
Portable Systems Group

NT OS/2 IRP Language Definition

Author: Gary D. Kimura

Revision 1.0x, December 15, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 3

1. Introduction...1

2. Valid IRP combination...2
2.1 Disk Driver IRPs...2
2.2 File System IRPs..3
2.3 Keyboard Driver IRPs...5
2.4 Mouse Driver IRPs...5
2.5 Network Drivers IRPs...6
2.6 Sound Driver IRPs..6
2.7 Tape Driver IRPs..6
2.8 Terminal Driver IRPs..6
2.9 Video Driver IRPs...6

3. IRP Function Descriptions..8
3.1 Close...8
3.2 Create..11
3.3 Device Control...19
3.4 Directory Control(Notify Change Directory)...19
3.5 Directory Control(Query Directory)..19
3.6 File System Control(Dismount Volume)...19
3.7 File System Control(Lock Volume)..19
3.8 File System Control(Mount Volume)...19
3.9 File System Control(Query Information File System)........................19
3.10 File System Control(Set Information File System)............................19
3.11 File System Control(Unlock Volume)..19
3.12 File System Control(Verify Volume)...19
3.13 Internal Device Control..19
3.14 Lock Control(Lock)..19
3.15 Lock Control(Unlock All)..19
3.16 Lock Control(Unlock Single)...20
3.17 Query Acl..20
3.18 Query Ea...20
3.19 Query Information..20
3.20 Query Volume Information..20
3.21 Read...20
3.22 Read Terminal..20
3.23 Set Acl..20
3.24 Set Ea...20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 4

3.25 Set Information..20
3.26 Set New Size..20
3.27 Set Volume Information...20
3.28 Write...20

Microsoft Corporation Company Confidential

NT OS/2 IRP Language Definition 1

1. Introduction

The purpose of this chapter is to define the semantic contents of an I/O Request Packet
(IRP). The information contained here is intended for use mainly by Device Driver and
File System developers. The I/O system sends to the various Device Drivers1 a stream
of multiple IRPs that the drivers must interpret and respond to. Figure 1 shows the
relationship between the device driver and the I/O system. Communication between
the I/O system and the Device Driver is through IRPs. This chapter concentrates on the
IRP language.

+--------+ +--------+ +--------+
User	NtCall	I/O	Irp	Device
	---------->	System	---------->	Driver
+--------+ +--------+ +--------+

Figure 1
Logical control flow from user to Device Driver

Each IRP has a well defined format and semantic meaning, and the order in which
they are sent must adhere to certain rules. The ordering of IRPs and responses form a
context sensitive language.

Each IRP contains a common header section followed by one or more function specific
records (also called IRP stack locations). From a Device Drivers viewpoint each IRP
request is a single record describing one function to perform. That is, the drivers only
interpret one function specific record. The additional stack locations are for use when
a driver issues subsequent IRPs to a lower level driver and wishes to reuse the original
IRP.

Each IRP function is identified by a major and minor function field in the IRP stack
location record. The list of possible function combinations are listed below. Each line
lists a major function code followed (in paranthesis) by a minor function code. Note
that some major functions (e.g., CREATE) do not make use the minor function field.

1For clarity we will use the term Device Driver to refer to both Device Drivers and File
systems.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 2

CLOSE()
CONFIGURATION_CONTROL(...)
CREATE()
DEVICE_CONTROL(...)
DIRECTORY_CONTROL(NOTIFY_CHANGE_DIRECTORY)
DIRECTORY_CONTROL(QUERY_DIRECTORY)
FILE_SYSTEM_CONTROL(DISMOUNT_VOLUME)
FILE_SYSTEM_CONTROL(LOCK_VOLUME)
FILE_SYSTEM_CONTROL(MOUNT_VOLUME)
FILE_SYSTEM_CONTROL(QUERY_INFO_FILE_SYSTEM)
FILE_SYSTEM_CONTROL(SET_INFO_FILE_SYSTEM)
FILE_SYSTEM_CONTROL(UNLOCK_VOLUME)
FILE_SYSTEM_CONTROL(VERIFY_VOLUME)
INTERNAL_DEVICE_CONTROL(...)
LOCK_CONTROL(LOCK)
LOCK_CONTROL(UNLOCK_ALL)
LOCK_CONTROL(UNLOCK_SINGLE)
QUERY_ACL()
QUERY_EA()
QUERY_INFORMATION()
QUERY_VOLUME_INFORMATION()
READ()
READ_TERMINAL()
SET_ACL()
SET_EA()
SET_INFORMATION()
SET_NEW_SIZE()
SET_VOLUME_INFORMATION()
WRITE()

/* We need to define the minor function codes for the configuration, device,
and internal device function codes. */

Each Device Driver will only receive a combination of the preceding function codes
based on the drivers device type. This means that a file system device driver can
expect to receive different functions than the keyboard device driver, or a disk driver.
The possible device driver types are:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 3

Disk Driver,
File System (including network redirector),
Keyboard Driver,
Mouse Driver,
Network Drivers,
Sound Driver,
Tape Driver,
Terminal Driver, and
Video Driver,

/* We will need to futher expand on the different network device drivers */

The remainder of this chapter describes the valid combination of IRP function codes
that each different device driver can expect to receive. This is followed by a section
listing every IRP function code along with a description of the function's parameters,
semantics, and I/O completion status codes.

2. Valid IRP Function Combinations

The section contains an individual table for each device driver type that lists the set of
valid IRP functions that can be sent to the driver and under what conditions the
functions are sent.

2.1 Disk Driver IRPs

The set of possible IRPs that can be sent to a disk driver are:

IRP Function When sent

CLOSE Anytime.

CREATE Anytime.

DEVICE_CONTROL
(...)

Anytime.

READ Anytime.

WRITE Anytime.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 4

2.2 File System IRPs

The set of possible IRPs that can be sent to a file system are:

IRP Function When sent

CLOSE Only after a successful CREATE and
then only on an opened file. This
closes the file so no other operation
can be performed on the file other
than CREATE.

CREATE Only after a successful
MOUNT_VOLUME and then only on a
mounted volume that is not locked. If
successful the file is considered
opened.

DIRECTORY_CONTROL
(NOTIFY_CHANGE_DIRECTORY)

Only after a successful CREATE and
then only on an opened directory file.

DIRECTORY_CONTROL
(QUERY_DIRECTORY)

Only after a successful CREATE and
then only on an opened directory file.

FILE_SYSTEM_CONTROL
(DISMOUNT_VOLUME)

Only after a successful
MOUNT_VOLUME and then only on a
mounted volume. This dismounts the
volume, so no other operation can be
performed on the volume other than
MOUNT_VOLUME.

FILE_SYSTEM_CONTROL
(LOCK_VOLUME)

Only after a successful CREATE and
then only on an opened file. This locks
the volume containing the file such
that no other creates using the same
volume will succeed until the volume
is unlocked. To be successful, the file
used to lock the volume must also be
the only opened file on the volume.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 5

FILE_SYSTEM_CONTROL
(MOUNT_VOLUME)

Anytime. If the operation is successful
then a new device object for the
volume is created and the volume is
considered mounted and not locked.

FILE_SYSTEM_CONTROL
(QUERY_INFO_FILE_SYSTEM)

Only after a successful CREATE and
then only on an opened file.

FILE_SYSTEM_CONTROL
(SET_INFO_FILE_SYSTEM)

Only after a successful CREATE and
then only on an opened file.

FILE_SYSTEM_CONTROL
(UNLOCK_VOLUME)

Only after a successful CREATE and
then only on a opened file. The file
system must handle the situation
where the user is attempting to unlock
a volume that is not locked. If
successful this operation unlocks a
previously locked volume so that other
creates using the volume can now
succeed.

FILE_SYSTEM_CONTROL
(VERIFY_VOLUME)

Only after a successful
MOUNT_VOLUME and then only on a
mounted volume.

LOCK_CONTROL
(LOCK)

Only after a successful CREATE and
then only on an opened file. If
successful this operation locks a range
of bytes within a file. The locks
remain in affect until they are
explicitly unlocked or the file is closed.

LOCK_CONTROL
(UNLOCK_ALL)

Only after a successful CREATE and
then only on an opened file. The file
system must handle the situation
where an unlock is received even
though there are no outstanding locks
for that user.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 6

LOCK_CONTROL
(UNLOCK_SINGLE)

Only after a successful CREATE and
then only on an opened file. The file
system must handle the situation
where an unlock is received even
though there is not a corresponding
lock.

QUERY_ACL Only after a successful CREATE and
then only on an opened file.

QUERY_EA Only after a successful CREATE and
then only on an opened file.

QUERY_INFORMATION Only after a successful CREATE and
then only on an opened file.

QUERY_VOLUME_INFORMATION Only after a successful CREATE and
then only on an opened file.

READ Only after a successful CREATE and
then only on an opened file.

SET_ACL Only after a successful CREATE and
then only on an opened file.

SET_EA Only after a successful CREATE and
then only on an opened file.

SET_INFORMATION Only after a successful CREATE and
then only on an opened file.

SET_NEW_SIZE Only after a successful CREATE and
then only on an opened file.

SET_VOLUME_INFORMATION Only after a successful CREATE and
then only on an opened file.

WRITE Only after a successful CREATE and
then only on an opened file.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 7

2.3 Keyboard Driver IRPs

The set of possible IRPs that can be sent to the Keyboard driver are:

IRP Function When sent

CLOSE Anytime.

CREATE Anytime.

DEVICE_CONTROL
(...)

Anytime.

QUERY_INFORMATION Anytime.

READ Anytime.

SET_INFORMATION Anytime.

WRITE Anytime.

2.4 Mouse Driver IRPs

The set of possible IRPs that can be sent to the Mouse driver are:

IRP Function When sent

CLOSE Anytime.

CREATE Anytime.

DEVICE_CONTROL
(...)

Anytime.

QUERY_INFORMATION Anytime.

READ Anytime.

SET_INFORMATION Anytime.

WRITE Anytime.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 8

2.5 Network Drivers IRPs

The set of possible IRPs that can be sent to the Network drivers are:

IRP Function When sent

/* This table needs to be filled in */

2.6 Sound Driver IRPs

The set of possible IRPs that can be sent to the Sound driver are:

IRP Function When sent

/* This table needs to be filled in */

2.7 Tape Driver IRPs

The set of possible IRPs that can be sent to the Tape driver are:

IRP Function When sent

/* This table needs to be filled in */

2.8 Terminal Driver IRPs

The set of possible IRPs that can be sent to the Terminal driver are:

IRP Function When sent

/* This table needs to be filled in */

2.9 Video Driver IRPs

The set of possible IRPs that can be sent to the Video driver are:

IRP Function When sent

CLOSE Anytime.

CREATE Anytime.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 9

DEVICE_CONTROL
(...)

Anytime.

QUERY_INFORMATION Anytime.

READ Anytime.

SET_INFORMATION Anytime.

WRITE Anytime.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 10

3. IRP Function Descriptions

This section describes the input parameters and semantics for each IRP function code.
It also discusses the interactions between the parameters and lists possible return
status codes.

The parameter descriptions list all the fields that are used within the IRP by the
operation being described. Each parameter is either Read (i.e., used as input to the
operation), Set (i.e., used as output for the operation), or Ignored. To help distinguish
the parameters we will also use the two terms IrpFlags and FunctionFlags to denote
the flags field of the IRP header and the I/O stack location respectively.

In the description of the return status codes we do not include generic values such as
STATUS_PENDING or STATUS_INVALID_PARAMETER which can be returned for any
IRP. We also do not describe values that can be returned by a lower level device
drivers such as STATUS_PARITY_ERROR.

3.1 Close

The close function is used to close a previously opened file or directory. Its two input
parameters are a device object and an IRP. The device object parameter points to a
volume previously mounted by the Device Driver and is where the file opened file
exists. The IRP contains the close function parameters (and are listed below).

Besides closing the file, this function will optionally deletes the file based upon the
disposition specified by the caller (See the SET_INFORMATION operation). If this is the
last file object with the file opened and the disposition is delete on close then the file is
removed from the on-disk structure.

Close (
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp
);

Parameters within the IRP:

Parameter type and name Description

PMDL Ignored.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 11

MdlAddress

ULONG
IrpFlags

Ignored.

STRING
FileObject->FileName

Ignored.

ULONG
FileObject->RelatedFileObject

Ignored.

PVOID
FileObject->FsContext

Read and Set. The driver uses this
field to retrieve any private data
(established by the CREATE function)
that needs to be processed in order to
close the file. It is set to NULL upon
return from the close function.

PVOID
FileObject->FsContext2

Read and Set. The driver uses this
field to retrieve any private data
(established by the CREATE function)
that needs to be processed in order to
close the file. It is set to NULL upon
return from the close function.

PVOID
FileObject->SectionObjectPointer

Set. The close function must set this
field to NULL.

IO_STATUS_BLOCK
IoStatus

Set. This receives the final return
status of the operation. The possible
return status values are listed later.

PEPROCESS
AlternateProcess

Ignored.

KPROCESSOR_MODE
RequestorMode

Ignored.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 12

PVOID
SystemBuffer

Ignored.

PIO_STATUS_BLOCK
UserIosb

Ignored.

PKEVENT
UserEvent

Ignored.

LARGE_INTEGER
AllocationSize

Ignored.

PVOID
UserBuffer

Ignored.

Parameters within the IRP Stack:

Parameter type and name Description

UCHAR
MajorFunction

Read. Must be equal to IRP_MJ_CLOSE.

UCHAR
MinorFunction

Ignored.

UCHAR
FunctionFlags

Ignored.

UCHAR
Control

Ignored.

Iosb Return Status and Information:

The following status codes are used to complete the CLOSE function.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 13

Return status followed by
information field of IOSB Description

STATUS_SUCCESS
Ignored

Indicates that the opened file has
been closed.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 14

3.2 Create

The create function is used to create or open a file or a directory. Its two input
parameters are a device object and an IRP. The device object parameter points to a
volume previously mounted by the Device Driver and is where the file will exist. The
IRP contains the create function parameters (and are listed below).

Create (
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp
);

Parameters within the IRP:

Parameter type and name Description

PMDL
MdlAddress

Ignored.

ULONG
IrpFlags

Ignored.

STRING
FileObject->FileName

Read. This is the name of the file being
opened.

ULONG
FileObject->RelatedFileObject

Read. This field is used for path
relative file names.

If it is null then the file name is
relative to the root of the volume (e.g.,
"\CONFIG.SYS" is the name of the
configuration file located in root
directory).

If is it not null then it points to a
previously opened file object
representing a directory on the
volume, and the file name is relative to
the specified directory (e.g., if the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 15

related file object is "\NT\SDK" the file
name can be "INC\NTIOAPI.H"). Note
that path relative file names do not
begin with a backslash.

PVOID
FileObject->FsContext

Set. This is used by the Device Driver
to store file object specific information
that can be retrieved later when the
driver is called to perform subsequent
operations on the file.

The FAT file system stores in this field
a pointer to an internal File Control
Block (FCB) structure.

PVOID
FileObject->FsContext2

Set. This is used by the Device Driver
to store file object specific information
that can be retrieved later when the
driver is called to perform subsequent
operations on the file.

The FAT file system only uses this field
for directories. It is a pointer to an
internal Context Control Block (CCB)
structure.

PVOID
FileObject->SectionObjectPointer

Set. It is set to the longword context
for the file. It is not used for
directories. For every opened file the
driver allocates a single longword of
context for exclusive use by the
memory management system. All file
objects that denote the same file point
to the same longword context.

In FAT this is done by reserving a
longword field in the FCB and having
each section object pointer point to

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 16

this field.

IO_STATUS_BLOCK
IoStatus

Set. This receives the final return
status of the operation. The possible
return status values are listed later.

PEPROCESS
AlternateProcess

Ignored.

KPROCESSOR_MODE
RequestorMode

Read. This is the mode of the
requestor. It is used for to help decide
if the requestor has the proper access
rights to the file.

/**** We also need to pass in the token
of the requestor ****/

PVOID
SystemBuffer

Read. This field is only used if the file
is being created and then it only
specifies the optional extended
attributes for the file. If the field is
null the file will not be created with
extended attributes. The create
operation must complete with an error
if there are any problems with the
extended attributes.

For FAT there is a 64K limit to the size
of the extended attributes (as packed
on the disk). The create operation will
complete with an error if this limit is
exceeded.

PIO_STATUS_BLOCK
UserIosb

Ignored.

PKEVENT
UserEvent

Ignored.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 17

LARGE_INTEGER
AllocationSize

Read. This field is only used if the file
is being created and is ignored for
directories and for open operations. It
specifies the initial file allocation in
bytes to allocate to the file. This is not
the same as the end-of-file location.

PVOID
UserBuffer

Ignored.

Parameters within the IRP Stack:

Parameter type and name Description

UCHAR
MajorFunction

Read. Must be equal to
IRP_MJ_CREATE.

UCHAR
MinorFunction

Ignored.

UCHAR
FunctionFlags

Ignored.

UCHAR
Control

Ignored.

ULONG
DesiredAccess

Read. This is the access mask that the
user is trying to acquire to the file. If
the user is trying to open a file the
mask will be a combination of the
following values:

DELETE,
READ_CONTROL,
WRITE_DAC,
WRITE_OWNER,
SYNCHRONIZE,
FILE_READ_DATA,

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 18

FILE_WRITE_DATA,
FILE_APPEND_DATA,
FILE_READ_EA,
FILE_WRITE_EA,
FILE_EXECUTE,
FILE_READ_ATTRIBUTES, and
FILE_WRITE_ATTRIBUTES.

If the user is trying to open a directory
the mask will be a combination of the
following values:

DELETE,
READ_CONTROL,
WRITE_DAC,
WRITE_OWNER,
SYNCHRONIZE,
FILE_LIST_DIRECTORY,
FILE_ADD_FILE,
FILE_ADD_SUBDIRECTORY,
FILE_READ_EA,
FILE_WRITE_EA,
FILE_TRAVERSE,
FILE_DELETE_CHILD,
FILE_READ_ATTRIBUTES, and
FILE_WRITE_ATTRIBUTES.

The driver must ensure that the
combination of the caller's privileges
and requestor's mode grants all of the
desired accesses that the user is trying
to acquire.

ULONG
Options

Read. This field contains all of the
different create options and create

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 19

disposition flags that the user can
specify in an NT call. The valid flags
and their meanings are listed below:

FILE_CREATE_DIRECTORY Read. Indicates that the user is
creating a new directory.

FILE_OPEN_DIRECTORY Read. Indicates that the user is
opening an existing directory.

FILE_WRITE_THROUGH Ignored, but saved away for use by
subsequent read and write
operations to the file object.

FILE_SEQUENTIAL_ONLY Ignored, but saved away for use by
subsequent read and write
operations to the file object.

FILE_MAPPED_IO Ignored, but saved away for use by
subsequent read and write
operations to the file object.

FILE_DISABLE_CACHING Ignored, but saved away for use by
subsequent read and write
operations to the file object.

FILE_SYNCHRONOUS_IO_ALERT Ignored.

FILE_SYNCHRONOUS_IO_NONALERT Ignored.

FILE_CREATE_TREE_CONNECTION Read. Only used by the network.

/**** need a complete description
of this parameter ****/

FILE_SUPERSEDE << 242 Read. Indicates that if the file
already exists it should be

2To test if the flags FILE_SUPERSEDE, FILE_OPEN, FILE_CREATE, and FILE_OPEN_IF are
in the options parameter the driver must first shift the flag 24 bits to the left and then
do the test (e.g., Option & (FILE_SUPERSEDE << 24)).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 20

superseded, and if the file does not
exist it should be created.

FILE_CREATE << 24 Read. Indicates that if the file
already exists it is an error, and if
the file does not exist it should be
created.

FILE_OPEN << 24 Read. Indicates that if the file
already exists it is to be opened,
and if the file does not exist it is an
error.

FILE_OPEN_IF << 24 Read. Indicates that if the file
already exists it is to be opened,
and if the file does not exist it
should be created.

/**** We need a list of the illegal flag
combinations, and state that they will
never be seen in an IRP ****/

USHORT
FileAttributes

Read. This field specifies the DOS file
attributes to use when creating or
superseding a file, and is ignored
when opening an existing file. It is a
combination of any of the following
flags:

FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_CONTROL, and
FILE_ATTRIBUTE_NORMAL

The flag FILE_ATTRIBUTE_NORMAL
overrides all other file attribute flags.
(i.e., if the user specifies normal and

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 21

readonly then the file is created as a
normal file and not readonly).

USHORT
ShareAccess

Read. This field specifies the share
mode access between processes trying
to open the same file. All users that
open a file for shared access must
specify the exact same share flags.
This is separate from their desired
access. For example a file opened
shared read, write, and delete, must be
opened by all users as shared read,
write, and delete even though the
desired access might only specify read
access.

The valid flags and their meanings are
listed below:

FILE_SHARE_READ Read. Indicates that the file can be
opened by others for read access.
If the file is already opened for
shared read access then other users
can open it for read access.

FILE_SHARE_WRITE Read. Indicates that the file can be
opened by others for write access.
If the file is already opened for
shared write access then other
users can open it for write access.

FILE_SHARE_DELETE Read. Indicates that the file can be
opened by others for delete access.
If the file is already opened for
shared delete access then other
users can open it for delete access.

FILE_SHARE_RENAME Read. Indicates that the file can be
renamed by others. If the file is

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 22

already opened for shared
renamed access then other users
can rename the file.

The test that a user requesting shared
read, write, or delete can be done by the
Device Driver during the create operation
(i.e., a user is allowed read access to a
shared file if the shared access flags
match, shared read is specified, and the
file's security protection allows for read
access). The test for rename access must
be deferred until the a rename IRP is
processed (see the Set Information IRP
description).

ULONG
EaLength

Read. This parameter is specified only
if the user is creating or superseding a
file and has specified an EA for the file.
This parameter is then the size, in
bytes, of the EA set specified by the
user. (i.e., it is the size of the system
buffer parameter).

Iosb Return Status and Information:

The following status codes are used to complete the CREATE function.

Return status followed by
information field of IOSB Description

STATUS_SUCCESS
FILE_OPENED

Indicates that an existing file has
been successfully located and
opened.

STATUS_SUCCESS
FILE_SUPERSEDED

Indicates that an existing file has
been successfully located and

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 23

superseded.

STATUS_SUCCESS
FILE_CREATED

Indicates that an existing file (of the
same name) does not exist and that
a new file has been successfully
created.

STATUS_ACCESS_DENIED
Ignored

Indicates that because of protection
on the file, parent directory, or
volume access has been denied to
the file. This can also occur if the
caller specified options or share
access flags are not compatible
with either the file or the previous
share access that it was opened
with.

STATUS_OBJECT_NAME_INVALID
Ignored

Indicates that the last name in the
object's file name field does not
contain a syntactically valid name
(e.g., it's too long or contains invalid
characters).

STATUS_OBJECT_NAME_NOT_FOUND
Ignored

Indicates that the last name in the object's
file name field is not the name of an
existing file.

STATUS_OBJECT_PATH_INVALID
Ignored

Indicates that a name within the path
part of the object's file name field does
not contain a syntactically valid name.

STATUS_OBJECT_PATH_NOT_FOUND
Ignored

Indicates that a name within the path
part of the object's file name field does
not contain the name of an existing
directory.

STATUS_DISK_FULL_ERROR
Ignored

Indicates that because the disk is full the
file cannot be created. This can occur
when disk space cannot be allocated for

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 24

the directory entry, file node, or the
extended attributes.

STATUS_DISK_FULL_WARNING
FILE_SUPERSEDED

Indicates that the file has been
superseded but because the disk is full
the file cannot be given the user specified
file allocation size.

STATUS_DISK_FULL_WARNING
FILE_CREATED

Indictes that the file has been created but
because the disk is full the file cannot be
given ths user specified file allocation
size.

STATUS_EA_INVALID
Ignored

Indicates that the EA structure passed
into this function is syntactically invalid.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 25

3.3 Device Control

3.4 Directory Control(Notify Change Directory)

3.5 Directory Control(Query Directory)

3.6 File System Control(Dismount Volume)

3.7 File System Control(Lock Volume)

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 26

3.8 File System Control(Mount Volume)

The mount function is used mount a new disk volume. Its two input parameters are a
device object and an IRP. The device object parameter points to the Device Drivers
original device object that is created when the driver is initialized.

The mount operation can handle mounting new volume, and remounting a previously
mounted volume. The parameter description that follows assumes that it is processing
a new volume. At the end of the description we cover the updating required for the
remount case.

Mount (
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp
);

Parameters within the IRP:

Parameter type and name Description

PMDL
MdlAddress

Ignored.

ULONG
IrpFlags

Ignored.

PFILE_OBJECT
FileObject

Ignored.

IO_STATUS_BLOCK
IoStatus

Set. This receives the final return
status of the operation. The possible
return status values are listed later.

PEPROCESS
AlternateProcess

Ignored.

KPROCESSOR_MODE
RequestorMode

Ignored.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 27

PVOID
SystemBuffer

Ignored.

PIO_STATUS_BLOCK
UserIosb

Ignored.

PKEVENT
UserEvent

Ignored.

LARGE_INTEGER
AllocationSize

Ignored.

PVOID
UserBuffer

Ignored.

Parameters within the IRP Stack:

Parameter type and name Description

UCHAR
MajorFunction

Read. Must be equal to
IRP_MJ_FILE_SYSTEM_CONTROL.

UCHAR
MinorFunction

Read. Must be equal to
IRP_MN_MOUNT_VOLUME.

UCHAR
FunctionFlags

Ignored.

UCHAR
Control

Ignored.

PDEVICE_OBJECT
Vpb->DeviceObject

Set. If the mount is successful this
field is set the point to the newly
allocated device object for the volume.
If the mount is unsuccessful or this is a
remount then this field is not updated.

ULONG
Vpb->DeviceObject->Flags

Set. If the mount is successful then the
flag DO_DIRECT_IO is set in the newly

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 28

created device objects flags field.
Setting this flag allows the Device
Driver to receive unbuffered I/O
requests for this volume.

ULONG
Vpb->SerialNumber

Set. If the mount is successful this
field is set to the serial number found
on the volume. It is ignored if the
mount is unsuccessful or in the case of
a remount.

CHAR
Vpb->VolumeName[20]

Set. If the mount is successful this
field is set to the label found on the
volume. If the volume does not have a
label then this field should be set to all
spaces.

For FAT the volume label, if present, is
found in the root directory as a special
dirent.

PDEVICE_OBJECT
DeviceObject

Read. This is the device object that the
Device Driver is to use when
formulating IRPs to read or write to
the volume. It is also called the target
device object. If the volume is
mounted successful this value must be
remembered so the driver can handle
subsequent requests to the volume.

Iosb Return Status and Information:

The following status codes are used to complete the MOUNT function.

Return status followed by
information field of IOSB Description

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 29

STATUS_SUCCESS
Ignored

Indicates that the volume has been
successful mounted.

STATUS_WRONG_VOLUME
Ignored

Indicates that the volume cannot be
mounted either because it does not
recognize the on-disk structure or
the on-disk structure has been
currupted.

Mounting a new volume:

The following figure shows the major I/O structures after processing a successful
mount request.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 30

 +---------------+<-------+
 Irp->DeviceObject - - -> | | |
 +---------------+ |
 |
 +---------------+<----+ |
 Irp->Vpb - - - - - - -> | | | |
 | DeviceObject |--+ | | |
 | SerialNumber | | | |
 | VolumeName | | | |
 +---------------+ | | |
 | | |
 +---------------+<-+ | |
 | Newly | | |
 | Allocated | | |
 | Device | | |
 | Object | | |
 |...............| | |
 | | | |
 | Device Driver |-----+ |
 | Private Data |--------+
 | |
 +---------------+

 The I/O structures after a mount operation

In the preceding figure the newly allocated device object has immediately following it
a Device Driver private data record that is for used only by the driver. This technique
should be used in the driver to keep track of the VPB and the device object where it is
to send its read and write requests. It should also be used to link together all of the
mounted volumes serviced by the driver.

Remounting a volume:

By using the device driver private data record to maintain a link of all mounted
volumes a Device Driver can determine if a mount request for a volume matches a

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 31

previously mounted volume (They match if the both volume have the same serial
number and volume label). The following figure shows the major I/O structure after
processing a remount.

 +---------------+<-------+
 Irp->DeviceObject -> | | |
 +---------------+ |
 |
 +---------------+ |
 Irp->Vpb - - - - -> | | |
 | RealDevice |--------|----> +---+
 +---------------+ | +-> | |
 | | | |
 +---------------+<----+ | | | |
 | | | | | +---+
 | RealDevice |-----|--|--+
 | DeviceObject |--+ | |
 +---------------+ | | |
 | | |
 +---------------+<-+ | |
 | Previously | | |
 | Allocated | | |
 | Device | | |
 | Object | | |
 |...............| | |
 | | | |
 | Device Driver |-----+ |
 | Private Data |--------+
 | |
 +---------------+

 The I/O structures after a remount operation

The remount operation does not allocate any new structures, instead it it performs the
following operations:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 32

o The Device Drivers Private Data pointer to the target device object is changed to
point to the new target device object.

o The RealDevice field of the Vpb that we previously mounted is set to the
RealDevice field of the new Vpb that was passed in as a parameter in the IRP.

o The Irp->Vpb is deallocated from pool by the device driver, and complete the
mount request with STATUS_SUCCESS.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 33

3.9 File System Control(Query Information File System)

3.10 File System Control(Set Information File System)

3.11 File System Control(Unlock Volume)

3.12 File System Control(Verify Volume)

3.13 Internal Device Control

3.14 Lock Control(Lock)

3.15 Lock Control(Unlock All)

3.16 Lock Control(Unlock Single)

3.17 Query Acl

3.18 Query Ea

3.19 Query Information

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 34

3.20 Query Volume Information

3.21 Read

3.22 Read Terminal

3.23 Set Acl

3.24 Set Ea

3.25 Set Information

3.26 Set New Size

3.27 Set Volume Information

3.28 Write

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 IRP Language Definition 35

Revision History

Original Draft 1.0, December 15, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

	1. Introduction
	2. Valid IRP Function Combinations
	2.1 Disk Driver IRPs
	2.2 File System IRPs
	2.3 Keyboard Driver IRPs
	2.4 Mouse Driver IRPs
	2.5 Network Drivers IRPs
	2.6 Sound Driver IRPs
	2.7 Tape Driver IRPs
	2.8 Terminal Driver IRPs
	2.9 Video Driver IRPs

	3. IRP Function Descriptions
	3.1 Close
	3.2 Create
	3.3 Device Control
	3.4 Directory Control(Notify Change Directory)
	3.5 Directory Control(Query Directory)
	3.6 File System Control(Dismount Volume)
	3.7 File System Control(Lock Volume)
	3.8 File System Control(Mount Volume)
	3.9 File System Control(Query Information File System)
	3.10 File System Control(Set Information File System)
	3.11 File System Control(Unlock Volume)
	3.12 File System Control(Verify Volume)
	3.13 Internal Device Control
	3.14 Lock Control(Lock)
	3.15 Lock Control(Unlock All)
	3.16 Lock Control(Unlock Single)
	3.17 Query Acl
	3.18 Query Ea
	3.19 Query Information
	3.20 Query Volume Information
	3.21 Read
	3.22 Read Terminal
	3.23 Set Acl
	3.24 Set Ea
	3.25 Set Information
	3.26 Set New Size
	3.27 Set Volume Information
	3.28 Write

