remove nonsensical directory desired accesses.
- Return actual action in Information on create/open.
- Add FILE_SHARE_ NO_DELETE and NO_RENAME.
- Drop FILE_CREATE_TREE_CONNECTION. Will be service.
- Drop FILE_EXECUTE desired access restrictions.
- Drop FILE_APPEND desired access restrictions.
- Drop or change name of privileges.
- Added time field changes appendix.

Revision Draft 1.4, January 21, 1990

- Added NtOpenFile system service.
- Removed NtQueryAclFile and NtSetAclFile APIs.
- Removed documentation on FileAclInformation.
- Added NtLockFile and NtUnlockFile services again.
- Change most services to have synchronous APIs.
- Redo attributes again for security changes.
- Revamped structures around security, especially for directories and

subdirectories.
- Added EAs to NtCreateFile.
- Redo EA APIs and EA structures.
- Added rewind capabilities to EA and directory services.
- Added optional key parameter to NtReadFile and NtWriteFile.
- Fixed object attributes structure type name and fields.
- Converted APIs from Block and Byte to LARGE_INTEGER.
- Reversed polarity of shared delete and rename flags.
- Expanded type names out to full names.
- Miscellaneous edits and explanation changes.

Revision Draft 1.5, July 9, 1990

- Add EaListLength parameter to NtQueryEaFile.
- Removed FILE_MAPPED_IO option.
- Removed FILE_SHARE_RENAME share access.
- Document file sharing semantics.
- Add FileFsSizeInformation to NtQueryVolumeInformationFile.
- Removed FileFsBiosInformation from

NtQueryVolumeInformationFile.
- Add RemovableMedia and SupportsObjects fields for volumes.
- Add FILE_OVERWRITE, FILE_OVERWRITE_IF to NtCreateFile.
- Document directory wildcarding.
- Document deleting a file is last valid I/O operation.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 102

- Add FileAlignmentInformation to NtQueryInformationFile.
- Replace OBJ_OPEN_LINK with FILE_OPEN_LINK.
- Add FILE_TRAVERSE as legal directory access.
- Add FILE_OPEN_UNKNOWN_OBJECT option.
- Add FILE_OPENED_UNKNOWN_OBJECT I/O status block value.
- Replace FILE_DISABLE_CACHING with

FILE_NO_INTERMEDIATE_BUFFERING and add requirement
restrictions description.

- Add FILE_COMPLETE_IF_OPLOCKED option to create and open.
- Add FileRemainingNameInformation query information type.
- Explicitly state that locking beyond EOF is permissible.
- Switch fields in FILE_FULL_EA_INFORMATION to keep compatibility

with OS/2.
- Fixed references to IOSB and PIOSB.
- Removed explicit ACL and owner interfaces and converted to the new

security semantics.
- Add ability for synchronous I/O locks to be asynchronous.
- Subsumed NtSetNewSizeFile functionality in NtSetInformationFile.
- Removed FileOwnerInformation from NtQueryInformationFile.
- Removed FileOwnerInformation from NtSetInformationFile.
- Removed FILE_OWNER_INFORMATION structure type declaration.

Revision Draft 1.6, July 15, 1993

- Removed outdated "++" notation for subsystems.
- Updated system name from NT OS/2 to Windows NT.
- Removed error ports from all appropriate APIs.
- Added new file attribute definitions for FILE_ATTRIBUTE_TEMPORARY,

FILE_ATTRIBUTE_ATOMIC_WRITE, and
FILE_ATTRIBUTE_XACTION_WRITE.

- Removed all vestiges of "unknown objects" and all related functionality.
- Replaced old style create/open directory manipulation flags (see next).
- Documented all new Create/Open options:

o FILE_DIRECTORY_FILE
o FILE_NON_DIRECTORY_FILE
o FILE_RANDOM_ACCESS
o FILE_NO_EA_KNOWLEDGE
o FILE_DELETE_ON_CLOSE
o FILE_OPEN_BY_FILE_ID
o FILE_OPEN_FOR_BACKUP_INTENT

- Updated all appropriate CHAR's to WCHAR's in accordance w/Unicode
changes.

- Updated all STRING's to UNICODE_STRING's in accordance w/Unicode
changes.

- Removed source/target process from NtReadFile and NtWriteFile.
- Removed NtReadTerminalFile API.
- Updated all TIME data types to LARGE_INTEGER's.
- Moved FILE_ATTRIBUTE_DIRECTORY flag into attributes for query

operations.
- Added FileBothDirectoryInformation file information class to

NtQueryDirectoryFile.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 103

- Changed Action field of FILE_NOTIFY_INFORMATION to ULONG.
- Added FileAlternateNameInformation to NtQueryInformationFile.
- Added FileStreamInformation to NtQueryInformationFile.
- Changed FileNameInformation to FileRenameInformation for

NtSetInformationFile.
- Updated Length parameter to LARGE_INTEGER from ULONG for locking

services.
- Added FileFsDeviceInformation and FileFsAttributeInformation to

NtQueryVolumeInformation.

Revision Draft 1.7, May 1, 1995

- Added new FILE_OPEN_TRANSACTED and FILE_RESERVE_OPFILTER
create/open options.

- Removed FILE_ATTRIBUTE_ATOMIC_WRITE and
FILE_ATTRIBUTE_XACTION_WRITE and added
FILE_ATTRIBUTE_COMPRESSED and FILE_ATTRIBUTE_OFFLINE..

- Added new STORAGE_TYPE enumerated type as well as new create/open
option fields for storage types.

- Added values for FILE_NOTIFY_CHANGE_STREAM_NAME,
FILE_NOTIFY_CHANGE_STREAM_SIZE, and
FILE_NOTIFY_CHANGE_STREAM_WRITE.

- Added documentation of file system attributes flags, and included new
flags FILE_FILE_COMPRESSED and FILE_VOLUME_IS_COMPRESSED
for compression.

- Added FILE_VIRTUAL_VOLUME device characteristic flag for virtual
volumes.

- Added the following query and set information class information values
and their associated structure type definitions:
o FileCompressionInformation
o FileCopyOnWriteInformation
o FileCompletionInformation
o FileMoveClusterInformation
o FileOleClassIdInformation
o FileOleStateBitsInformation
o FileApplicationExplorableInformation
o FileApplicationExplorableChildrenInformation
o FileObjectIdInformation
o FileOleAllInformation
o FileContentIndexInformation
o FileInheritContentIndexInformation
o FileOleInformation

- Added new NtQueryOleDirectoryFile API description.
- Added new FileOleDirectoryInformation directory information class and

its associated structure type definition.
- Added new directory query information class for OLE files.
- Added query and set volume information class information values and

its associated type definitions for FileFsControlInformation
- Added new NtQueryQuotaInformationFile and

NtSetQuotaInformationFile API descriptions.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT I/O System Specification 104

- Added new data structure types (FILE_GET_QUOTA_INFORMATION and
FILE_QUOTA_INFORMATION) for the above services.

- Added new NtDeleteFile API description.
- Added new NtQueryAttributesFile API description.
- Added new I/O completion object section for APIs, access rights,

information class values, and data structures.
- Removed old NtDeviceIoControlFile and NtFsControlFile appendicies

to alleviate concerns that they weren’t filled in (since they never
will be populated).

- Added device types for FILE_DEVICE_BATTERY and
FILE_DEVICE_BUS_EXTENDER.

- Removed POSIX and OS/2 subsystem API implementation sections

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

	1. Introduction
	2. Overview
	3. User APIs
	3.1 Create/Open File/Device Services
	3.1.1 Creating and Opening Files
	3.1.2 Opening Files

	3.2 File Data Services
	3.2.1 Reading Files
	3.2.2 Writing Files

	3.3 Directory Manipulation Services
	3.3.1 Enumerating Files in a Directory
	3.3.2 Enumerating Files in an Ole Directory File
	3.3.3 Monitoring Directory Modifications

	3.4 File Services
	3.4.1 Obtaining Information about a File
	3.4.2 Changing Information about a File
	3.4.3 Obtaining Extended Attributes for a File
	3.4.4 Changing Extended Attributes for a File
	3.4.5 Locking Byte Ranges in Files
	3.4.6 Unlocking Byte Ranges in Files

	3.5 File System Services
	3.5.1 Obtaining Information about a File System Volume
	3.5.2 Changing Information about a File System Volume
	3.5.3 Obtaining Quota Information about a File System Volume
	3.5.4 Changing Quota Information about a File System Volume
	3.5.5 Controlling File Systems

	3.6 Miscellaneous Services
	3.6.1 Flushing File Buffers
	3.6.2 Canceling Pending I/O on a File
	3.6.3 Miscellaneous I/O Control
	3.6.4 Deleting a File
	3.6.5 Querying the Attributes of a File

	3.7 I/O Completion Objects
	3.7.1 Creating/Opening I/O Completion Objects
	3.7.1.1 Create/Open I/O Completion Objects
	3.7.1.2 Open I/O Completion Objects

	3.7.2 Operating on I/O Completion Objects
	3.7.2.1 Querying Completion Objects
	3.7.2.2 Setting Completion Objects
	3.7.2.3 Removing Messages from Completion Objects

	4. Naming Conventions
	5. Appendix A - Time Field Changes
	5.1 Last Access Time
	5.2 Last Modify Time
	5.3 Last Change Time

	6. Revision History

