
Portable Systems Group

NT OS/2 Kernel Specification

Author: David N. Cutler,
 Bryan M. Willman

Original Draft 1.0, March 8, 1989
Revision 1.1, March 16, 1989
Revision 1.2, March 29, 1989
Revision 1.3, April 18, 1989
Revision 1.4, May 4, 1989
Revision 1.5, May 8, 1989
Revision 1.6, August 14, 1989
Revision 1.7, November 15, 1989
Revision 1.8, November 16, 1989
Revision 1.9, November 17, 1989
Revision 1.10, January 6, 1990
Revision 1.11, June 6, 1990
Revision 1.12, September 19, 1990
Revision 1.13, March 11, 1991

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification

Revision 1.14, May 2, 1991
Revision 1.15, May 28, 1991
Revision 1.16, June 18, 1991
Revision 1.17, August 7, 1991
Revision 1.18, August 8, 1991

Microsoft Company Confidential

NT OS/2 Kernel Specification 3

1. Overview... 1
1.1 Kernel Execution Environment... 1
1.2 Kernel Use of Hardware Priority Levels... 2
1.3 Primary Kernel Data Structures.. 3
1.4 Multiprocessor Synchronization... 4

1.4.1 Executive Multiprocessor Synchronization.................................. 6
1.4.1.1 Acquire Executive Spin Lock... 6
1.4.1.2 Release Executive Spin Lock... 7

1.5 Dispatching.. 7
1.5.1 Dispatcher Database.. 8
1.5.2 Idle Thread... 8

2. Kernel Objects.. 9
2.1 Dispatcher Objects... 9

2.1.1 Event Object... 9
2.1.1.1 Initialize Event.. 11
2.1.1.2 Pulse Event... 11
2.1.1.3 Read State Event.. 12
2.1.1.4 Reset Event... 12
2.1.1.5 Set Event... 12

2.1.2 Mutual Exclusion Objects... 13
2.1.2.1 Mutant Object.. 14
2.1.2.1.1 Initialize Mutant.. 14
2.1.2.1.2 Read State Mutant.. 15
2.1.2.1.3 Release Mutant... 15
2.1.2.2 Mutex Object.. 16
2.1.2.2.1 Initialize Mutex... 17
2.1.2.2.2 Read State Mutex... 17
2.1.2.2.3 Release Mutex... 18
2.1.2.2.4 Mutex Contention Data... 19

2.1.3 Semaphore Object.. 19
2.1.3.1 Initialize Semaphore... 20
2.1.3.2 Read State Semaphore... 20
2.1.3.3 Release Semaphore... 20

2.1.4 Thread Object.. 21
2.1.4.1 Initialize Thread... 24
2.1.4.2 Alert Thread.. 26
2.1.4.3 Alert and Resume Thread... 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 4

2.1.4.4 Confine Thread.. 27
2.1.4.5 Delay Execution .. 28
2.1.4.6 Disable Queuing of APCs.. 29
2.1.4.7 Enable Queuing of APCs... 29
2.1.4.8 Force Resumption of Thread.. 30
2.1.4.9 Freeze Thread.. 30
2.1.4.10 Query Data Alignment Mode... 31
2.1.4.11 Query Base Priority... 32
2.1.4.12 Read State Thread... 32
2.1.4.13 Ready Thread... 32
2.1.4.14 Resume Thread.. 33
2.1.4.15 Rundown Thread... 33
2.1.4.16 Set Affinity Thread... 34
2.1.4.17 Set Data Alignment Mode.. 34
2.1.4.18 Set Base Priority... 35
2.1.4.19 Set Priority Thread.. 35
2.1.4.20 Suspend Thread... 36
2.1.4.21 Terminate Thread.. 37
2.1.4.22 Test Alert Thread... 37
2.1.4.23 Unfreeze Thread.. 38
2.1.4.24 Thread Performance Data.. 39

2.1.5 Timer Object.. 39
2.1.5.1 Initialize Timer... 39
2.1.5.2 Cancel Timer... 40
2.1.5.3 Read State Timer... 40
2.1.5.4 Set Timer... 40

2.2 Control Objects... 41
2.2.1 Asynchronous Procedure Call (APC) Object................................. 41

2.2.1.1 Initialize APC... 43
2.2.1.2 Flush Queue APC... 45
2.2.1.3 Insert Queue APC.. 46
2.2.1.4 Remove Queue APC.. 47

2.2.2 Deferred Procedure Call (DPC) Object.. 47
2.2.2.1 Initialize DPC.. 48
2.2.2.2 Insert Queue DPC.. 49
2.2.2.3 Remove Queue DPC.. 49

2.2.3 Device Queue Object.. 50

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 5

2.2.3.1 Initialize Device Queue... 51
2.2.3.2 Insert Device Queue.. 51
2.2.3.3 Insert By Key Device Queue... 52
2.2.3.4 Remove Device Queue.. 52
2.2.3.5 Remove Entry Device Queue.. 53

2.2.4 Interrupt Object... 54
2.2.4.1 Initialize Interrupt.. 55
2.2.4.2 Connect Interrupt.. 58
2.2.4.3 Disconnect Interrupt... 58
2.2.4.4 Synchronize Execution.. 59

2.2.5 Power Notify Object.. 60
2.2.5.1 Initialize Power Notify... 61
2.2.5.2 Insert Power Notify... 61
2.2.5.3 Remove Power Notify... 62

2.2.6 Power Status Object.. 62
2.2.6.1 Initialize Power Status... 63
2.2.6.2 Insert Power Status... 63
2.2.6.3 Remove Power Status... 64

2.2.7 Process Object... 64
2.2.7.1 Initialize Process.. 65
2.2.7.2 Attach Process.. 66
2.2.7.3 Detach Process.. 67
2.2.7.4 Exclude Process... 67
2.2.7.5 Include Process.. 68
2.2.7.6 Set Priority Process.. 68
2.2.7.7 Process Accounting Data.. 69

2.2.8 Profile Object... 69
2.2.8.1 Initialize Profile.. 70
2.2.8.2 Start Profile... 70
2.2.8.3 Stop Profile... 71
2.2.8.4 Set System Profile Interval... 71
2.2.8.5 Query System Profile Interval.. 72

3. Wait Operations... 72
3.1 Wait For Multiple Objects.. 73
3.2 Wait For Single Object.. 75

4. Miscellaneous Operations.. 77

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 6

4.1 Bug Check.. 77
4.2 Context Frame Manipulation.. 78

4.2.1 Move Machine State To Context Frame....................................... 78
4.2.2 Move Machine State From Context Frame.................................. 79

4.3 Fill Entry Translation Buffer... 80
4.4 Flush Data Cache.. 81
4.5 Flush Entire Translation Buffer... 82
4.6 Flush Instruction Cache... 82
4.7 Flush I/O Buffers... 83
4.8 Flush Single Translation Buffer Entry... 84
4.9 Freeze Execution... 86
4.10 Get Current APC Environment.. 86
4.11 Get Current IRQL.. 86
4.12 Get Previous Mode... 86
4.13 Lower IRQL.. 87
4.14 Query System Time.. 87
4.15 Raise IRQL.. 87
4.16 Run Down Thread... 88
4.17 Set System Time.. 88
4.18 Stall Execution... 89
4.19 Unfreeze Execution.. 89

5. Intel x86 Specific Functions.. 90
5.1 Load an Ldt for a process.. 90
5.2 Set and Entry in a Process's Ldt.. 90
5.3 Get an Entry from a Thread's Gdt... 91

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 1

1. Overview

This specification describes the kernel layer of the NT OS/2 operating system. The
kernel is responsible for thread dispatching, multiprocessor synchronization, hardware
exception handling, and the implementation of low-level machine dependent functions.

The kernel is used by the executive layer of the system to synchronize its activities and
to implement the higher levels of abstraction that are exported in user-level API's.

Generally speaking, the kernel does not implement any policy since this is the province
of the executive. However, there are some places where policy decisions are made by
the kernel. These include the way in which thread priority is manipulated to maximize
responsiveness to dispatching events (e.g., the input of a character from a keyboard).

The kernel executes entirely in kernel mode and is nonpageable. It guards access to
critical data by raising the processor Interrupt Request Level (IRQL) to an appropriate
level and then acquiring a spin lock.

The primary functions provided by the kernel include:

o Support of kernel objects

o Trap handling and exception dispatching

o Interrupt handling and dispatching

o Multiprocessor coordination and context switching

o Power failure recovery

o Miscellaneous hardware-specific functions

It is estimated that the kernel will be less than 48k bytes of resident nonpageable code
exclusive of the IEEE exception handling code.

1.1 Kernel Execution Environment

The kernel executes in the most privileged processor mode, usually at an Interrupt
Request Level (IRQL) of DISPATCH_LEVEL. The most privileged processor mode is
termed kernel mode.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 2

\ On the N10 and the x86 architectures the most privileged processor mode is called
supervisor mode. However, in other architectures (e.g., MIPS), the most privileged
processor mode is not called supervisor mode. Furthermore, still other architectures
include a supervisor mode, but it is not the most privileged mode. Therefore, since it is
intended that NT OS/2 be portable and capable of running across several
architectures, the most privileged processor mode will be referred to as kernel mode. \

The kernel can execute simultaneously on all processors in a multiprocessor
configuration and synchronize access to critical regions as appropriate.

Software within the kernel is not preemptible and, therefore, cannot be context
switched, whereas all software outside the kernel is almost always preemptible and
context switchable. In general, executive software outside the kernel is not allowed to
raise the IRQL above APC_LEVEL. However, device drivers and executive spin lock
synchronization are exceptions to this rule.

The kernel is not pageable and cannot take page faults.

Software within the kernel is written in C and assembly language. Assembly language is
used for:

o Trap handling

o Spin locks

o Context switching

o Interval timer interrupt

o Power failure interrupt

o Interprocessor interrupt

o I/O Interrupt dispatching

o Machine check processing

o Asynchronous Procedure Call dispatching

o Deferred Procedure Call dispatching

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 3

o A small piece of thread startup

o A small piece of system initialization

It is estimated that the number of lines of assembly code within the kernel will be less
than 3k.

1.2 Kernel Use of Hardware Priority Levels

Hardware Interrupt Request Levels (IRQL's) are used to prioritize the execution of the
various kernel components. IRQL's are hierarchically ordered and each distinct level
disables interrupts on lower levels while the respective level is active. The IRQL is raised
when hardware and software interrupt requests are granted and by the kernel when
synchronization with the possible occurrence of an interrupt is desired.

The kernel uses the hardware Interrupt Request Levels (IRQL's) as follows:

LOW_LEVEL - Thread execution

APC_LEVEL - Asynchronous Procedure Call interrupt

DISPATCH_LEVEL - Dispatch and Deferred Procedure Call interrupt

WAKE_LEVEL - Wake system debugger interrupt

Device levels - Device interrupts

CLOCK2_LEVEL - Interval timer clock interrupt

IPI_LEVEL - Interprocessor interrupt

POWER_LEVEL - Power failure interrupt

HIGH_LEVEL - Machine check and bus error interrupts

The level LOW_LEVEL is reserved for normal thread execution and enables all other
interrupts.

The levels APC_LEVEL and DISPATCH_LEVEL are software interrupts and are requested
only by the kernel itself. They are located below all hardware interrupt priority levels.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 4

The level WAKE_LEVEL may or may not be present depending on the host hardware
configuration and capabilities. It is intended for use in notifying the kernel debugger.

Device interrupt levels are generally placed between the levels WAKE_LEVEL and
CLOCK2_LEVEL.

The levels CLOCK2_LEVEL, IPI_LEVEL, POWER_LEVEL, AND HIGH_LEVEL are the highest
priority levels and are the most time critical.

\ The exact specification of interrupt levels is dependent on the host system
architecture. The above discussion only defines the importance of the various levels,
and does not attempt to assign a numeric value of each level. \

1.3 Primary Kernel Data Structures

The primary kernel data structures include:

o Interrupt Dispatch Table (IDT) - This is a software maintained table that associates
an interrupt source with an Interrupt Service Routine (ISR).

o Processor Control Registers (PCR's) - This is a set of four registers that appear in
the same physical address on each processor in a multiprocessor configuration.
These registers hold a pointer to the Processor Control Block (PRCB), a pointer to
the current thread's Thread Environment Block (TEB), a pointer to the currently
active thread, and a temporary location used by the trap handler to save the
contents of the stack pointer. On a single processor implementation the PCR is
located in main memory.

o Processor Control Block (PRCB) - This structure holds per processor information
such as a pointer to the next thread selected for execution on the respective
processor. There is a PRCB for each processor in a multiprocessor configuration.
The address of this structure can always be obtained from a fixed virtual address
on any processor.

o An array of pointers to PRCB's - This array is used to address the PRCB of another
processor. It is used when another processor must be interrupted to performed
some desired operation.

o Kernel objects - These are the data abstractions that are necessary to control
processor execution and synchronization (e.g., thread object, mutex object, etc.).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 5

Functions are provided to initialize and manipulate these objects in a
synchronized fashion.

o Dispatcher database - This is the database that is required to record the
execution state of processors and threads. It is used by the thread dispatcher to
schedule the execution of threads on processors.

o Timer queue - This is a list of timers that are due to expire at some future point in
time. The timer queue is actually implemented as a splay tree (nearly balanced
binary tree maintained by splay transformations).

o Deferred Procedure Call (DPC) queue - This is a list of requests to call a specified
procedure when the IRQL falls below DISPATCH_LEVEL.

o Power restoration notify and status queues - These are lists of power notify and
status objects that are to be acted upon if power fails and is later restored
without the contents of volatile memory being lost.

1.4 Multiprocessor Synchronization

At various stages during its execution, the kernel must guarantee that one, and only
one, processor at a time is active within a given critical region. This is necessary to
prevent code executing on one processor from simultaneously accessing and modifying
data that is being accessed and modified from another processor. The mechanism by
which this is achieved is called a spin lock.

Spin locks are used when mutual exclusion must exist across all processors and context
switching cannot take place. A spin lock takes its name from the fact that, while waiting
on the spin lock, software continually tries to gain entry to a critical region and makes
no progress until it succeeds.

Spin locks are implemented with a test and set operation on a lock variable. When
software executes a test and set operation and finds the previous state of the lock
variable free, entry to the associated critical region is granted. If, however, the previous
state of the lock variable is busy, then the test and set operation on the lock variable is
simply repeated until the previous state is found to be free.

\ The exact instructions that are used to implement spin locks are processor
architecture specific. In most architectures the test and set operation is not repeated
continuously, but rather once finding the lock busy, ordinary instructions are used to

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 6

poll the lock until it is free. Another test and set operation is then performed to retest
the lock. This guarantees a minimum of bus contention during spin lock sequences. \

Spin locks can only be operated on from a safe interrupt request level. This means that
any attempt to acquire a particular spin lock must be at the highest IRQL from which
any other attempt to acquire the same spin lock could be made on the same processor.
If this restriction were not followed, then deadlock could occur when code running at a
lower IRQL acquired a spin lock and then was interrupted by a higher-level interrupt
whose Interrupt Service Routine (ISR) also attempted to acquire the spin lock.

The kernel uses various spin locks to synchronize access to the objects and data
structures it supports. These include:

o Dispatcher Database - The dispatcher database describes the scheduling state of
the system. Whenever a change is made to the dispatching state of the system
(e.g., the occurrence of an event), the dispatcher database spin lock must be
acquired at IRQL DISPATCH_LEVEL.

o Power Restoration Notify Queue - The power restoration notify queue enables a
device driver to be asynchronously notified when power is restored after a
failure. Whenever an insertion or removal is made to/from this queue, the power
notify queue spin lock must be acquired at IRQL DISPATCH_LEVEL.

o Power Restoration Status Queue - The power restoration status queue provides
the capability to have a specified boolean variable set to a value of TRUE when
power is restored after a failure. Whenever an insertion or removal is made
to/from this queue, the power status queue spin lock must be acquired at IRQL
POWER_LEVEL.

o Device Queues - A device queue is used to pass an I/O Request Packet (IRP)
between a thread and a device driver. Whenever an insertion or removal is made
to/from a device queue, the associated device queue spin lock must be acquired
at IRQL DISPATCH_LEVEL.

o Interrupts - Each connected interrupt object has a spin lock that prevents the
associated Interrupt Service Routine (ISR) from executing at the same time as
other device driver code that accesses the same device resources. Whenever an
interrupt occurs and the ISR executes, the associated spin lock must be acquired
at the IRQL of the interrupting source. Likewise, device driver code must acquire

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 7

the associated spin lock at the IRQL of the interrupting source when
synchronization with the ISR is required.

o Processor Request Queue - Each processor has a request queue that is used by
other processors to signal an action to be performed. Whenever an entry is
inserted into or removed from this queue, the associated processor request
queue spin lock must be acquired at IRQL IPI_LEVEL.

o Kernel Debugger - The kernel debugger is used to debug the kernel which can be
in execution on several processors simultaneously. Whenever the debugger is
entered, the kernel debugger spin lock must be acquired at IRQL HIGH_LEVEL.

/ The actual implementation of spin locks may be optimized in a uniprocessor
system. This could be done by either generating the system specifically for a
uniprocessor system with conditionalized code or by dynamically modifying the
code at boot time such that only IRQL is used to synchronize kernel execution. /

1.4.1 Executive Multiprocessor Synchronization

Executive software outside the kernel also has the requirement to synchronize access to
resources in a multiprocessor environment. Unlike the kernel, however, executive
software can use kernel dispatcher objects (e.g., mutexes, semaphores, events, etc.), as
well as spin locks, to implement mutually exclusive access.

Kernel dispatcher objects allow the processor to be redispatched (context switched) and
should be used when the wait or access time to a resource is liable to be lengthy (e.g.
greater than 25 microseconds on an i860). Spin locks should be used when the wait or
access time to a resource is short and does not involve complicated interactions with
other code.

Executive spin locks could cause serious maintenance problems if not used judiciously.
In particular, no deadlock protection is performed and dispatching is disabled while the
executive owns a spin lock. Therefore, certain rules must be followed by executive
software when using spin locks:

1. The code within a critical region that is guarded by an executive spin lock must
not be pageable and must not make any references to pageable data.

2. An executive spin lock can only be acquired from IRQL's 0, APC_LEVEL, and
DISPATCH_LEVEL.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 8

3. The code within a critical region that is guarded by an executive spin lock cannot
call any external procedures, nor can it generate any software conditions or
hardware exceptions.

Programming interfaces that support executive spin locks include:

KeAcquireSpinLock - Acquire an executive spin lock
KeReleaseSpinLock - Release an executive spin lock.

1.4.1.1 Acquire Executive Spin Lock

An executive spin lock can be acquired with the KeAcquireSpinLock function:

VOID
KeAcquireSpinLock (

IN PKSPIN_LOCK SpinLock,
OUT PKIRQL OldIrql
);

Parameters:

SpinLock - A pointer to an executive spin lock.

OldIrql - A pointer to a variable that receives the previous IRQL.

The previous IRQL is saved in the OldIrql parameter, the current IRQL is raised to
DISPATCH_LEVEL, and the specified spin lock is acquired. The previous IRQL value must
be specified when the spin lock is released.

1.4.1.2 Release Executive Spin Lock

An executive spin lock can be released with the KeReleaseSpinLock function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 9

VOID
KeReleaseSpinLock (

IN PKSPIN_LOCK SpinLock,
IN KIRQL OldIrql
);

Parameters:

SpinLock - A pointer to an executive spin lock.

OldIrql - The IRQL at which the executive spin lock was acquired.

The specified spin lock is released and the current IRQL is set to the specified value.

1.5 Dispatching

The kernel dispatches threads for execution according to their software priority level.

There are 32 levels of thread priority which are split into two classes:

o Realtime

o Variable

The priority of threads within the realtime priority class is not altered by the kernel.
However, as quantum end events occur, the threads within a level are round robin
scheduled.

The priority of threads within the variable priority class is altered by the kernel,
dependent on the execution profile of the respective threads. At each quantum end
event, the priority of the executing thread is decremented and a decision is made as to
whether it should be preempted by another thread. If it should be preempted to
execute a higher priority thread, then a context switch occurs. When a thread in the
variable priority class transitions from a Waiting state to a Ready state, it is given a
priority boost that is dependent on the type of event that caused the Wait to be
satisifed. If the event was keyboard input, for instance, the thread would get a large
boost. However, if the event was file I/O it would be given a smaller boost.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 10

When a thread is readied for execution, an attempt is made to dispatch the thread on
an idle processor. If an idle processor can be selected, then preference is given to the
last processor on which the thread executed.

If an idle processor is not available, then an attempt is made to find a processor that
should be preempted. This determination is made using the active summary and the
active matrix (these structures are described in the following two sections). If an
appropriate processor is located, then preference is given to the last processor on
which the thread executed.

If no processor can be preempted to execute the ready thread, the thread is inserted at
the end of the ready queue selected by its priority and the ready summary is updated.

Giving preference to the last processor a thread executed on maximizes the chances
there is still thread data in the respective processor's secondary cache.

1.5.1 Dispatcher Database

The kernel maintains several data structures to aid in choosing which threads should be
active at any instance in time. These structures include:

o Ready queues - There is a ready queue for each software priority level. Each
queue contains a list of threads that are ready to execute at that level.

o Ready summary - A set that contains a TRUE member for each ready queue that
contains one or more threads.

o Active matrix - The active matrix is a two-dimensional array that represents a set
of processors for each of the software priority levels. A member is TRUE in the
matrix if a processor is executing a thread at the corresponding priority level.

o Active summary - A set that contains a TRUE member for each priority class that
has one or more processors executing threads at that level.

o Idle summary - A set that contains a TRUE member for each processor that is
currently idle.

o Idle thread - A thread that is run when no other thread is available to execute on
a processor.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 11

The ready summary is used to quickly locate a thread to execute when the currently
executing thread is terminated or transitions to a Waiting state.

The active summary is used to quickly determine if preemption should occur when a
thread transitions to a Ready state.

/ Since this determination is simple in a uniprocessor system, the active summary and
active matrix are only kept up to date and used on configurations with multiple
processors. /

1.5.2 Idle Thread

Each processor has an idle thread that can always execute. The idle thread has a stack
that is capable of nesting all interrupts and a software priority that is below that of all
other thread priority levels.

The idle thread is selected for execution when no other thread is available to execute.
The idle thread executes at DISPATCH_LEVEL and continually loops looking for work that
has been assigned to its processor. This work includes processing the Deferred
Procedure Call (DPC) queue and initiating a context switch when another thread is
selected for execution on the respective processor.

While an idle thread executes, the member in the idle summary selected by its
processor number is TRUE. This enables the kernel to quickly determine which
processors are executing idle threads.

2. Kernel Objects

The kernel exports a set of abstractions to the executive layer which are called kernel
objects. Kernel objects are represented by a control block that describes the contents of
each object. Kernel objects are used by the executive layer to construct more complex
objects that are exported in user level API's.

There are two types of kernel objects:

1. Dispatcher objects

2. Control objects

Dispatcher objects have a signal state (Signaled or Not-Signaled) and control the
dispatching and synchronization of system operations. These objects include the event,

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 12

mutant, mutex, semaphore, thread, and timer objects. Dispatcher objects can be specified
as arguments to the kernel Wait functions.

Control objects are used to control the operation of the kernel but do not affect
dispatching or synchronization. These objects include the Asynchronous Procedure Call
(APC), Deferred Procedure Call (DPC), device queue, interrupt, power notify, power status,
process, and profile objects.

The kernel neither allocates nor deallocates kernel object storage. It is the responsibility
of the executive layer to allocate an appropriate data structure and call the kernel to
initialize a specific kernel object type.

The kernel exports kernel object types to the executive layer so the executive can
allocate appropriately sized data structures and can access various read only data items
(e.g., linkage pointers).

The executive is not allowed to manipulate the writeable data portion of kernel objects
directly. Various interfaces are provided by the kernel to perform this type of operation.

Kernel objects are referenced by pointers to the respective data structures. It is the
responsibility of the executive layer to synchronize the deallocation of kernel object
storage such that the kernel does not access an object after its storage has been
deleted.

2.1 Dispatcher Objects

This section describes the various types of dispatcher objects and the interfaces that are
provided to manipulate these objects.

2.1.1 Event Object

An event object is used to record the occurrence of an event and synchronize it with
some action that is to be performed.

There are two types of event objects:

o synchronization

o notification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 13

A synchronization event object is used when it is desirable for a single waiter to
continue execution when the event is set to the Signaled state. The state of a
synchronization event object is automatically reset to the Not-Signaled state when a
Wait for the event object is satisfied.

Synchronization events provide an optimal way to implement mutual exclusion at user
level. An identical capability can be implemented using binary semaphores, but requires
calling the system each time mutual exclusion is desired.

Synchronization events can also be used to provide synchronization in
producer/consumer relationships where it is otherwise undesirable to use a counting
semaphore.

A notification event is used when it is desirable for all waiters to continue execution
when the event is set to the Signaled state. The state of a notification event object is not
altered when a Wait for the event object is satisfied and remains Signaled until it is
explicitly reset to the Not-Signaled state.

Notification events can be used to implement resource allocators where there is not a
one-to-one relationship between the release of a resource and the allocation of the
resource (e.g. a memory allocator).

Waiting on an event object causes the execution of the subject thread to be suspended
until the event object attains a state of Signaled.

Satisfying the Wait for a synchronization event object automatically causes the state of
the event object to be reset to the Not-Signaled state.

Satisfying the Wait for a notification event object does not cause the state of the event
object to change. Therefore, when a notification event object attains a state of Signaled,
an attempt is made to satisfy as many Waits as possible.

The state of an event object is controlled by a count value that is incremented each time
the event object is set to the Signaled state. Thus, the state of the event object is
Signaled when the count value is nonzero and Not-Signaled when the count value is
zero.

The count value indicates the number of times that the event object has been set to a
Signaled state since the last time it was reset to the Not-Signaled state.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 14

Programming interfaces that support the event object include:

KeInitializeEvent - Initialize an event object
KePulseEvent - Set/reset event object state atomically
KeReadStateEvent - Read state of event object
KeResetEvent - Set event object to Not-Signaled state
KeSetEvent - Set event object to Signaled state

2.1.1.1 Initialize Event

An event object can be initialized with the KeInitializeEvent function:

VOID
KeInitializeEvent (

IN PKEVENT Event,
IN EVENT_TYPE EventType,
IN BOOLEAN State
);

Parameters:

Event - A pointer to a dispatcher object of type event.

EventType - The event type (NotificationEvent or SynchronizationEvent).

State - The initial state of the event.

The event object data structure for the specified event type is initialized with the
specified initial state.

2.1.1.2 Pulse Event

An event object can be atomically set to a Signaled state and then reset to a Not-
Signaled state with the KePulseEvent function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 15

LONG
KePulseEvent (

IN PKEVENT Event,
IN KPRIORITY Increment,
IN BOOLEAN Wait
);

Parameters:

Event - A pointer to a dispatcher object of type event.

Increment - The priority increment that is to be applied if setting the event causes a
Wait to be satisfied.

Wait - A boolean value that specifies whether the call to KePulseEvent will be
IMMEDIATELY followed by a call to one of the kernel Wait functions.

The function atomically sets the state of the event object to Signaled, attempts to satisfy
as many Waits as possible for the event object, and then resets the state of the event
object to Not-Signaled.

The previous state of the event object is returned as the function value. If the previous
state of the event object was Signaled, then a nonzero count value is returned.
Otherwise, a value of zero is returned.

If the wait parameter is TRUE, then the return to the caller is executed without lowering
IRQL or releasing the dispatcher database spin lock. Thus the call to KePulseEvent
MUST be IMMEDIATELY followed by a call to one of the kernel Wait functions. This
capability is provided to allow the executive to set an event and Wait as one atomic
operation which prevents a possible superfluous context switch.

2.1.1.3 Read State Event

The current state of an event object can be read with the KeReadStateEvent function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 16

LONG
KeReadStateEvent (

IN PKEVENT Event
);

Parameters:

Event - A pointer to a dispatcher object of type event.

The current state of the event object is returned as the function value. If the current
state of the event object is Signaled, then a nonzero count value is returned. Otherwise,
a value of zero is returned.

2.1.1.4 Reset Event

An event object can be reset to a Not-Signaled state with the KeResetEvent function:

LONG
KeResetEvent (

IN PKEVENT Event
);

Parameters:

Event - A pointer to a dispatcher object of type event.

The previous state of the event object is returned as the function value and the state of
the event object is reset to Not-Signaled (i.e., the count value is set to zero). If the
previous state of the event object was Signaled, then a nonzero count value is returned.
Otherwise, a value of zero is returned.

2.1.1.5 Set Event

An event object can be set to a Signaled state with the KeSetEvent function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 17

LONG
KeSetEvent (

IN PKEVENT Event,
IN KPRIORITY Increment,
IN BOOLEAN Wait
);

Parameters:

Event - A pointer to a dispatcher object of type event.

Increment - The priority increment that is to be applied if setting the event causes a
Wait to be satisfied.

Wait - A boolean value that specifies whether the call to KeSetEvent will be
IMMEDIATELY followed by a call to one of the kernel Wait functions.

The previous state of the event object is returned as the function value and the state of
the event is set to Signaled (i.e., the count value is incremented). If the previous state of
the event object was Signaled, then a nonzero count value is returned. Otherwise, a
value of zero is returned.

Setting an event object causes the event to attain a Signaled state, and therefore, an
attempt is made to satisfy as many Waits as possible for the event object.

If the Wait parameter is TRUE, then the return to the caller is executed without lowering
IRQL or releasing the dispatcher database spinlock. Thus the call to KeSetEvent MUST
be IMMEDIATELY followed by a call to one of the kernel Wait functions. This capability is
provided to allow the executive to set an event and Wait as one atomic operation which
prevents a possible superfluous context switch.

2.1.2 Mutual Exclusion Objects

The kernel provides two objects for controlling mutually exclusive access to a resource;
the mutant object and the mutex object.

The mutant object is intended for use in providing a user mode mutual exclusion
mechanism that has ownership semantics, but it can also be used in kernel mode.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 18

The mutex object can only be used in kernel mode and is intended to provide a deadlock-
free mutual exclusion mechanism with ownership and other special system semantics.

The state of mutant and mutex objects is controlled by a count. When the count is one,
the mutant or mutex object is in the Signaled state, the mutant or mutex object is not
owned, and exclusive access to the corresponding resource can be obtained by
specifying the mutant or mutex object in a kernel Wait function. When the count is not
one, the mutant or mutex object is in the Not-Signaled state and any attempt to acquire
the mutant or mutex object will cause the subject thread to wait until the mutant or
mutex object count is one.

Mutant and mutex objects are similar in that they both provide mutual exclusion
mechanisms with recursive ownership capability. They have significant differences,
however, which dictate the support of two separate object types. These differences
include the following:

o Mutex objects have a level number which is used to prevent deadlock, whereas
mutant objects have no level number.

o Mutant objects have an abandoned status and can be released by a thread other
than the owner, whereas mutex objects do not have an abandoned status and
can only be released by the owner thread.

o Owning a mutex object prevents the owning thread's process from leaving the
balance set, whereas owning a mutant object does not affect the swapability of
the parent process.

o Owning a mutex object causes the priority of the owning thread to be raised to
the greater of its current priority and the lowest realtime priority, whereas
owning a mutant object does not affect the owner thread's priority in any way.

o Owning a mutex object prevents the delivery of kernel mode APCs, whereas
owning a mutant object does not affect the delivery of kernel mode APCs.

2.1.2.1 Mutant Object

Waiting on (acquiring) a mutant object causes the execution of the subject thread to be
suspended until the mutant object attains a state of Signaled. Satisfying the Wait for a
mutant object causes the state of the mutant object to become Not-Signaled.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 19

Threads are allowed to recursively acquire mutant objects that they already own. A
recursively acquired mutant object must be released the same number of times it was
acquired before it will again attain the state of Signaled.

Mutant objects can be exported to user mode for providing a mutual exclusion
mechanism with ownership semantics.

Programming interfaces that support the mutant object include:

KeInitializeMutant - Initialize a mutant object
KeReadStateMutant - Read the state of a mutant object
KeReleaseMutant - Release ownership of a mutant object

2.1.2.1.1 Initialize Mutant

A mutant object can be initialized with the KeInitializeMutant function:

VOID
KeInitializeMutant (

IN PKMUTANT Mutant,
IN BOOLEAN InitialOwner
);

Parameters:

Mutant - A pointer to a dispatcher object of type mutant.

InitialOwner - A boolean variable that determines whether the current thread is to
be the initial owner of the mutant object.

If the value of the InitialOwner parameter is TRUE, then the mutant object data structure
is initialized with the current thread as the owner and an initial state of Not-Signaled.
Otherwise, the mutant object data structure is initialized as unowned with an initial
state of Signaled.

2.1.2.1.2 Read State Mutant

The current state of a mutant object can be read with the KeReadStateMutant
function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 20

LONG
KeReadStateMutant (

IN PKMUTANT Mutant
);

Parameters:

Mutant - A pointer to a dispatcher object of type mutant.

The current state of the mutant object is returned as the function value. If the return
value is one, then the state of the mutant object is Signaled. Otherwise, the state of the
mutant object is Not-Signaled.

2.1.2.1.3 Release Mutant

A mutant object can be released with the KeReleaseMutant function:

LONG
KeReleaseMutant (

IN PKMUTANT Mutant,
IN KPRIORITY Increment,
IN BOOLEAN Abandoned,
IN BOOLEAN Wait
);

Parameters:

Mutant - A pointer to a dispatcher object of type mutant.

Increment - The priority increment that is to be applied if releasing the mutant
object causes a Wait to be satisfied.

Abandoned - A boolean value that specifies whether the release of the mutant
object is to be forced.

Wait - A boolean variable that specifies whether the call to KeReleaseMutant will
be IMMEDIATELY followed by a call to one of the kernel Wait functions.

If the value of the Abandoned parameter is TRUE, then the release of the mutant object is
unconditional and can be requested by a thread other than the owner of the mutant

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 21

object. The fact that the mutant object is being abandoned is recorded in the mutant
object and is returned by the kernel Wait services when ownership of the mutant object
is granted to another thread. Once set, the abandoned status of a mutant object cannot
be cleared and is thereafter always returned by the kernel Wait services.

If the value of the Abandoned parameter is FALSE, then only the owning thread can
release the mutant object. Any attempt to release the mutant object made by a thread
other than the owner, will cause an exception to be raised. If the mutant object has
previously been abandoned, then the exception STATUS_ABANDONED is raised.
Otherwise, the exception STATUS_MUTANT_NOT_OWNED is raised.

The previous state of the mutant object is returned as the function value.

If the value of the Abandoned parameter is TRUE, then the state of the mutant object is
set to Signaled and the return value is not meaningful.

If the value of the Abandoned parameter is FALSE, then the new state of the mutant
object can be determined by the value returned. If the returned value is zero, then the
mutant object was actually released and attained a state of Signaled. Otherwise, the
mutant object was not released and still has a state of Not-Signaled (i.e., the mutant
object has been recursively acquired and has not yet been released the proper number
of times to cause it to attain a Signaled state).

If the mutant object attains a Signaled state, then an attempt is made to satisfy a Wait
for the mutant object.

If the mutant object attains a Signaled state and was previously owned by a thread,
then the mutant object is removed from the list of mutant objects owned by the subject
thread.

If the value of the Wait parameter is TRUE, then the return to the caller is executed
without lowering IRQL or releasing the dispatcher database spin lock. Thus the call to
KeReleaseMutant MUST be IMMEDIATELY followed by a call to one of the kernel Wait
functions. This capability is provided to allow the executive to release a mutant object
and Wait as one atomic operation which prevents a possible superfluous context switch.

2.1.2.2 Mutex Object

Waiting on (acquiring) a mutex object causes the execution of the subject thread to be
suspended until the mutex object attains a state of Signaled. Satisfying the Wait for a

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 22

mutex object causes the state of the mutex object to become Not-Signaled and disables
the delivery of normal kernel APCs to the subject thread.

If the subject thread did not previously own any mutexes, then the current execution
priority of the thread is saved and then raised to the maximum of its current priority
and the lowest realtime priority. This ensures that the thread will have a very high
execution priority while it executes in a critical section and prevents the effects of
priority inversion. When the thread releases the last mutex it owns, its priority is
restored to the saved value.

Mutex ownership also prevents the owning thread's process from being removed from
the balance set. If the balance set manager selects the process for removal from the
balance set, all threads within the process that own mutexes will be allowed to continue
execution until they no longer own any mutexes. This ensures that access to critical
resources is not blocked because a thread belonging to a process that has been
removed from the balance set owns one or more mutexes.

Each mutex object has a level number. This level number is used to prevent possible
deadlock. When an attempt is made to acquire a mutex object, the level number of the
mutex object must be higher (numerically) than the highest level number of any mutex
object owned by the subject thread. If this condition is not met, then a system bug
check occurs.

Level number checking is included mainly for debugging the system while it is under
development. It may or may not be conditionalized out in a production system.

Threads are allowed to recursively acquire mutex objects that they already own. For this
case level number checking does not occur since deadlock is not possible. A recursively
acquired mutex object must be released the same number of times it was acquired
before it will again attain the state of Signaled.

Mutex objects are not exported by the executive to user mode and are only available for
use by the executive layer itself. Furthermore, the executive is not allowed to acquire a
mutex object and then return to user mode while retaining ownership of the mutex.

Programming interfaces that support the mutex object include:

KeInitializeMutex - Initialize a mutex object
KeReadStateMutex - Read state of mutex object
KeReleaseMutex - Release ownership of mutex object

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 23

2.1.2.2.1 Initialize Mutex

A mutex object can be initialized with the KeInitializeMutex function:

VOID
KeInitializeMutex (

IN PKMUTEX Mutex,
IN ULONG Level
);

Parameters:

Mutex - A pointer to a dispatcher object of type mutex.

Level - The level number that is to be assigned to the mutex.

The mutex object data structure is initialized with the specified level number and an
initial state of Signaled.

2.1.2.2.2 Read State Mutex

The current state of a mutex object can be read with the KeReadStateMutex function:

LONG
KeReadStateMutex (

IN PKMUTEX Mutex
);

Parameters:

Mutex - A pointer to a dispatcher object of type mutex.

The current state of the mutex object is returned as the function value. If the return
value is one, then the state of the mutex object is Signaled. Otherwise, the state of the
mutex object is Not-Signaled.

2.1.2.2.3 Release Mutex

A mutex object can be released with the KeReleaseMutex function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 24

LONG
KeReleaseMutex (

IN PKMUTEX Mutex,
IN BOOLEAN Wait
);

Parameters:

Mutex - A pointer to a dispatcher object of type mutex.

Wait - A boolean variable that specifies whether the call to KeReleaseMutex will be
IMMEDIATELY followed by a call to one of the kernel Wait functions.

The previous state of the mutex object is returned as the function value. The state is
returned as an integer value. If the returned value is zero, then the mutex object was
actually released and attained a state of Signaled. Otherwise, the mutex object was not
released and still has a state of Not-Signaled (i.e the mutex object has been recursively
acquired and has not yet been released the proper number of times to cause it to attain
a Signaled state).

If the mutex object attains a Signaled state, then an attempt is made to satisfy a Wait
for the mutex object.

A mutex object can only be released by the subject thread that owns the mutex. If an
attempt is made to release a mutex that is not owned by the subject thread, then a bug
check will occur.

A mutex object can only be released if it is currently owned. An attempt to release a
mutex object whose current state is Signaled, will also cause a bug check to occur.

If the mutex object attains a Signaled state, then the mutex object is removed from the
list of mutexes owned by the subject thread. If the thread's owned mutex list does not
contain any more entries, then the thread's original priority is restored (the priority that
was previously saved) and a kernel APC is requested if the thread's kernel APC queue
contains one or more entries.

If the mutex object attains a Signaled state, the mutex was the last one owned by the
subject thread, and the thread's process has been selected for removal from the
balance set, then a new thread is selected for execution, the subject thread is inserted

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 25

into its process's ready queue, and a context switch to the selected thread is performed.
If no other threads in the process own mutexes, then the balance set event is set in the
process object to notify the balance set manager that it can remove the process from
the balance set.

If the value of the Wait parameter is TRUE, then the return to the caller is executed
without lowering IRQL or releasing the dispatcher database spin lock. Thus the call to
KeReleaseMutex MUST be IMMEDIATELY followed by a call to one of the kernel Wait
functions. This capability is provided to allow the executive to release a mutex and Wait
as one atomic operation which prevents a possible superfluous context switch.

2.1.2.2.4 Mutex Contention Data

Two counters are maintained for each mutex object to determine the activity level of
the mutex object and any contention that may occur. One of the counters records the
number of times the mutex object has been acquired and the other the number of
times an attempt to acquire the mutex object resulted in the execution of the subject
thread being suspended.

2.1.3 Semaphore Object

A semaphore object is used to control access to a resource, but not necessarily in a
mutually exclusive fashion. A semaphore object acts as a gate through which a variable
number of threads may pass concurrently, up to a specified limit. The gate is open
(Signaled state) as long as there are resources available. When the number of resources
specified by the limit are concurrently in use, the gate is closed (Not-Signaled state).

The gating mechanism of a semaphore object is controlled by a count. When the count
is greater than zero, the semaphore object is in the Signaled state, and one or more
threads may pass through the gate by specifying the semaphore in a kernel Wait
function. When the count is zero, the semaphore object is in the Not-Signaled state, the
gate is closed, and any attempt to pass through the gate will cause the subject thread to
Wait until the semaphore count is greater than zero.

Waiting on (acquiring) a semaphore object causes the execution of the subject thread to
be suspended until the semaphore object attains a Signaled state. Satisfying the Wait
for a semaphore object causes the semaphore count to be decremented.

A semaphore object with a limit of one can be used to provide mutual exclusion
semantics since only one thread will be allowed to pass through the gate concurrently.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 26

This is not, however, the same functionality as provided by mutex objects since there is
no ownership (i.e., any thread can release the semaphore), there is no level number
checking (i.e., deadlock is not prevented), and the priority of the subject thread is not
raised (i.e., priority inversion problems can arise).

A semaphore object with a limit of one can also be used as a "synchronization" event
provided the semaphore is never "over Signaled" (i.e., no thread attempts to release the
semaphore while it is already in the Signaled state). For this case, the semaphore is
normally in a Not-Signaled state and is used to record the occurrence of an event by
releasing the semaphore. Waiting on the semaphore object suspends the subject
thread until the semaphore attains a Signaled state and causes the semaphore to be
immediately set to the Not-Signaled state.

Programming interfaces that support the semaphore object include:

KeInitializeSemaphore - Initialize a semaphore object
KeReadStateSemaphore - Read state of semaphore
KeReleaseSemaphore - Adjust semaphore object count

2.1.3.1 Initialize Semaphore

A semaphore object can be initialized with the KeInitializeSemaphore function:

VOID
KeInitializeSemaphore (

IN PKSEMAPHORE Semaphore,
IN LONG Count,
IN LONG Limit
);

Parameters:

Semaphore - A pointer to a dispatcher object of type semaphore.

Count - The initial count value to be assigned to the semaphore. This value must be
positive.

Limit - The maximum count value that the semaphore can attain. This value must
be positive.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 27

The semaphore object data structure is initialized with the specified initial count and
limit.

2.1.3.2 Read State Semaphore

The current state of a semaphore object can be read with the KeReadStateSemaphore
function:

LONG
KeReadStateSemaphore (

IN PKSEMAPHORE Semaphore
);

Parameters:

Semaphore - A pointer to a dispatcher object of type semaphore.

The current signal state of the semaphore object is returned as the function value. If the
return value is zero, then the current state of the semaphore object is Not-Signaled.
Otherwise, the current state of the semaphore object is Signaled.

2.1.3.3 Release Semaphore

A semaphore object can be released with the KeReleaseSemaphore function:

LONG
KeReleaseSemaphore (

IN PKSEMAPHORE Semaphore,
IN KPRIORITY Increment,
IN LONG Adjustment,
IN BOOLEAN Wait
);

Parameters:

Semaphore - A pointer to a dispatcher object of type semaphore.

Increment - The priority increment that is to be applied if releasing the semaphore
causes a Wait to be satisfied.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 28

Adjustment - The value that is to be added to the current semaphore count. This
value must be positive.

Wait - A boolean value that specifies whether the call to KeReleaseSemaphore will
be IMMEDIATELY followed by a call to one of the kernel Wait functions.

Releasing a semaphore object causes the semaphore count to be augmented by the
value of the Adjustment parameter. If the resultant value is greater than the limit of the
semaphore object, then the count is not adjusted and the exception
STATUS_SEMAPHORE_COUNT_EXCEEDED is raised.

Augmenting the semaphore object count causes the semaphore to attain a state of
Signaled, and therefore, an attempt is made to satisfy as many Waits as possible for the
semaphore object.

The previous state of the semaphore object is returned as an integer function value. If
the return value is zero, then the previous state of the semaphore object was Not-
Signaled. Otherwise, the previous state of the semaphore object was Signaled.

If the value of the wait parameter is TRUE, then the return to the caller is executed
without lowering IRQL or releasing the dispatcher database spin lock. Thus the call to
KeReleaseSemaphore MUST be IMMEDIATELY followed by a call to one of the kernel
Wait functions. This capability is provided to allow the executive to release a semaphore
and Wait as one atomic operation which prevents a possible superfluous context switch.

2.1.4 Thread Object

A thread object is the agent that executes program code and is dispatched for execution
by the kernel.

Each thread is associated with a process object which specifies the virtual address space
mapping for the thread and accumulates thread execution time. Several thread objects
can be associated with a single process object which enables the concurrent execution
of multiple threads in a single address space (possibly simultaneous execution in a
multiprocessor system).

A thread executes in kernel and user mode, usually at IRQL 0, and is dispatched for
execution according to its software priority.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 29

Although there is no actual difference, threads are usually referred to as either user
threads or system threads. A user thread executes mostly in user mode and within the
user part of the virtual address space. It enters kernel mode only to execute system
services. System threads execute only in kernel mode and usually within the system
part of the virtual address space. There are some system threads, however, that also
use the user part of the address space to store information and execute code from. An
example of such a thread is a file system.

The context of a thread typically consists of the following:

o Integer registers

o Floating point registers

o Architecture-dependent special registers

o A user stack pointer

o A kernel stack pointer

o A program counter

o A processor status

o A floating point status

\ The exact context of a thread is host architecture dependent. \

Each thread has a set of processors on which it can execute. This is referred to as the
processor affinity. When a thread is initialized it is given the processor affinity of its
parent process. Thereafter, the affinity of the thread can be set to any proper subset of
the parent process's affinity.

A thread can be in one of six dispatcher, or scheduling, states:

o Initialized

o Ready

o Standby

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 30

o Running

o Waiting

o Terminated

A thread enters the Initialized state when its thread object is initialized. A thread in the
Initialized state can transition only to the Ready state.

A thread is in a Ready state when it is eligible to be selected for execution on a
processor. A thread in the Ready state is enqueued on the dispatcher ready queue
selected by its priority and can transition from the Ready state to the Standby state.

A thread is in a Standby state when it has been selected to execute on a processor, but
the actual context switch to the thread has not yet occurred. A thread in the Standby
state can transition to the Ready and Running states.

A thread is in a Running state when it is currently being executed by a processor. A
thread in the Running state can transition to the Ready, Waiting, and Terminated states.

A thread is in a Waiting state when it is waiting for one or more dispatcher objects to
attain a state of Signaled. A thread in the Waiting state can transition to the Ready state.

A thread in the Terminated state has completed its execution and the corresponding
thread object will be deleted by the executive at the appropriate time.

/ Note that is possible to reuse a thread object that has a state of Terminated by
simply reinitializing the thread object which will cause it to enter the Initialized state. /

A thread's parent process is either in the balance set (Included) or not in the balance set
(Excluded). The balance set is that set of processes and threads that are currently
eligible for being considered for execution. Processes and threads that are not in the
balance set are not considered for execution until they reenter the balance set.

The balance set is managed by the balance set manager. In a single user system there
will be no balance set manager. Server systems, however, present the problem of
having to manage more processes than there is space for in main memory without
incurring excessive paging. Therefore, the balance set manager is responsible for

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 31

determining when excessive paging is occurring and then selecting the appropriate
processes to remove from the balance set.

/ There may not be a balance set manager in the first release of NT OS/2. We may rely
instead on working set trimming to obtain necessary memory when excessive paging
levels are observed. /

A thread is dispatched for execution according to its software priority level. Higher
priority threads are given preference and preempt the execution of lower priority
threads.

There are two classes of priority: 1) realtime, and 2) variable. Each of these classes
contains several levels of thread priority.

In the realtime priority class, a thread executes at a priority level selected by the user.
The system makes no attempt to alter or boost the priority as the thread executes and
enters and leaves wait states. The realtime priority levels are higher than all the levels in
the variable priority class. The realtime priority class is intended for use by time-critical
threads that require a response time that is guaranteed by application design.

The variable priority class is where most threads execute. As a thread executes and
experiences quantum end events, its priority decays. When a thread enters a Waiting
state and is subsequently awakened, it is given a priority boost that is commensurate
with the importance of the event that caused the Wait to be satisifed (e.g., a large boost
is given for the completion of keyboard input but a small one is given for completing
disk I/O). A thread therefore, runs at a high priority as long as it is interactive. When it
becomes compute bound, its priority rapidly decays, and it is considered only after
other, higher priority threads. In addition, the kernel arbitrarily boosts the priority of
threads that are compute bound and haven't received any processor time for a given
period of time.

As a thread executes, performance and accounting data are collected for the thread and
for the thread's parent process.

Programming interfaces that support the thread object include:

KeInitializeThread - Initialize a thread object
KeAlertThread - Set thread alert for specified mode
KeAlertResumeThread - Alert and resume thread object
KeConfineThread - Confine thread object execution

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 32

KeDelayExecutionThread - Delay execution of thread object
KeDisableApcQueuingThread - Disable queuing of APCs
KeEnableApcQueuingThread - Enable queuing of APCs
KeForceResumeThread - Force resumption of thread execution
KeFreezeThread - Freeze thread object execution
KeQueryAutoAlignmentThread - Query alignment mode of thread object
KeQueryBasePriorityThread - Query base priority of thread object
KeReadStateThread - Read state of thread object
KeReadyThread - Ready thread object for execution
KeResumeThread - Resume thread object execution
KeRundownThread - Run down thread object
KeSetAffinityThread - Set thread object processor set
KeSetAutoAlignmentThread - Set alignment mode of thread object
KeSetBasePriorityThread - Set base priority of thread object
KeSetPriorityThread - Set priority of thread object
keSuspendThread - Suspend thread object exection
KeTerminateThread - Terminate thread object execution
KeTestAlertThread - Test if thread alerted for mode
KeUnfreezeThread - Unfreeze thread object execution

2.1.4.1 Initialize Thread

A thread object can be initialized with the KeInitializeThread function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 33

VOID
KeInitializeThread (

IN PKTHREAD Thread,
IN PVOID KernelStack,
IN PKSYSTEM_ROUTINE SystemRoutine,
IN PKSTART_ROUTINE StartRoutine OPTIONAL,
IN PVOID StartContext OPTIONAL,
IN PCONTEXT ContextFrame OPTIONAL,
IN PVOID Teb OPTIONAL,
IN PKPROCESS Process
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

KernelStack - A pointer to the base (highest address) of a kernel stack on which the
initial context for the thread is to be constructed.

SystemRoutine - A pointer to a function that is to called when the thread is
scheduled for execution. This routine performs executive initialization.

StartRoutine - An optional pointer to a function that is to be called after the
executive has finished initializing the thread.

StartContext - A optional pointer to an arbitrary data structure which will be passed
to the StartRoutine function as a parameter.

ContextFrame - An optional pointer to a context frame which contains the initial user
mode state of the thread. This parameter is specified if the thread will
execute in user mode. If this parameter is not specified, then the Teb
parameter is ignored.

Teb - An optional pointer to the user mode thread environment block. This
parameter is ignored if the ContextFrame parameter is not specified.

Process - A pointer to a control object of type process.

The function specified by the SystemRoutine parameter has the following type definition:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 34

typedef
VOID
(*PKSYSTEM_ROUTINE) (

IN PKSTART_ROUTINE StartRoutine OPTIONAL,
IN PVOID StartContext OPTIONAL
);

Parameters:

StartRoutine - An optional pointer to a function that is to be called after the
executive has finished initializing the thread.

StartContext - A optional pointer to an arbitrary data structure which will be passed
to the StartRoutine function as a parameter.

The function specified by the StartRoutine parameter has the following type definition:

typedef
VOID
(*PKSTART_ROUTINE) (

IN PVOID StartContext
);

Parameters:

StartContext - A pointer to an arbitrary data structure that was specified when the
thread object was initialized.

The thread object data structure is initialized and the thread's dispatcher state is set to
Initialized. The thread's quantum, affinity, data alignment handling mode, current
priority, and base priority are taken from the parent process object.

A kernel context frame is built on the specified kernel stack which will cause the thread
to begin execution in the kernel thread startup routine. The kernel thread startup
routine will call the specified start routine which is responsible for initializing the
executive state of the thread as necessary. If the thread is a system thread, then the
executive startup routine will call the thread's entry point directly. If, however, the
thread is a user thread, then the executive startup routine returns control to the kernel

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 35

thread startup routine which restores the user mode state and continues execution of
the thread in user mode.

A thread begins execution in kernel mode at IRQL APC_LEVEL with the queuing of APCs
enabled. It is the responsibility of the executive to lower IRQL to 0 as soon as thread
initialization is complete.

Once a thread object has been initialized, it can be readied for execution with the
KeReadyThread function.

2.1.4.2 Alert Thread

A thread object can be alerted with the KeAlertThread function:

BOOLEAN
KeAlertThread (

IN PKTHREAD Thread,
IN KPROCESSOR_MODE AlertMode
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

AlertMode - The processor mode (UserMode or KernelMode) for which the thread is to
be alerted.

Alerting a thread object causes the alert variable associated with the specified
processor mode to be set to a value of TRUE.

If the thread object is currently in a Wait state, the Wait is alertable, and the specified
processor mode is less than or equal to the Wait mode, then the thread is Unwaited
with a completion status of STATUS_ALERTED and the specified alert variable is set to a
value of FALSE.

Alerts provide a way in which to break into a thread's execution at well-defined points.
These points occur when the thread Waits in an alertable state and when the thread
polls the alerted flag using the KeTestAlertThread function.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 36

The previous value of the alert variable for the specified processor mode is returned as
the function value. If the return value is TRUE, then the subject thread was already
alerted for the specified processor mode. If the return value is FALSE, then the subject
thread was not previously alerted.

2.1.4.3 Alert and Resume Thread

A thread object can be kernel mode alerted and its execution resumed with the
KeAlertResumeThread function:

ULONG
KeAlertResumeThread (

IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

This function executes the equivalent of a KeAlertThread function for kernel mode
followed by a KeResumeThread function on the specified thread object.

Resuming a thread object checks the suspend count of the subject thread. If the
suspend count is zero, then the thread is not currently suspended and no operation is
performed. Otherwise, the subject thread's suspend count is decremented. If the
resultant value is zero, then the execution of the subject thread is resumed by releasing
its builtin suspend semaphore.

The previous suspend count is returned as the function value. If the return value is zero,
then the subject thread was not previously suspended. If the return value is one, then
the subject thread's execution was resumed. If the returned value is not zero or one,
then the subject thread is still suspended and must be resumed the number of times
specified by the return value minus one before it will actually resume execution.

2.1.4.4 Confine Thread

The execution of the current thread can be confined to the current processor with the
KeConfineThread function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 37

KAFFINITY
KeConfineThread (

);

Confining the execution of the current thread to the current processor causes the
thread's affinity to be set such that it can only execute on the current processor. The
previous affinity is returned as the function value and can be used to later restore the
thread's affinity with the KeSetAffinityThread function.

This function is useful when it is desirable to avoid translation buffer flushes across the
entire multiprocessor complex while certain page manipulations are taking place. For
example, the zero page writer selects a page to zero, confines its execution to the
current processor, flushes the current processor's translation buffer, maps the page
into the system part of the virtual address space reserved for zeroing pages, and then
proceeds to zero the page. If the execution of the zero page writer was not confined
during the page zeroing operation, then the translation buffers of all processors in the
multiprocessor complex would have to be flushed before mapping and zeroing the
page could commence.

2.1.4.5 Delay Execution

The execution of the current thread can be delayed for a specified interval of time with
the KeDelayExecutionThread function:

NTSTATUS
KeDelayExecutionThread (

IN KPROCESSOR_MODE WaitMode,
IN BOOLEAN Alertable,
IN PTIME Interval
);

Parameters:

WaitMode - The processor mode on whose behalf the Wait is occurring.

Alertable - A boolean value that specifies whether the Wait is alertable.

Interval - The absolute or relative time over which the Wait is to occur.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 38

The expiration time is computed and the current thread is put in a Waiting state. When
the specified interval of time has passed, the thread will exit the Waiting state and
continue execution.

The reason for the Wait is set to DelayExecution.

The WaitMode parameter specifies on whose behalf the Wait is occurring (i.e., kernel or
user).

The Alertable parameter specifies whether the thread can be alerted while it is in the
Waiting state. If the value of this parameter is TRUE and the thread is alerted for a mode
that is equal to or more privileged than the Wait mode, then the thread's Wait will be
satisfied with a completion status of STATUS_ALERTED.

If the WaitMode parameter is UserMode and the Alertable parameter TRUE, then the
thread can also be awakened to deliver a user mode APC. Kernel mode APCs always
cause the subject thread to be awakened if the Wait IRQL is zero and no kernel APC is in
progress.

The expiration time of the delay is expressed as either an absolute time at which the
delay is to expire, or time that is relative to the current system time. If the value of the
Interval parameter is negative, then the expiration time is relative. Otherwise, the
expiration time is absolute.

The value returned by KeDelayExecutionThread function determines how the delay
was completed.

A value of STATUS_SUCCESS is returned if the delay was completed because the
specified interval of time elapsed.

A value of STATUS_ALERTED is returned if the delay was completed because the thread
was alerted.

A value of STATUS_USER_APC is returned if a user mode APC is to be delivered.

2.1.4.6 Disable Queuing of APCs

The queuing of APCs to a thread object can be disabled with the
KeDisableApcQueuingThread function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 39

BOOLEAN
KeDisableApcQueuingThread (

IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Disabling the queuing of APCs to a thread object causes any attempt to direct an APC to
the thread to be ignored.

During the termination of a thread, the executive must run down and clean up all
thread data structures. When the APC queue itself is processed, the executive first
disables APCs and then flushes the APC queue.

The previous value of the APC queuable state is returned as the function value. If the
return value is TRUE, then APC queuing was previously enabled. Otherwise, a value of
FALSE is returned and APC queuing was disabled.

2.1.4.7 Enable Queuing of APCs

The queuing of APCs to a thread object can be enabled with the
KeEnableApcQueuingThread function:

BOOLEAN
KeEnableApcQueuingThread (

IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Enabling the queuing of APCs to a thread object allows APC objects to be inserted in the
subject thread's APC queue for subsequent delivery when conditions permit.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 40

The previous value of the APC queuable state is returned as the function value. If the
return value is TRUE, then APC queuing was previously enabled. Otherwise, a value of
FALSE is returned and APC queuing was disabled.

2.1.4.8 Force Resumption of Thread

A thread object's execution can be forced to resume with the KeForceResumeThread
function:

ULONG
KeForceResumeThread (

IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Forcing the resumption of a thread object's execution checks the suspend and freeze
count of the subject thread. If both counts are zero, then the thread is not currently
suspended and no operation is performed. Otherwise, the subject thread's suspend and
freeze counts are both set to zero, and the execution of the subject thread is resumed
by releasing its builtin suspend semaphore.

The sum of the previous suspend and freeze counts is returned as the function value. If
the return value is zero, then the subject thread was not previously suspended.
Otherwise, the subject thread was suspended and its execution was resumed.

This function is intended for use by the executive when it wants to terminate the
execution of a thread that may be in a suspended state.

2.1.4.9 Freeze Thread

The execution of a thread object can be frozen with the KeFreezeThread function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 41

ULONG
KeFreezeThread (

IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Freezing a thread object causes the thread's freeze count to be incremented. If
incrementing the freeze count would cause it to overflow, then the count is not
incremented and the exception STATUS_SUSPEND_COUNT_EXCEEDED is raised.
Otherwise, the freeze count is incremented. If the resultant value is one and the
suspend count is zero, then the thread's builtin suspend APC object is queued.

When the suspend APC is delivered to the subject thread, a nonalertable Wait on the
thread's builtin semaphore object is executed which freezes thread execution. The
subject thread can be subsequently unfrozen with the KeUnfreezeThread function.

The previous freeze count is returned as the function value. If the return value is zero,
then the subject thread was not previously frozen. Otherwise, the thread was previously
frozen and must be unfrozen the number of times specified by the return value plus
one before it will actually resume execution.

The freeze and unfreeze functions are similar to the suspend and resume functions, but
are intended for use by system software as opposed to being exported to users. The
freeze and unfreeze functions are used to suspend and resume thread execution during
debugging operations.

2.1.4.10 Query Data Alignment Mode

The data alignment handling mode for the current thread can be queried with the
KeQueryAutoAlignmentThread function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 42

BOOLEAN
KeQueryAutoAlignmentThread (

)

The data alignment handling mode for the current thread is returned as the function
value. A value of TRUE is returned if user mode data alignment exceptions are
automatically handled by the kernel and are not raised as exceptions. Otherwise, user
mode data alignment exceptions are not handled by the kernel and may, or may not, be
raised as exceptions depending on host hardware capabilities. Automatic handling of
user mode data alignment exceptions means that the kernel emulates misaligned data
references and completes the offending instructions as if no misalignment exception
had occurred. Misaligned references in kernel mode are never automatically handled
and are always raised as exceptions.

IMPLEMENTATION NOTES:

Certain processors (e.g., the i386) always handle misaligned data in hardware. On these
processors, enabling or disabling the automatic handling of data alignment exceptions
has no effect. On other processors (e.g., i486, MIPS r3000, r4000SP, and r4000MP) the
handling of misaligned data is handled according to the mode established for the
respective thread.

2.1.4.11 Query Base Priority

The base priority of a thread object can be queried with the
KeQueryBasePriorityThread function:

LONG
KeQueryBasePriorityThread (

IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

The base priority increment of the specified thread is returned as the function value.
The base priority increment is defined as the difference between the specified thread's
base priority and the base priority of the thread's process.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 43

2.1.4.12 Read State Thread

The current state of a thread object can be read with the KeReadStateThread function:

BOOLEAN
KeReadStateThread (

IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

The current state of the thread object is returned as the function value. If the current
state of the thread is Signaled, then a value of TRUE is returned. Otherwise, a value of
FALSE is returned.

2.1.4.13 Ready Thread

A thread object can be readied for execution with the KeReadyThread function:

VOID
KeReadyThread (

IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Readying a thread object causes the thread to be considered for immediate execution
on a processor.

If the thread's process is not in the balance set, then the thread's dispatching state is
set to Ready and the thread object is inserted in the process' ready queue. Otherwise,
an attempt is made to dispatch the thread on one of the processors in the
multiprocessor complex. If the priority of the subject thread is greater than the priority
of one or more threads running on processors that the subject thread can also run on,
then the thread with the lowest priority is selected for preemption, the subject thread's

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 44

dispatching state is set to Standby and an interprocessor interrupt is sent to the target
processor to cause it to redispatch. Otherwise, the subject thread's dispatching state is
set to Ready and the thread is inserted at the tail of the dispatcher ready queue selected
by its priority.

2.1.4.14 Resume Thread

The execution of a thread object can be resumed with the KeResumeThread function:

ULONG
KeResumeThread (

IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Resuming a thread object checks the suspend count of the subject thread. If the
suspend count is zero, then the thread is not currently suspended and no operation is
performed. Otherwise, the subject thread's suspend count is decremented. If the
resultant value is zero and the freeze count is also zero, then the execution of the
subject thread is resumed by releasing its builtin suspend semaphore.

The previous suspend count is returned as the function value. If the return value is zero,
then the subject thread was not previously suspended. If the return value is one, then
the subject thread's execution was resumed. If the returned value is not zero or one,
then the subject thread is still suspended and must be resumed the number of times
specified by the return value minus one before it will actually resume execution.

The suspend and resume functions are similar to the freeze and unfreeze functions, but
are usable from both system and user software. The freeze and unfreeze functions are
used to suspend and resume thread execution during debugging operations.

2.1.4.15 Rundown Thread

The current thread object can be run down with the KeRundownThread function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 45

VOID
KeRundownThread (

);

This function runs down thread structures that are guarded by the dispatcher database
lock and which must be processed before actually terminating the thread. An example
of such a data structure is the mutant ownership list that is anchored in the thread
object.

2.1.4.16 Set Affinity Thread

The affinity of a thread object can be set with the KeSetAffinity function:

KAFFINITY
KeSetAffinityThread (

IN PKTHREAD Thread,
IN KAFFINITY Affinity
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Affinity - The new set of processors on which the thread can run.

Setting the affinity of a thread object establishes a new set of processors on which the
thread can execute. The new affinity must be a subset of the parent process's affinity. If
the new affinity is zero, or is not a subset of the parent process's affinity, then an error
condition is raised. Otherwise, the new affinity of the thread is set, and the previous
affinity is returned as the function value.

If the dispatching state of the thread object is Running or Standby and the new affinity
is such that the thread cannot execute on the target processor, then a new thread is
selected for execution and an interprocessor interrupt is sent to the target processor.

2.1.4.17 Set Data Alignment Mode

The data alignment handling mode for the current thread can be set with the
KeSetAutoAlignmentThread function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 46

BOOLEAN
KeSetAutoAlignmentThread (

IN BOOLEAN Enable
)

Parameters:

Enable - A boolean variable that specifies the handling mode for data alignment
exceptions in the current thread.

The Enable parameter specifies the handling mode for data alignment exceptions in the
current thread. If this parameter is TRUE, then user mode data alignment exceptions
are automatically handled by the kernel and are not raised as exceptions. Otherwise,
user mode data alignment exceptions are not handled by the kernel and may, or may
not, be raised as exceptions depending on host hardware capabilities. Automatic
handling of user mode data alignment exceptions means that the kernel emulates
misaligned data references and completes the offending instructions as if no
misalignment exception had occurred. Misaligned references in kernel mode are never
automatically handled and are always raised as exceptions.

The previous data alignment handling mode is returned as the function value.

IMPLEMENTATION NOTES:

Certain processors (e.g., the i386) always handle misaligned data in hardware. On these
processors, enabling or disabling the automatic handling of data alignment exceptions
has no effect. On other processors (e.g., i486, MIPS r3000, r4000SP, and r4000MP) the
handling of misaligned data is handled according to the mode established for the
respective thread.

2.1.4.18 Set Base Priority

The base priority of a thread object can be set with the KeSetBasePriorityThread
function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 47

LONG
KeSetBasePriorityThread (

IN PKTHREAD Thread,
IN LONG Increment
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Increment - The base priority increment that is to be applied to the specified thread.

The new base priority is computed by adding the specified priority increment to the
base priority of the specified thread's process. The resultant value is stored as the base
priority of the specified thread.

The new base priority is restricted to the priority class of the specified thread's process.
This means that the base priority is not allowed to cross over from a realtime priority
class to a variable priority class or vice versa.

The previous base priority increment of the specified thread is returned as the function
value. The previous base priority increment is defined as the difference between the
specified thread's old base priority and the base priority of the thread's process.

2.1.4.19 Set Priority Thread

The priority of a thread object can be set with the KeSetPriority function:

KPRIORITY
KeSetPriorityThread (

IN PKTHREAD Thread,
IN KPRIORITY Priority
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Priority - The new priority of the thread.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 48

Setting the priority of a thread object causes its eligibility for execution to be
reexamined. The exact action that is taken depends on the current dispatching state of
the thread. If the new priority is greater than the maximum thread priority, then an
error condition is raised.

If the dispatching state of the thread object is Ready and the thread is currently inserted
in the parent process's ready queue, then the priority of the thread is changed and no
further action is taken.

If the dispatching state of the thread object is Ready and the thread is currently inserted
in one of the dispatcher ready queues, then the thread is removed from its current
ready queue, its priority is set to the specified value, and the thread is readied for
execution as if it had just entered the ready state.

If the dispatching state of the thread object is Waiting or Terminated, then the priority
of the thread is changed and no further action is taken.

If the dispatching state of the thread object is Standby or Running and the priority of
the thread is being raised, then the priority of the thread is changed and no further
action is taken.

If the dispatching state of the thread object is Standby or Running and the priority of
the thread is being lowered, then a check is performed to determine if the thread
should be preempted to run a higher priority thread. If a higher priority thread can
execute on the target processor, then it is selected for execution and an interprocessor
interrupt is sent to the target processor. Otherwise, no action is taken.

The previous priority of the subject thread is returned as the function value.

2.1.4.20 Suspend Thread

The execution of a thread object can be suspended with the KeSuspendThread
function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 49

ULONG
KeSuspendThread (

IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Suspending a thread object causes the thread's suspend count to be incremented. If
incrementing the suspend count would cause it to overflow, then the count is not
incremented and the exception STATUS_SUSPEND_COUNT_EXCEEDED is raised.
Otherwise, the suspend count is incremented, and if the resultant value is one and the
freeze count is zero, then the thread's builtin suspend APC object is queued.

When the suspend APC is delivered to the subject thread, a nonalertable Wait on the
thread's builtin semaphore object is executed which suspends thread execution. The
subject thread can be subsequently resumed with either the KeResumeThread or
KeAlertResumeThread function.

The previous suspend count is returned as the function value. If the return value is zero,
then the subject thread was not previously suspended. Otherwise, the thread was
previously suspended and must be resumed the number of times specified by the
return value plus one before it will actually resume execution.

The suspend and resume functions are similar to the freeze and unfreeze functions, but
are usable from both system and user software. The freeze and unfreeze functions are
used to suspend and resume thread execution during debugging operations.

2.1.4.21 Terminate Thread

The execution of the current thread can be terminated with the KeTerminateThread
function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 50

VOID
KeTerminateThread (

IN KPRIORITY Increment
);

Parameters:

Increment - The priority increment that is to be applied is terminating the current
thread causes a Wait to be satisfied.

Terminating the current thread causes the dispatching state of the thread to be set to
Terminated and the state of the thread object to be set to Signaled.

An attempt is made to satisfy as many Waits as possible for the current thread object.

A new thread object is selected for execution on the current processor and a context
switch to the new thread is performed. There is no return from this function.

2.1.4.22 Test Alert Thread

An alert condition for the current thread can be tested for with the KeTestAlertThread
function:

BOOLEAN
KeTestAlertThread (

IN KPROCESSOR_MODE AlertMode
);

Parameters:

AlertMode - The processor mode (UserMode or KernelMode) which is to be tested for
an alert condition.

This function tests to determine if the current thread's alert variable for the specified
processor mode has a value of TRUE or whether a user mode APC should be delivered
to the current thread.

If the alert variable associated with the specified processor mode is TRUE, then it is set
to a value of FALSE.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 51

If the alert variable associated with the specified processor mode is FALSE and the
specified processor mode is user, then the subject thread's APC queue is examined to
determine whether a user mode APC should be delivered. If the user mode APC queue
contains one or more entries, then the user APC pending variable is set to a value of
TRUE in the current thread object.

The previous value of the alert variable for the specified processor mode is returned as
the function value. If the return value is TRUE, then the current thread was alerted.
Otherwise, a value of FALSE is returned and the current thread was not alerted.

2.1.4.23 Unfreeze Thread

The execution of a thread object can be unfrozen with the KeUnfreezeThread function:

ULONG
KeUnfreezeThread (

IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Unfreezing a thread object checks the freeze count of the subject thread. If the freeze
count is zero, then the thread is not currently frozen and no operation is performed.
Otherwise, the subject thread's freeze count is decremented. If the resultant value is
zero and the suspend count is also zero, then the execution of the subject thread is
unfrozen by releasing its builtin suspend semaphore.

The previous freeze count is returned as the function value. If the return value is zero,
then the subject thread was not previously frozen. If the return value is one, then the
subject thread's execution was unfrozen. If the returned value is not zero or one, then
the subject thread is still frozen and must be unfrozen the number of times specified by
the return value minus one before it will actually resume execution.

The freeze and unfreeze functions are similar to the suspend and resume functions, but
are intended for use by system software as opposed to being exported to users. The
freeze and unfreeze functions are used to suspend and resume thread execution during
debugging operations.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 52

2.1.4.24 Thread Performance Data

Several counters are maintained for each thread object to determine the various
execution characteristics of the thread.

Two of the counters maintain the number of clock ticks that occurred while the thread
was in user mode and while the thread was in kernel mode. These counters provide a
quantitative measure of the distribution of computation time between the system and
the user.

2.1.5 Timer Object

A timer object is used to record the passage of time. A timer object is set to a specified
time and then expires when the time becomes due. When a timer object is set, its state
is set to Not-Signaled and it is inserted in the system timer queue according to its
expiration time. When the timer object expires, it is removed from the system timer
queue and its state is set to Signaled.

A Deferred Procedure Call (DPC) can optionally be executed when a timer expires. This
procedure executes at IRQL DISPATCH_LEVEL in the context of whatever thread
happens to be executing when the timer expires.

Waiting on a timer object causes the execution of the subject thread to be suspended
until the timer object attains a Signaled state. Satisfying the Wait for a timer object does
not cause the state of the timer object to change. Therefore, when a timer object attains
a Signaled state, an attempt is made to Satisfy as many Waits as possible.

Timer objects can be used to synchronize the execution of specific actions with time.
This execution can occur at fixed points in time or at various intervals.

Programming interfaces that support the thread object include:

KeInitializeTimer - Initialize a timer object
KeCancelTimer - Cancel timer object expiration
KeReadStateTimer - Read state of timer object
KeSetTimer - Set timer object expiration time

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 53

2.1.5.1 Initialize Timer

A timer object can be initialized with the KeInitializeTime function:

VOID
KeInitializeTimer (

IN PKTIMER Timer
);

Parameters:

Timer - A pointer to a dispatcher object of type timer.

The timer object data structure is initialized with a state of Not-Signaled.

2.1.5.2 Cancel Timer

A timer object can be canceled with the KeCancelTimer function:

BOOLEAN
KeCancelTimer (

IN PKTIMER Timer
);

Parameters:

Timer - A pointer to a dispatcher object of type timer.

If the timer object is currently in the system timer queue, then it is removed from the
queue and a value of TRUE is returned as the function value (a boolean state variable
records whether the timer object is in the system timer queue). Otherwise, no operation
is performed and a value of FALSE is returned as the function value.

2.1.5.3 Read State Timer

The current state of a timer object can be read with the KeReadStateTimer function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 54

BOOLEAN
KeReadStateTimer (

IN PKTIMER Timer
);

Parameters:

Timer - A pointer to a dispatcher object of type timer.

The current state of the timer object is returned as the function value. If the current
state of the timer object is Signaled, then a value of TRUE is returned. Otherwise, a
value of FALSE is returned.

2.1.5.4 Set Timer

A timer object can be set to expire at a specified time with the KeSetTimer function:

BOOLEAN
KeSetTimer (

IN PKTIMER Timer,
IN TIME DueTime,
IN PKDPC Dpc OPTIONAL
);

Parameters:

Timer - A pointer to a dispatcher object of type timer.

DueTime - The absolute or relative time at which the timer is to expire.

Dpc - An optional pointer to a control object of type deferred procedure call.

Setting a timer object causes the absolute expiration time to be computed, the state of
the timer to be set to Not-Signaled, and the timer object to be inserted in the system
timer queue. If the timer object is already in the timer queue, then it is implicitly
canceled before it is set to the new expiration time (a boolean state variable records
whether the timer object is in the system timer queue).

The expiration time of the timer object is expressed as either the absolute time that the
timer is to expire, or a time that is relative to the current system time. If the value of the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 55

DueTime parameter is negative, then the expiration time is relative. Otherwise, the
expiration time is absolute.

The expiration time is expressed in system time units which are 100ns intervals.

If the Dpc parameter is specified, then a DPC object is associated with the timer object.

If the timer object was previously in the system timer queue, then a value of TRUE is
returned as the function value. Otherwise, a value of FALSE is returned.

When the timer object expires, it is removed from the system timer queue and its state
is set to Signaled. If a DPC object was associated with the timer object when it was set,
then it is inserted in the system DPC queue and will execute as soon as conditions
permit (a boolean state variable records whether the DPC object is in the system DPC
queue).

2.2 Control Objects

This section describes the various types of control objects and the interfaces that are
provided to manipulate these objects.

2.2.1 Asynchronous Procedure Call (APC) Object

An Asynchronous Procedure Call (APC) object provides the capability to break into the
execution of a specified thread and cause a procedure to be called in a specified
processor mode. Software running in kernel mode can only be interrupted to execute
asynchronous procedures in kernel mode, whereas software running in user mode can
be interrupted to execute asynchronous procedures in both user and kernel mode.

An asynchronous procedure call occurs in the context of a specified thread and is
triggered by a software interrupt at APC_LEVEL.

There are two types of APC objects:

1. Special

2. Normal

Special APC objects cause the execution of a thread to be interrupted to execute a
procedure in kernel mode at IRQL APC_LEVEL. Special APC objects can break into the
execution of a thread at any time the thread is executing at IRQL 0.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 56

Ordinarily, special APC procedures perform a minimal amount of work and return
immediately to the APC dispatcher without calling any external procedures. However, if
code running as part of a special APC procedure acquires a mutex that is also acquired
by code outside the special APC procedure, then the code outside the special APC
procedure must explicitly raise IRQL to APC_LEVEL when it wants to acquire the mutex.

This convention is required to prevent the special APC procedure from acquiring the
mutex at an inappropriate time, which can happen if the thread that receives the special
APC already owns the mutex when the special APC procedure is executed.

During the execution of a special APC procedure, page faults can be taken and all the
kernel services are available. However, system services are not available, and care must
be taken to ensure that any executive services that are used can be safely called.

Normal APC objects cause the execution of a thread to be interrupted to execute a
procedure in kernel mode at IRQL APC_LEVEL and, in addition, a procedure in either
kernel or user mode at IRQL 0. The first procedure (executed in kernel mode) is called
just prior to calling the second procedure in the specified mode, and must adhere to the
conventions for special APC procedures.

Normal APC objects can only break into the execution of a thread when the thread is
executing at IRQL 0 and a normal APC for the specified mode is not already active.

While a normal APC is active for kernel mode, further normal APCs are software
disabled until the active APC completes. The delivery of normal APCs for kernel mode is
also implicitly disabled while a thread owns one or more mutexes (i.e, the thread does
not have to explicitly raise IRQL to APC_LEVEL in order to synchronize with normal APC
procedures).

Normal user mode APCs are only delivered when the subject thread is alertable. This
occurs when a thread waits user-mode alertable and when the thread calls
KeTestAlertThread.

While a normal APC is active for user mode, further normal APCs for user mode are
software disabled by the alert mechanism. Upon completion of a normal APC in user
mode, KeTestAlertThread is automatically called, which enables the delivery of another
user mode APC. Thus, once a thread is user-mode alertable and an APC is delivered,
further APCs are delivered one after the other until there are no APCs remaining in the
user-mode APC queue.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 57

During the execution of a normal APC procedure, all system operations are available
and page faults can be taken.

Programming interfaces that support the APC object include:

KeInitializeApc - Initialize an APC object
KeFlushQueueApc - Flush all APC objects from APC queue
KeInsertQueueApc - Insert APC object into APC queue
KeRemoveQueueApc - Remove APC object from APC queue

2.2.1.1 Initialize APC

An APC object can be initialized with the KeInitializeApc function:

VOID
KeInitializeApc (

IN PKAPC Apc,
IN PKTHREAD Thread,
IN KAPC_ENVIRONMENT Environment,
IN PKKERNEL_ROUTINE KernelRoutine,
IN PKRUNDOWN_ROUTINE RundownRoutine OPTIONAL,
IN PKNORMAL_ROUTINE NormalRoutine OPTIONAL,
IN KPROCESSOR_MODE ApcMode OPTIONAL,
IN PVOID NormalContext OPTIONAL
);

Parameters:

Apc - A pointer to a control object of type APC.

Thread - A pointer to a dispatcher object of type thread.

Environment - The environment in which the APC will execute
(OriginalApcEnvironment, AttachedApcEnvironment, or CurrentApcEnvironment).

KernelRoutine - A pointer to a function that is to be executed at IRQL APC_LEVEL in
kernel mode.

RundownRoutine - An optional pointer to a function that is to be executed if the APC
object is contained in a thread's APC queue when the thread terminates.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 58

NormalRoutine - An optional pointer to a function that is to be executed at IRQL 0 in
the specified processor mode. If this parameter is not specified, then the
ApcMode and NormalContext parameters are ignored.

ApcMode - The processor mode (UserMode or KernelMode) in which the function
specified by the NormalRoutine parameter is to be executed. This parameter is
ignored if the NormalRoutine parameter is not specified.

NormalContext - A pointer to an arbitrary data structure which is to be passed to the
function specified by the NormalRoutine parameter. This parameter is ignored
if the NormalRoutine parameter is not specified.

The function specified by the KernelRoutine parameter has the following type definition:

typedef
VOID
(*PKKERNEL_ROUTINE) (

IN PKAPC Apc,
IN OUT PKNORMAL_ROUTINE *NormalRoutine,
IN OUT PVOID *NormalContext,
IN OUT PVOID *SystemArgument1,
IN OUT PVOID *SystemArgument2
);

Parameters:

Apc - A pointer to a control object of type APC.

NormalRoutine - A pointer to a pointer to the normal routine function that was
specified when the APC was initialized.

NormalContext - A pointer to a pointer to an arbitrary data structure that was
specified when the APC was initialized.

SystemArgument1, SystemArgument2 - A set of two pointers to two arguments that
contain untyped data.

The function specified by the RundownRoutine parameter has the following type
definition:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 59

typedef
VOID
(*PKRUNDOWN_ROUTINE) (

IN PKAPC Apc
);

Parameters:

Apc - A pointer to a control object of type APC.

The function specified by the NormalRoutine parameter has the following type definition:

typedef
VOID
(*PKNORMAL_ROUTINE) (

IN PVOID NormalContext,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
);

Parameters:

NormalContext - A pointer to an arbitrary data structure that was specified when the
corresponding APC object was initialized.

SystemArgument1, SystemArgument2 - A set of two arguments that contain untyped
data.

The type of APC object to be initialized is determined by the presence or absence of the
optional NormalRoutine parameter. If the NormalRoutine parameter is present, then a
normal APC object is initialized and the values of the ApcMode and NormalContext
parameters are stored in the APC object. Otherwise, a special APC object is initialized for
execution in kernel mode.

The Environment parameter specifies the execution environment of the specified APC
object. An APC object can be executed in the context of a thread's parent process or a
process to which the thread has attached.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 60

The KernelRoutine parameter specifies the procedure that is to be called in kernel mode
at IRQL APC_LEVEL. This procedure is called with a copy of the parameters that are
specified for the normal routine when the APC is initialized and can modify these
parameters as necessary to alter the execution of the normal routine. If the normal
routine is not specified when the APC is initialized, then any assignment to these
parameters is ignored.

If specified, the RundownRoutine parameter specifies a procedure that is to be called
when a thread terminates with the APC object in its APC queue. The purpose of this
routine is to allow for special disposition of the APC object during thread rundown.

If specified, the NormalRoutine parameter specifies the procedure that is to be executed
in the processor mode specified by the ApcMode parameter. This procedure will be
called with the NormalContext parameter and two additional arguments provided by the
system when the APC queued.

In order to actually interrupt the execution of a thread, an APC object must be inserted
into one of the thread's APC queues (there is a separate APC queue for user and kernel
mode).

2.2.1.2 Flush Queue APC

All the APC objects in a specified thread's APC queue can be flushed with the
KeFlushQueueApc function:

PLIST_ENTRY
KeFlushQueueApc (

IN PKTHREAD Thread,
IN KPROCESSOR_MODE ApcMode
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

ApcMode - The processor mode (UserMode or KernelMode) of the APC queue that is to
be flushed.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 61

An APC queue is flushed by removing the APC listhead from the list of APC entries,
reinitializing the APC listhead, and returning the list of APC objects as the function
value. If the APC queue is empty, then a NULL pointer is returned. Otherwise, the
address of the list entry for the first APC object is returned as the function value. It is the
responsibility of the caller to scan the list of APC objects and dispense with each object
as appropriate.

The APC objects are linked together by a list entry in each object. Scanning this list can
be accomplished using the CONTAINING_RECORD function to locate the address of the
respective APC object given the address of its list entry.

This function is used by the executive during thread termination to remove remaining
entries from the thread's APC lists.

2.2.1.3 Insert Queue APC

An APC object can be inserted into a thread's APC queue with the KeInsertQueueApc
function:

BOOLEAN
KeInsertQueueApc (

IN PKAPC Apc,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2,
IN KPRIORITY Increment
);

Parameters:

Apc - A pointer to a control object of type APC.

SystemArgument1, SystemArgument2 - A set of two arguments that contain untyped
data.

Increment - The priority increment that is to be applied if queuing the APC causes
the target thread's wait to be satisfied.

If the specified APC object is already in an APC queue (a boolean state variable records
whether the APC object is in an APC queue) or APC queuing is disabled for the subject
thread, then no operation is performed and a function value of FALSE is returned.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 62

Otherwise, the APC object is inserted into the APC queue specified by the ApcMode and
Thread parameters that were supplied when the APC object was initialized and a
function value of TRUE is returned.

When proper enabling conditions are present, the APC will be delivered to the subject
thread and the specified procedure(s) will be executed in the specified processor mode.

A special APC is deliverable whenever the IRQL of the subject thread is zero.

A normal kernel APC is deliverable whenever the IRQL of the subject thread is zero, a
normal kernel APC is not already in progress, and the subject thread does not own any
mutexes.

A normal user APC is deliverable when the subject thread waits user-mode alertable
and when the subject thread calls KeTestAlertThread.

2.2.1.4 Remove Queue APC

An APC object can be removed from an APC queue with the KeRemoveQueueApc
function:

BOOLEAN
KeRemoveQueueApc (

IN PKAPC Apc
);

Parameters:

Apc - A pointer to a control object of type APC.

If the specified APC object is not currently in an APC queue (a boolean state variable
records whether the APC object is in an APC queue), then a value of FALSE is returned
and no operation is performed. Otherwise, the specified APC object is removed from its
APC queue and a function value of TRUE is returned.

2.2.2 Deferred Procedure Call (DPC) Object

A Deferred Procedure Call (DPC) object provides the capability to break into the execution
of the current thread and cause a procedure to be executed in kernel mode at IRQL
DISPATCH_LEVEL.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 63

There is one DPC queue for the entire system. When a DPC object is inserted in the DPC
queue, a software interrupt is requested at DISPATCH_LEVEL on the current processor.
As soon as the IRQL falls below DISPATCH_LEVEL, a software interrupt will be taken
which will cause the DPC dispatcher to execute.

The DPC dispatcher removes entries from the DPC queue, calls the specified procedure,
and upon return, removes another entry from the queue. This is continued until there
are no longer any entries in the DPC queue, at which time the DPC dispatcher checks to
determine if another thread has been selected for execution on the current processor.
If a thread has been selected, then a context switch to that thread is performed.
Otherwise, the interrupt is dismissed and execution of the current thread is continued.

A deferred procedure call occurs at IRQL DISPATCH_LEVEL in the context of whatever
thread was interrupted when the DISPATCH_LEVEL interrupt occurred. A very limited set
of operations can be performed by the DPC procedure.

No system services can be executed by the DPC procedure nor can any page faults be
taken. The kernel services are generally available. However, the Wait functions can only
be called if it is known that they will not actually cause a wait to occur. (Using an explicit
time-out value of zero implements a conditional Wait operation). If page faults or waits
were allowed, then it would be possible to randomly cause an arbitrary thread to wait in
the kernel at IRQL DISPATCH_LEVEL causing possible deadlocks and data corruption.

Deferred procedure execution is intended mainly for use by device drivers that need to
lower their IRQL to complete an I/O operation. The kernel itself, however, uses DPC
objects to implement timers, quantum end, and power failure recovery.

Programming interfaces that support the DPC object include:

KeInitializeDpc - Initialize a DPC object
KeInsertQueueDpc - Insert DPC object into the DPC queue
KeRemoveQueueDpc - Remove DPC object from the DPC queue

2.2.2.1 Initialize DPC

A DPC object can be initialized with the KeInitializeDpc function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 64

VOID
KeInitializeDpc (

IN PKDPC Dpc,
IN PKDEFERRED_ROUTINE DeferredRoutine,
IN PVOID DeferredContext
);

Parameters:

Dpc - A pointer to a control object of type DPC.

DeferredRoutine - A pointer to a function that is to be called when the DPC object is
removed from the DPC queue.

DeferredContext - A pointer to an arbitrary data structure that is to be passed to the
function specified by the DeferredRoutine parameter.

The function specified by the DeferredRoutine parameter has the following type
definition:

typedef
VOID
(*PKDEFERRED_ROUTINE) (

IN PKDPC Dpc,
IN PVOID DeferredContext,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
);

Parameters:

Dpc - A pointer to a control object of type DPC.

DeferredContext - A pointer to an arbitrary data structure that was specified when
the DPC was initialized.

SystemArgument1, SystemArgument2 - A set of two arguments that contain untyped
data.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 65

2.2.2.2 Insert Queue DPC

A DPC object can be inserted in the system DPC queue with the KeInsertQueueDpc
function:

BOOLEAN
KeInsertQueueDpc (

IN PKDPC Dpc,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
);

Parameters:

Dpc - A pointer to a control object of type DPC.

SystemArgument1, SystemArgument2 - A set of two arguments that contain untyped
data.

If the specified DPC object is already in the DPC queue (a boolean state variable records
whether the DPC object is in the DPC queue), then no operation is performed and a
function value of FALSE is returned. Otherwise, the DPC object is inserted in the DPC
queue, a software interrupt is request at IRQL DISPATCH_LEVEL on the current
processor, and a function value of TRUE is returned.

The deferred procedure will be executed as soon as the IRQL of the current processor
drops below DISPATCH_LEVEL.

2.2.2.3 Remove Queue DPC

A DPC object can be removed from the DPC queue with the KeRemoveQueueDpc
function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 66

BOOLEAN
KeRemoveQueueDpc (

IN PKDPC Dpc
);

Parameters:

Dpc - A pointer to a control object of type DPC.

If the specified DPC object is not currently in the DPC queue (a boolean state variable
records whether the DPC object is in the DPC queue), then a value of FALSE is returned
and no operation is performed. Otherwise, the specified DPC object is removed from
the DPC queue and a function value of TRUE is returned.

2.2.3 Device Queue Object

A device queue object is used to record the state of a device driver and to provide a queue
into which I/O requests can be placed for subsequent processing.

A device queue object has a state which is either Busy or Not-Busy.

When the state of a device queue object is Not-Busy, the associated device driver is idle
and therefore not performing any work.

A device queue object transitions to the Busy state when an attempt is made to insert a
device queue entry into a device queue that is empty. For this case, the device queue
entry is not actually placed in the device queue, but rather, the device queue object is
marked Busy and a boolean value of FALSE is returned to signify that the associated
device driver should process the device queue entry immediately.

Once a device queue object is Busy, further I/O requests are placed in the device queue
in either a FIFO or key-sorted order.

A device queue object transitions to a Not-Busy state when an attempt is made to
remove a device queue entry from a device queue object and the corresponding device
queue is empty.

A device queue entry has the following type definition:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 67

typedef struct _KDEVICE_QUEUE_ENTRY {
LIST_ENTRY DeviceListEntry;
ULONG SortKey;
BOOLEAN Inserted;

} KDEVICE_QUEUE_ENTRY;

Programming interfaces that support the device queue object include:

KeInitializeDeviceQueue - Initialize a device queue
KeInsertDeviceQueue - Insert entry at tail of device queue
KeInsertByKeyDeviceQueue - Insert entry by key into device queue
KeRemoveDeviceQueue - Remove entry from head of device queue
KeRemoveEntryDeviceQueue - Remove entry from device queue

2.2.3.1 Initialize Device Queue

A device queue object can be initialized with the KeInitializeDeviceQueue function:

VOID
KeInitializeDeviceQueue (

IN PKDEVICE_QUEUE DeviceQueue,
IN PKSPIN_LOCK SpinLock
);

Parameters:

DeviceQueue - A pointer to a control object of type device queue.

SpinLock - A pointer to an executive spin lock.

The device queue object data structure is initialized and the state of the device queue is
set to Not-Busy.

2.2.3.2 Insert Device Queue

An entry can be inserted at the tail of a device queue with the KeInsertDeviceQueue
function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 68

BOOLEAN
KeInsertDeviceQueue (

IN PKDEVICE_QUEUE DeviceQueue,
IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry
);

Parameters:

DeviceQueue - A pointer to a control object of type device queue.

DeviceQueueEntry - A pointer to the device queue entry that is to be inserted at the
tail of the device queue.

The specified device queue spin lock is acquired, and the state of the device queue is
checked.

If the state of the device queue is Not-Busy, then the state of the device queue is set to
Busy, the device queue spin lock is released, and a value of FALSE is returned as the
function value (i.e., the device queue entry is not inserted in the device queue).

If the state of the device queue is Busy, then the specified device queue entry is inserted
at the tail of device queue, the device queue spin lock is released, and a value of TRUE is
returned as the function value.

This function is intended for use by code that queues an I/O request to a device driver.
It must be called from an IRQL of DISPATCH_LEVEL.

2.2.3.3 Insert By Key Device Queue

An entry can be inserted into a device queue according to a key value with the
KeInsertByKeyDeviceQueue function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 69

BOOLEAN
KeInsertByKeyDeviceQueue (

IN PKDEVICE_QUEUE DeviceQueue,
IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry,
IN ULONG SortKey
);

Parameters:

DeviceQueue - A pointer to a control object of type device queue.

DeviceQueueEntry - A pointer to the device queue entry that is to be inserted into the
device queue by key.

SortKey - The sort key value that is to be used to determine the position at which
the device queue entry is to be inserted in the specified device queue.

The specified device queue spin lock is acquired, and the state of the device queue is
checked.

If the state of the device queue is Not-Busy, then the state of the device queue is set to
Busy, the device queue spin lock is released, and a value of FALSE is returned as the
function value (i.e., the device queue entry is not inserted in the device queue).

If the state of the device queue is Busy, then the specified device queue entry is inserted
into the device queue according to its sort key value, the device queue spin lock is
released, and a value of TRUE is returned as the function value.

Insertion in the device queue is such that the preceding entry in the queue has a sort
key that is less than or equal to the new entry's sort key and the succeeding entry has a
sort key that is greater than the new entry's sort key.

This function is intended for use by code that queues an I/O request to a device driver.
It must be called from an IRQL of DISPATCH_LEVEL.

2.2.3.4 Remove Device Queue

An entry can be removed from the head of a device queue with the
KeRemoveDeviceQueue function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 70

PKDEVICE_QUEUE_ENTRY
KeRemoveDeviceQueue (

IN PKDEVICE_QUEUE DeviceQueue
);

Parameters:

DeviceQueue - A pointer to a control object of type device queue.

This function can only be called from an IRQL of DISPATCH_LEVEL and is intended for
use by device driver code that completes one I/O request and starts the next one.

The specified device queue spin lock is acquired and the state of the device queue is
checked.

If the state of the device queue is Not-Busy, then a bug check will occur (i.e.,
KeRemoveDeviceQueue cannot be called when the device queue is Not-Busy).

If the state of the device queue is Busy, then an attempt is made to remove an entry
from the head of the device queue. If the device queue is empty, then the state of the
device queue is set to Not-Busy and a NULL pointer is returned as the function value.
Otherwise, the next entry is removed from the head of the device queue, the inserted
status of the entry is set to FALSE, and the address of the entry is returned as the
function value.

The specified device queue spin lock is released.

2.2.3.5 Remove Entry Device Queue

A specific entry can be removed from a device queue with the
KeRemoveEntryDeviceQueue function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 71

BOOLEAN
KeRemoveEntryDeviceQueue (

IN PKDEVICE_QUEUE DeviceQueue,
IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry
);

Parameters:

DeviceQueue - A pointer to a control object of type device queue.

DeviceQueueEntry - A pointer to the device queue entry that is to be removed from
the specified device queue.

The IRQL is raised to DISPATCH_LEVEL and the specified device queue spin lock is
acquired.

If the specified device queue entry is currently in a device queue (a boolean state
variable records whether a device queue entry is in a device queue), then the device
queue entry is removed from the device queue, the inserted status of the device queue
entry is set to FALSE, and a value of TRUE is returned as the function value. Otherwise,
the specified device queue entry is not in a device queue and a value of FALSE is
returned.

The specified device queue spin lock is released and IRQL is restored to its previous
value.

This function is intended for use in canceling I/O operations and is callable from any
IRQL that is less than or equal to DISPATCH_LEVEL.

2.2.4 Interrupt Object

An interrupt object provides the capability to connect an interrupt source to an interrupt
service routine via an entry in an Interrupt Dispatch Table (IDT). Each processor has an
IDT that is used to dispatch interrupts which occur on that processor.

The IDT is a software-defined table that contains an entry for each of the Interrupt
Request Levels (IRQLs). When an interrupt occurs at one of these levels, the interrupt
dispatcher reads the IRQL of the interrupting source from the interrupt controller. This
value is then used to locate the corresponding entry in the IDT that is used to dispatch
the execution of the associated service routine.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 72

Several of the IDT entries are reserved for use by the kernel and cannot be connected to
interrupt objects. These entries include the following:

o PASSIVE_LEVEL - Passive release

o APC_LEVEL - Asynchronous Procedure Call

o DISPATCH_LEVEL - Dispatch and Deferred Procedure Call

o WAKE_LEVEL - Wake system debugger

o CLOCK2_LEVEL - Interval timer

o IPI_LEVEL - Interprocessor request

o POWER_LEVEL - Power failure

o HIGH_LEVEL - Machine check

The remaining levels can be used for device interrupts or bus adapters.

In addition to the 16 entries that are directly associated with the hardware interrupt
request levels, there are 48 more entries in the IDT that are provided to allow secondary
level dispatching of interrupts. These entries can be used by a first-level service routine
(i.e., one connected to IRQLs 0 - 15) to dispatch secondary level interrupts such as those
that might be received from a bus adapter. For example, a bus adapter might have
several devices that can cause interrupts and a mechanism for identifying which device
is requesting service. When a bus adapter interrupt is received, the service routine
connected to the appropriate first level IDT entry is executed. This service routine reads
the adapter register that identifies the interrupting device and uses the information to
locate the appropriate second-level IDT entry. The second-level IDT entry must be
connected to an interrupt object and contains the address of the interrupt transfer
routine which is called.

An interrupt transfer routine has the following type definition:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 73

typedef
BOOLEAN
(*PKTRANSFER_ROUTINE) (

);

Interrupt sources are classified as either LevelSensitive or Latched. Level sensitive
interrupts request an interrupt whenever the corresponding interrupt request signal is
asserted. The service routine associated with the interrupt source must remove the
cause of the interrupt before the interrupt request is dropped. Latched interrupts are
requested whenever the corresponding interrupt request signal transitions from the
deasserted to the asserted state.

An interrupt object can only be connected to a single IDT entry. If a particular service
routine must be connected to the same interrupt on multiple processors, then multiple
interrupt objects must be used. Multiple interrupt objects can be connected to a single
IDT entry. They must, however, all have the same interrupt type (i.e., level sensitive or
latched).

Interrupt objects are intended for use by device drivers.

\ Kernel code that utilizes interrupts directly does not connect interrupts using this
object. These interrupts include the interval timer, power failure, machine check, and
the two software interrupt levels. The code for these interrupts is written in assembler
since it is small and system dependent. \

Programming interfaces that support the interrupt object include:

KeInitializeInterrupt - Initialize an interrupt object
KeConnectInterrupt - Connect interrupt object to an IDT entry
KeDisconnectInterrupt - Disconnect interrupt object from an IDT entry
KeSynchronizeExecution - Synchronize execution with an interrupt

2.2.4.1 Initialize Interrupt

An interrupt object can be initialized with the KeInitializeInterrupt function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 74

VOID
KeInitializeInterrupt (

IN PKINTERRUPT Interrupt,
IN PKSERVICE_ROUTINE ServiceRoutine,
IN PVOID ServiceContext,
IN PKSPIN_LOCK SpinLock,
IN CCHAR Vector,
IN KIRQL InterruptIrql,
IN KIRQL SynchronizeIrql,
IN KINTERRUPT_MODE InterruptMode,
IN BOOLEAN ShareVector,
IN CCHAR ProcessorNumber,
IN BOOLEAN FloatingSave
);

Parameters:

Interrupt - A pointer to a control object of type interrupt.

ServiceRoutine - A pointer to a function that is to be called when an interrupt occurs
on the specified processor through the specified IDT entry.

ServiceContext - A pointer to an arbitrary data structure which will be passed to the
ServiceRoutine function as a parameter.

SpinLock - A pointer to an spin lock that is to be used to synchronize the execution
of the ServiceRoutine function with the corresponding device driver.

Vector - The index of the entry in the specified IDT that is to be associated with
ServiceRoutine function.

InterruptIrql - The request priority of the interrupting source.

SynchronizeIrql - The request priority that the interrupt should be synchronzied
with.

InterruptMode - The mode of the interrupt (LevelSensitive or Latched).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 75

ShareVector - A boolean that specifies whether the interrupt vector to which the
object is connected may be shared. If FALSE then the vector may not be
shared, if TRUE it may be.

ProcessorNumber - The number of the processor whose IDT is to used when
connecting the interrupt.

FloatingSave - A boolean variable that specifies whether the floating point context
needs to be saved when a interrupt is received from the interrupt source.

The function specified by the ServiceRoutine parameter has the following type definition:

typedef
BOOLEAN
(*PKSERVICE_ROUTINE) (

IN PKINTERRUPT Interrupt,
IN PVOID ServiceContext
);

Parameters:

Interrupt - A pointer to a control object of type interrupt which is connected to the
associated interrupt source.

ServiceContext - A pointer to an arbitrary data structure that was specified when the
corresponding interrupt object was initialized.

The interrupt object is initialized with the specified parameters. In order for the function
specified by the ServiceRoutine parameter to actually get called when an interrupt is
received from the interrupt source, the interrupt object must be connected to the
specified IDT entry using the KeConnectInterrupt function.

The spin lock specified by the SpinLock parameter is used to synchronize execution.

If SynchronizeIrql is not equal to InterruptIrql, then the system will raise its priority level to
SynchronizeIrql level before acquiring the lock specified by SpinLock. This allows support
for devices with multiple interrupt sources, since all can be synchronized with a single
spin lock at a single priority level.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 76

It is an error for SynchronizeIrql to be less than InterruptIrql, the system will refuse to
connect such an interrupt object.

An interrupt object can only be connected to a single IDT entry on a single processor.
The Vector parameter specifies the IDT entry and the ProcessorNumber parameter
specifies which IDT is to be used. If a particular service routine must be connected to
the same IDT entry on multiple processors, then multiple interrupt objects must be
used. More than one interrupt object, however, can be connected to the same IDT entry
on the same processor, but all such interrupt objects must have been initialized with
ShareVector set to TRUE. When this happens, appropriate data structures are
automatically set up to call each connected interrupt service routine one after the other.

The mode of the interrupt specifies whether the interrupt is a LevelSensitive or Latched
interrupt. Level sensitive interrupts are continually requested as long as the interrupt
signal stays asserted. Therefore, the interrupt service routine must remove the reason
for the interrupt before returning control. Latched interrupts are requested only on the
transition of the interrupt signal from deasserted to asserted. The function specified by
the ServiceRoutine parameter must return a boolean value that signifies whether the
interrupt was handled or not.

The ShareVector parameter declares whether the interrupt object may be connected to
its interrupt vector at the same time as other interrupt objects. All interrupt objects
sharing an interrupt vector must have ShareVector set to TRUE. The system may disallow
sharing of an interrupt vector, even if all interrupt objects for which connections are
attempted have ShareVector set to TRUE. This could happen because the underlying
hardware does not support sharing.

The FloatingSave parameter specifies whether the ServiceRoutine function uses the
floating point registers. If this parameter is TRUE, then the floating context is saved
before calling the specified service routine. Otherwise, it is not saved and a fair amount
of overhead is saved.

\ This parameter is being provided with the hope that a compiler option will be
implemented that allows a module to be compiled such that it will not use the floating
point registers. This option does not currently exist and this parameter should always
be specified as TRUE. \

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 77

Initializing an interrupt causes code to be generated that will synchronize execution
with the appropriate interrupt object, call the specified interrupt service routine, and
dismiss the interrupt.

2.2.4.2 Connect Interrupt

An interrupt object can be connected to an IDT entry with the KeConnectInterrupt
function:

BOOLEAN
KeConnectInterrupt (

IN PKINTERRUPT Interrupt
);

Parameters:

Interrupt - A pointer to a control object of type interrupt.

If the specified interrupt object is already connected (a boolean state variable records
whether the interrupt object is connected), the specified vector number is greater than
the maximum vector, the specified IRQL is greater than HIGH_LEVEL, the specified level
cannot be connected to (e.g., a reserved level, sharing conflicts), or the specified
processor number is greater than the number of processors in the configuration, then
no operation is performed and a function value of FALSE is returned. Otherwise, the
interrupt object is connected to the IDT entry that was specified when the interrupt
object was initialized and a function value of TRUE is returned.

Once an interrupt object is connected to an IDT entry, the corresponding service routine
will be called each time an interrupt is received from that interrupt source. If multiple
interrupt objects are connected to a single IDT entry, then the service routines are
called in the order in which they were connected.

2.2.4.3 Disconnect Interrupt

An interrupt object can be disconnected from an IDT entry with the
KeDisconnectInterrupt function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 78

BOOLEAN
KeDisconnectInterrupt (

IN PKINTERRUPT interrupt
);

Parameters:

Interrupt - A pointer to a control object of type interrupt.

If the specified interrupt object is not connected (a boolean state variable records
whether the interrupt object is connected), then no operation is performed and a
function value of FALSE is returned. Otherwise, the interrupt object is disconnected
from the IDT entry that was specified when the interrupt object was initialized and a
function value of TRUE is returned.

Further interrupts received from the interrupting source will be logged, but otherwise
ignored.

2.2.4.4 Synchronize Execution

The execution of a device driver function can be synchronized with the execution of the
service routine associated with an interrupt object with the KeSynchronizeExecution
function:

BOOLEAN
KeSynchronizeExecution (

IN PKINTERRUPT Interrupt,
IN PKSYNCHRONIZE_ROUTINE SynchronizeRoutine,
IN PVOID SynchronizeContext
);

Parameters:

Interrupt - A pointer to a control object of type interrupt.

SynchronizeRoutine - A pointer to a device driver function whose execution is to be
synchronized with the execution of the service routine associated with the
specified interrupt object.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 79

SynchronizeContext - A pointer to an arbitrary data structure which is to be passed to
the function specified by the SynchronizeRoutine parameter.

The function specified by the SynchronizeRoutine parameter has the following type
definition:

typedef
BOOLEAN
(*PKSYNCHRONIZE_ROUTINE) (

IN PVOID SynchronizeContext
);

Parameters:

ServiceContext - A pointer to an arbitrary data structure that was specified when the
call to KeSynchronizeExecution was executed.

This function is used by a device driver to synchronize execution with a service routine
which may be executing on another processor in a multiprocessor configuration. Such
synchronization is only necessary in those cases where both the service routine and
device driver access the same resources in a way that requires mutually exclusive
access.

When this function is executed, the IRQL is raised to the level specified by the interrupt
source's interrupt object (the higher of InterruptIrql and SynchronizeIrql), access is
synchronized with the corresponding service routine by acquiring the associated spin
lock, and then the specified routine is called. The routine should access resources as
necessary and return a boolean value. Upon return, the IRQL is restored and the
boolean value is returned as the function value.

Routines executed with this function execute at an elevated IRQL and must be very
short in duration. It is intended that these routines be used for such purposes as
loading device registers and should be only a few microseconds in length.

The boolean return value is intended to be attached to the occurrence of a power
failure. A device driver can use a power status object to record the occurrence of a
power failure. The synchronize routine should raise IRQL to POWER_LEVEL and test the
corresponding status variable before loading any device registers. If the value is TRUE,
then power has failed and the device may not be in an appropriate state. If the value is

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 80

FALSE, then power has not failed and a sequence of device register loads can be
performed without a power failure since power failure interrupts are disabled.

2.2.5 Power Notify Object

A power notify object provides the capability to automatically have a specified function
called when power is restored after a power failure.

This object is intended for use by device drivers and other code that needs to be
asynchronously notified via a function call when power is restored after a failure. The
function call can be used to reinitialize device state, restart I/O operations, etc.

A power notify object, when inserted in the power notify queue, is a repeatable
operation. That is, the specified function will be called each time the power is restored.
The kernel guarantees that once called, the specified function will not be recursively
recalled until it has completed its execution and returned to the kernel.

When power is restored after a power failure, the kernel scans the power notify queue
and calls the specified functions in the order in which they were inserted. Thus layered
device drivers can ensure that they are called in the correct order.

If the power fails and is restored during the scan of the power notify queue, then the
scan is immediately restarted at the beginning of the queue.

A power notify object cannot be inserted in, or removed from, the power notify queue
from a function that is called as the result of power restoration (i.e., a power notify
routine).

Programming interfaces that support the power notify object include:

KeInitializePowerNotify - Initialize notify object
KeInsertQueuePowerNotify - Insert power notify object
KeRemoveQueuePowerNotify - Remove power notify object

2.2.5.1 Initialize Power Notify

A power notify object can be initialized with the KeInitializePowerNotify function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 81

VOID
KeInitializePowerNotify (

IN PKPOWER_NOTIFY PowerNotify,
IN PKNOTIFY_ROUTINE NotifyRoutine,
IN PVOID NotifyContext
);

Parameters:

PowerNotify - A pointer to a control object of type power notify.

NotifyRoutine - A pointer to a function that is to be called when power is restored
after a power failure.

NotifyContext - A pointer to an arbitrary data structure which will be passed to the
NotifyRoutine as a parameter.

The function specified by the NotifyRoutine parameter has the following type definition:

typedef
VOID
(*PKNOTIFY_ROUTINE) (

IN PVOID NotifyContext
);

Parameters:

NotifyContext - A pointer to an arbitrary data structure that was specified when the
power notify object was initialized.

The power notify object data structure is initialized.

In order to actually have the specified function called when power is restored after a
failure, the power notify object must be inserted in the power notify queue.

2.2.5.2 Insert Power Notify

A power notify object can be inserted in the power notify queue with the
KeInsertQueuePowerNotify function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 82

BOOLEAN
KeInsertQueuePowerNotify (

IN PKPOWER_NOTIFY PowerNotify
);

Parameters:

PowerNotify - A pointer to a control object of type power notify.

If the specified power notify object is already in the power notify queue (a boolean state
variable records whether the power notify object is in the power notify queue), then no
operation is performed and a function value of FALSE is returned. Otherwise, the power
notify object is inserted in the power notify queue and a function value of TRUE is
returned.

When the power is restored after a failure, the kernel scans the power notify queue and
calls the specified function.

2.2.5.3 Remove Power Notify

A power notify object can be removed from the power notify queue with the
KeRemoveQueuePowerNotify function:

BOOLEAN
KeRemoveQueuePowerNotify (

IN PKPOWER_NOTIFY PowerNotify
);

Parameters:

PowerNotify - A pointer to a control object of type power notify.

If the power notify object is not in the power notify queue (a boolean state variable
records whether the power notify object is in the power notify queue), then no
operation is performed and a function value of FALSE is returned. Otherwise, the power
notify object is removed from the power notify queue and a function value of TRUE is
returned.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 83

2.2.6 Power Status Object

A power status object provides the capability to automatically have a boolean state
variable set to a value of TRUE when power is restored after a power failure.

This object is intended for use by device drivers and other code which needs to
synchronize access to volatile register and device state such that a power failure does
not leave the registers or device in an indeterminate state. The boolean value can be
interrogated at critical points during driver execution to determine whether a given
operation should be continued or restarted.

A power status object, when inserted in the power status queue, is a one-shot
operation. That is, the boolean variable will be set to a value of TRUE exactly once after
the power is restored. If it is desirable to have the boolean variable set to a value of
TRUE the next time that power fails, then the power status object must be reinserted in
the power status queue.

Programming interfaces that support the power status object include:

KeInitializePowerStatus - Initialize status object
KeInsertQueuePowerStatus - Insert power status object
KeRemoveQueuePowerStatus - Remove power status object

2.2.6.1 Initialize Power Status

A power status object can be initialized with the KeInitializePowerStatus function:

VOID
KeInitializePowerStatus (

IN PKPOWER_STATUS PowerStatus
);

Parameters:

PowerStatus - A pointer to a control object of type power status.

The power status object data structure is initialized.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 84

In order to actually have a boolean variable set to a value of TRUE when power is
restored after a failure, the power status object must be inserted in the power status
queue.

2.2.6.2 Insert Power Status

A power status object can be inserted in the power status queue with the
KeInsertQueuePowerStatus function:

BOOLEAN
KeInsertQueuePowerStatus (

IN PKPOWER_STATUS PowerStatus,
IN PBOOLEAN Status
);

Parameters:

PowerStatus - A pointer to a control object of type power status.

Status - A pointer to a boolean variable that is to be set to a value of TRUE when
power is restored after a failure.

If the specified power status object is already in the power status queue (a boolean
state variable records whether the power status object is in the power status queue),
then no operation is performed and a function value of FALSE is returned. Otherwise,
the power status object is inserted in the power status queue, the specified boolean
variable is set to a value of FALSE, and a function value of TRUE is returned.

When the power is restored after a failure, the kernel removes each entry from the
power status queue, sets the specified boolean variable to a value of TRUE, and sets the
inserted state of the power status object to FALSE.

2.2.6.3 Remove Power Status

A power status object can be removed from the power status queue with the
KeRemoveQueuePowerStatus function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 85

BOOLEAN
KeRemoveQueuePowerStatus (

IN PKPOWER_STATUS PowerStatus
);

Parameters:

PowerStatus - A pointer to a control object of type power status.

If the power status object is not in the power status queue (a boolean state variable
records whether the power status object is in the power status queue), then no
operation is performed and a function value of FALSE is returned. Otherwise, the power
status object is removed from the power status queue and a function value of TRUE is
returned.

2.2.7 Process Object

A process object represents the virtual address space and control information necessary
for the execution of a set of thread objects.

A process object contains a pointer to an address map, a thread ready list to hold
thread objects while the process is not in the balance set, a list of threads that are
children of the process, the total accumulated time for all threads executing within the
process, a base priority, and a default thread affinity.

A process object must be initialized before any thread objects can be initialized that
specify the process as their parent.

A process is either in the balance set (Included) or not in the balance set (Excluded).
When a process is in the balance set, then all threads that are children of the process
are eligible to be considered for execution on a processor. When a process is not in the
balance set, then necessary pages are not locked in memory (e.g. thread kernel stacks)
and threads that are children of the process are not eligible for execution on a
processor.

The balance set is managed by the balance set manager; see also the discussion under
Thread Object.

A process cannot leave the balance set while any of its children threads own mutexes.
Therefore, when a process is selected for removal from the balance set, any children

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 86

threads that own mutexes are allowed to continue execution until they release their last
mutex. When this occurs, execution of the thread is suspended and it is placed in the
process ready queue rather than returning to one of the dispatcher ready queues.
When no threads in the process own mutexes, then the process can actually be
removed from the balance set.

Programming interfaces that support the process object include:

KeInitializeProcess - Initialize a process object
KeAttachProcess - Attach process address space
KeDetachProcess - Detach process address space
KeExcludeProcess - Exclude process from balance set
KeIncludeProcess - Include process in balance set
KeSetPriorityProcess - Set priority of process object

2.2.7.1 Initialize Process

A process object can be initialized with the KeInitializeProcess function:

VOID
KeInitializeProcess (

IN PKPROCESS Process,
IN KPRIORITY BasePriority,
IN KAFFINITY Affinity,
IN ULONG DirectoryTableBase,
IN BOOLEAN Enable
);

Parameters:

Process - A pointer to a control object of type process.

BasePriority - The base priority of the process.

Affinity - The set of processors on which children threads of the process can
execute.

DirectoryTableBase - The value that is to be loaded into the Directory Table Base
Register when a child thread of the process is dispatched for execution.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 87

Enable - A boolean variable that specifies the default handling mode for data
alignment exceptions in children threads.

The process object data structure is initialized with the specified base priority, affinity,
directory table base, and default alignment exception handling mode. The process and
thread quantum values are initialized with system default values and the process is not
considered to be in the balance set.

The Enable parameter specifies the default handling mode for data alignment
exceptions in children threads. If this parameter is TRUE, then user mode data
alignment exceptions are automatically handled by the kernel and are not raised as
exceptions. Otherwise, user mode data alignment exceptions are not handled by the
kernel and may, or may not, be raised as exceptions depending on host hardware
capabilities. Automatic handling of user data alignment exceptions means that the
kernel emulates misaligned data references and completes the offending instructions
as if no misalignment exception had occurred. Misaligned references in kernel mode
are never automatically handled and are always raised as exceptions.

IMPLEMENTATION NOTES:

Certain processors (e.g., the i386) always handle misaligned data in hardware. On these
processors, enabling or disabling the automatic handling of data alignment exceptions
has no effect. On other processors (e.g., i486, MIPS r3000, r4000SP, and r4000MP) the
handling of misaligned data is handled according to the mode established for the
respective thread.

2.2.7.2 Attach Process

A thread can attach to another process's address space with the KeAttachProcess
function:

VOID
KeAttachProcess (

IN PKPROCESS Process
);

Parameters:

Process - A pointer to a control object of type process.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 88

Attaching to another process's address space causes the subject thread to leave the
parent process's address space and enter the address space of the target process. This
provides the capability for one thread to alter the address space and resources of
another process without having complicated data structures or locking protocols.

All of the resources of the target process can be accessed and manipulated by the
subject thread while the thread is executing in the target process's address space. This
includes the process object table, process private mapping information, working set,
etc.

A thread can only attach to one address space at a time. If an attempt is made to attach
to a second process's address space while the thread is already attached to another
process's address space, then a bug check will occur. In addition, a thread cannot own
any mutexes when it attaches to another process's address space. An attempt to do will
also cause a bug check to occur.

Attaching to another process's address causes the current APC state of the subject
thread to be saved and a new state initialized. While the thread is executing in the
attached process's address space, it can receive APCs that were initiated in that address
space. APCs that were initiated in the parent process's address space are queued, but
not delivered until the thread returns to the parent process's address space.

Attaching to another process's address space does not cause the kernel stack of the
subject thread to be locked in memory while the target process is in the balance set.
Therefore, both the source and target processes are not allowed to leave the balance
set while a thread has the target process's address space attached. This is accomplished
by incrementing the process mutex count of both the source and target processes.
Artificially incrementing this count prevents each of the processes from being removed
from the balance set until their respective counts go to zero. In addition, a thread that
has another process's address space attached is allowed to continue execution as if it
owned a mutex, if one of the processes is selected for removal from the balance set by
the balance set manager.

The execution time of a thread that has another process's address space attached is
charged to the target process.

This service will be used by the executive to alter the address map of another process.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 89

2.2.7.3 Detach Process

A thread can detach from another process's address space with the KeDetachProcess
function:

VOID
KeDetachProcess (

);

Detaching from another process's address space causes the subject thread to return to
the parent process's address space.

If an attempt is made to detach from another process's address space when the subject
thread does not have another process's address space attached, then a bug check will
occur. In addition, if a kernel APC is in progress, the kernel APC queue contains an
entry, the user APC queue contains an entry, or the thread owns one or more mutexes,
then a bug check will also occur.

Detaching from another process's address space causes the saved APC state to be
restored and the process mutex counts to be adjusted. If the kernel APC queue is not
empty, then an APC_LEVEL software interrupt is requested which will cause the kernel
mode APCs to get delivered as appropriate.

2.2.7.4 Exclude Process

A process object can be excluded from the balance set with the KeExcludeProcess
function:

BOOLEAN
KeExcludeProcess (

IN PKPROCESS Process
);

Parameters:

Process - A pointer to a control object of type process.

The specified process is excluded from the balance set and its children threads will be
removed from further consideration by the thread dispatcher when they no longer own
any mutexes and do not have another process's address space attached.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 90

A value of TRUE is returned as the function value, if the process can be immediately
removed from the balance set (i.e., none of its children threads own any mutexes or
have any address spaces attached). Otherwise, a value of FALSE is returned and the
caller must wait on the process's balance set event to determine the exact point when
the process can be removed from the balance set.

Processors on which children threads are running (Running state) or about to run
(Standby state) are forced to redispatch if their respective threads do not own any
mutexes and are not attached to another process's address space.

As ready threads are considered for execution, a test is made to determine if the
thread's process is in the balance set. If the thread does not own any mutexes, is not
attached to another process' address space, and its parent process is excluded from the
balance set, then the thread is removed from its dispatcher ready queue and inserted in
the process ready queue. The process ready queue is scanned when the process
reenters the balance set and any threads in the process's ready queue are rereadied for
execution.

This function is intended for use by the balance set manager.

2.2.7.5 Include Process

A process object can be included in the balance set with the KeIncludeProcess
function:

VOID
KeIncludeProcess (

IN PKPROCESS Process
);

Parameters:

Process - A pointer to a control object of type process.

The specified process is included in the balance set and the process's ready queue is
scanned. The process ready queue is a list of threads that are ready to run, but which
were moved to the process ready queue when they were encountered in one of the
dispatcher ready queues. Each thread in the list is removed and readied for execution.

This function is intended for use by the balance set manager.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 91

2.2.7.6 Set Priority Process

The base priority of a process object can be set with the KeSetPriorityProcess function:

KPRIORITY
KeSetPriorityProcess (

IN PKPROCESS Process,
IN KPRIORITY BasePriority
);

Parameters:

Process - A pointer to a control object of type process.

BasePriority - The new base priority of the process object.

The base priority of the specified process is set to the specified value and the priority of
all the process's children threads are adjusted as appropriate.

If the new priority is in the realtime class, then the priority of each child thread is set to
the new base priority.

If the new priority is in the variable class, then the priority of each thread is computed
by taking the current priority of the thread, subtracting out the old base priority, and
then adding the new base priority. The computed value is not allowed to cross into the
realtime class or go below a priority of 1.

2.2.7.7 Process Accounting Data

As children threads within a process execute, their runtime is accumulated in the parent
process object. The units of this summation are clock ticks.

2.2.8 Profile Object

A profile object provides the capability to measure the distribution of execution time
within a block of code. Both user and system code may be profiled.

Each profile object has three key attributes. First, a profile object applies to an address
range or a set of address ranges. The address range is specified by the RangeBase,
RangeSize, and Process parameters. RangeBase and RangeSize select a range of bytes (that

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 92

is, the area of code) on which to collect profile data. This range is within the address
space described by the Process parameter. A given profile object either profiles a single
address range within a single address space (i.e., applies to one process) or profiles the
same single address range across all processes in the system.

Second, a profile object divides the address range being profiled into buckets. Each
time a program counter (PC) sample shows the PC to be in one of these buckets, the
corresponding counter is incremented. The BucketSize parameter controls the size of
these buckets.

Third, a profile object reports the number of sampling hits for any given bucket in the
corresponding counter. Counters reside in the buffer associated with the profile object
when it is created.

Profiling works by sampling the processors PC using a periodic interrupt. The handler
for the profiling interrupt searches the list of active profile objects for those with
address ranges that match the PC. (I.e., the sampled PC falls within the address range
associated with the profile object, and the current process matches the process
associated with the profile object.) For each matching profile object, the bucket is
computed, and the counter corresponding to the bucket is updated.

When profiling is off, it consumes no processor cycles, and thus may be present in any
system. When turned on, the burden it places on the system is inversely proportional to
the profiling interval set with KeSetIntervalProfile and proportional to the number of
active (started) profile objects. A small number of profile objects may be active at any
one time.

IMPLEMENTATION NOTE:

On symmetric MP machines, profiling interrupts occur on all processors (at the same
rate). On asymmetric machines (i.e., the SystemPro) slave processors do NOT do
profiling.

Programming interfaces that support the profile object include:

KeInitializeProfile - Initialize a profile object
KeStartProfile - Start data collection for a profile object
KeStopProfile - Stop data collection for a profile object
KeSetIntervalProfile - Set length of profile interval (globally)
KeQueryIntervalProfile - Query length of profile interval

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 93

2.2.8.1 Initialize Profile

A profile object is initialized with KeInitializeProfile.

VOID
KeInitializeProfile (

IN PKPROFILE Profile,
IN PKPROCESS Process OPTIONAL,
IN PVOID RangeBase,
IN ULONG RangeSize,
IN ULONG BucketSize
);

Parameters:

Profile - A pointer to a control object of type profile.

Process - If specified, a pointer to a kernel process object that describes the address
space to profile. If not specified, then all address spaces are included in the
profile.

RangeBase - Address of the first byte of the address range for which profiling
information is to be collected.

RangeSize - Size of the address range for which profiling information is to be
collected. The RangeBase and RangeSize parameters are interpreted such that
RangeBase <= address < RangeBase+RangeSize generates a profile hit.

BucketSize - Log base 2 of the size of a profiling bucket. Thus, BucketSize = 2 yields 4-
byte buckets, BucketSize = 7 yields 128-byte buckets. All profile hits in a given
bucket increment the corresponding counter in Buffer. Buckets cannot be
smaller than a ULONG.

The profile object is initialized with the specified parameter values, and its state is set to
stopped. KeStartProfile must be called to actually start profiling.

2.2.8.2 Start Profile

KeStartProfile must be called to start gathering data for a profile object.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 94

BOOLEAN
KeStartProfile (

IN PKPROFILE Profile,
IN PULONG Buffer
);

Parameters:

Profile - A pointer to a control object of type profile.

Buffer - Array of ULONGs. Each ULONG is a hit counter, which records the number
of hits in the corresponding bucket. The Buffer must be accessible at
DPC_LEVEL and above.

The value TRUE is returned if the profile object is successfully started. FALSE is returned
if the object is already in the started state. An exception
(STATUS_INSUFFICIENT_RESOURCES) is raised if there are insufficient resources
available to make the profile active.

2.2.8.3 Stop Profile

KeStopProfile is called to stop gathering data for a profile object.

BOOLEAN
KeStopProfile (

IN PKPROFILE Profile
);

Parameters:

Profile - A pointer to a control object of type profile.

TRUE is returned if the profile is successfully stopped, FALSE if it is not already in the
started state. Once a profile is stopped, no more updates are written into its buffer.

2.2.8.4 Set System Profile Interval

The time interval between profile interrupts (and thus the profiling rate) is set by calling
KeSetIntervalProfile.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 95

VOID
KeSetIntervalProfile (

IN ULONG Interval
);

Parameters:

Interval - The sampling interval in 100ns units.

The actual interval set by the system is the closest available, but may differ significantly.
KeQueryIntervalProfile returns the actual value in use by the system.

The value is set globally; it affects all profiles on all processors.

IMPLEMENTATION NOTE:

PC-based i386 and i486 machines offer sampling intervals from about 10,000 units (1
millisecond) to 300 units (30 microseconds).

2.2.8.5 Query System Profile Interval

KeQueryIntervalProfile returns the current profile sampling interval.

ULONG
KeQueryIntervalProfile (

);

The current profile sampling interval is returned in units of 100ns. This is the value the
system is actually using, and thus may be different from the value set with
KeSetIntervalProfile.

3. Wait Operations

Threads synchronize their access to dispatcher objects with object-specific functions
and the generic kernel Wait functions. When a thread desires to wait until a dispatcher
object attains a Signaled state, it executes one of the kernel Wait functions specifying
the dispatcher object as a parameter. If the dispatcher object is not currently in a
Signaled state, then the kernel puts the thread in a Waiting state and selects another
thread to run on the current processor.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 96

At some future point, a cooperating thread or system operation will cause the specified
dispatcher object to attain a state of Signaled. When this occurs, the thread will be given
a priority boost and enter the Ready state. The thread will be dispatched for execution
according to its priority.

The kernel Wait functions also allow a thread to wait on more than one dispatcher
object at a time. The conditions under which the Wait will be satisfied can be specified
as WaitAny or WaitAll.

If WaitAny is specified, then the Wait will be satisfied when any of the objects attain a
state of Signaled. If WaitAll is specified, then the Wait will not be satisfied until all of the
objects concurrently attain a state of Signaled.

Each Wait operation can optionally specify a timeout value. If a timeout value is
specified, then the Wait will be automatically satisfied if the timeout period is exceeded
without the Wait being satisfied in the normal manner.

If a timeout value of zero is specified, then no wait will actually occur, but an attempt
will be made to satisfy the Wait immediately. If the Wait can be satisfied, then all side
effects are performed (e.g. acquiring a mutex). Otherwise, no side effects are
performed.

Wait operations can be alertable or nonalertable. If a wait is alertable and the subject
thread is alerted while it is waiting, then the wait will be satisifed with a completion
status of STATUS_ALERTED.

Wait operations also take a processor mode as a parameter which specifies on whose
behalf the Wait is actually occurring. This is required since executive code itself
performs the Wait operation and the previous mode of the processor is not necessarily
the correct mode. This mode determines what happens when the subject thread is
alerted or an APC is queued while the thread is in a Waiting state.

Each Wait operation also takes a Wait reason as a parameter. The Wait reason is an
enumerated type supplied by the kernel and is used for debugging system code and for
system management functions (i.e., it will be possible to display the reason a thread is
in a Waiting state).

Programming interfaces that support wait operations include:

KeWaitForMultipleObjects - Wait for dispatcher objects

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 97

KeWaitForSingleObject - Wait for one dispatcher object

3.1 Wait For Multiple Objects

A thread can wait for a set of dispatcher objects with the KeWaitForMultipleObjects
function:

NTSTATUS
KeWaitForMultipleObjects (

IN CCHAR Count,
IN PVOID Objects[],
IN WAIT_TYPE WaitType,
IN KWAIT_REASON WaitReason,
IN KPROCESSOR_MODE WaitMode,
IN BOOLEAN Alertable,
IN PTIME Timeout OPTIONAL,
IN PKWAIT_BLOCK WaitBlockArray OPTIONAL
);

Parameters:

Count - A count of the number of objects that are to be waited on.

Objects - An array of pointers to dispatcher objects.

WaitType - The type of wait operation that is to be performed (WaitAny or WaitAll).

WaitReason - The reason for the Wait.

WaitMode - The processor mode on whose behalf the Wait is occurring.

Alertable - A boolean value that specifies whether the Wait is alertable.

Timeout - An optional pointer to timeout value that specifies the absolute or relative
time over which the Wait is to be completed.

WaitBlockArray - An optional pointer to an array of wait blocks that are to be used to
describe the wait operation.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 98

Each thread object has a builtin array of wait blocks that can be used to wait on multiple
objects concurrently. Whenever possible, the builtin array of wait blocks should be used
in a wait multiple operation since no additional wait block storage need be allocated
and later deallocated. However, if the number of objects to be waited on concurrently is
greater than the number of builtin wait blocks, then the WaitBlockArray parameter can
be used to specify an alternate set of wait blocks to be used in the wait operation.

If the WaitBlockArray parameter is not specified, then the Count parameter must be less
than or equal to THREAD_WAIT_OBJECTS which defines the number of builtin wait
objects. If the WaitBlockArray parameter is not specified and the Count parameter is
greater than THREAD_WAIT_BLOCKS, then a bug check will occur.

If the WaitBlockArray parameter is specified, then the Count parameter must be less than
or equal to MAXIMUM_WAIT_OBJECTS which is the maximum number of objects that
can be waited on concurrently. If the WaitBlockParameter is specified and the Count
parameter is greater than MAXIMUM_WAIT_OBJECTS, then a bug check will occur.

The current state for each of the specified objects is examined to determine if the Wait
can be satisfied immediately. If the Wait can be satisfied, then necessary side effects are
performed on the objects and an appropriate value is returned as the function value. If
the Wait cannot be satisfied immediately, and either no timeout value or a nonzero
timeout value is specified, then the current thread is put in a Waiting state and a new
thread is selected for execution on the current processor.

The WaitType parameter specifies the type of wait operation that is to be performed. If
the WaitType is WaitAll, then all of the specified objects must attain a state of Signaled
before the Wait will be satisfied. If the WaitType is WaitAny, then any of the objects must
attain a state of Signaled before the Wait will be satisifed.

The reason for the Wait is set to the value specified by the WaitReason parameter.

The WaitMode parameter specifies on whose behalf the Wait is occurring.

The Alertable parameter specifies whether the thread can be alerted while it is in the
Waiting state. If the value of this parameter is TRUE and the thread is alerted for a mode
that is equal to or more privileged than the Wait mode, then the thread's Wait will be
satisfied with a completion status of STATUS_ALERTED.

If the WaitMode parameter is UserMode and the Alertable parameter TRUE, then the
thread can also be awakened to deliver a user mode APC. Kernel mode APCs always

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 99

cause the subject thread to be awakened if the Wait IRQL is zero and there is not a
kernel APC in progress.

The Timeout parameter is optional. If a timeout value is specified, then the Wait will be
automatically satisfied if the timeout occurs before the specified Wait conditions are
met.

If a zero timeout value is specified, then the Wait will not actually Wait regardless of
whether it can be satisfied or not. An explicit timeout value of zero allows for the testing
of a set of Wait conditions, and conditionally performing any side effects if the Wait can
be immediately satisifed (e.g. the acquisition of a mutex).

The expiration time of the timeout is expressed as either an absolute time at which the
Wait is to be automatically satisifed, or a time that is relative to the current system time.
If the value of the Timeout parameter is negative, then the expiration time is relative.
Otherwise, the expiration time is absolute.

The values returned by the KeWaitForMultipleObjects function determine how the
Wait was satisfied.

A value in the range of zero to Count minus one is returned if the Wait is satisfied by one
or more of the dispatcher objects specified by the Objects parameter and none of the
dispatcher objects satisfying the Wait is an abandoned mutant object. The actual value
returned is the index of the object (zero based) in the Objects array that satisfied the
Wait.

A value in the range of STATUS_ABANDONED to STATUS_ABANDONED plus Count minus
one is returned if the Wait is satisfied by one or more of the dispatcher objects specified
by the Objects parameter and one or more of the dispatcher objects satisfying the Wait
is an abandoned mutant object. The actual value returned is the index of the object
(zero based) in the Objects array that satisfied the Wait plus the value of
STATUS_ABANDONED.

A value of STATUS_ALERTED is returned if the Wait was completed because the thread
was alerted.

If a value of STATUS_TIMEROUT is returned, then timeout occurred before the specified
set of wait conditions were met. Note that this value can be returned when an explicit
timeout value of zero is specified and the specified set of wait conditions cannot be
immediately met.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 100

A value of STATUS_USER_APC is returned if a user mode APC is to be delivered.

3.2 Wait For Single Object

A thread can wait for a single dispatcher object with the KeWaitForSingleObject
function:

NTSTATUS
KeWaitForSingleObject (

IN PVOID Object,
IN KWAIT_REASON WaitReason,
IN KPROCESSOR_MODE WaitMode,
IN BOOLEAN Alertable,
IN PTIME Timeout OPTIONAL
);

Parameters:

Object - A pointer to a dispatcher object.

WaitReason - The reason for the Wait.

WaitMode - The processor mode on whose behalf the Wait is occurring.

Alertable - A boolean value that specifies whether the Wait is alertable.

Timeout - An optional pointer to timeout value that specifies the absolute or relative
time over which the Wait is to be completed.

The current state of the specified object is examined to determine if the Wait can be
satisfied immediately. If the Wait can be satisfied, then necessary side effects are
performed on the object and an appropriate value is returned as the function value. If
the Wait cannot be satisfied immediately, and either no timeout value or a nonzero
timeout value is specified, then the current thread is put in a Waiting state and a new
thread is selected for execution on the current processor.

The reason for the Wait is set to the value specified by the WaitReason parameter.

The WaitMode parameter specifies on whose behalf the Wait is occurring.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 101

The Alertable parameter specifies whether the thread can be alerted while it is in the
Waiting state. If the value of this parameter is TRUE and the thread is alerted for a mode
that is equal to or more privileged than the Wait mode, then the thread's Wait will be
satisfied with a completion status of STATUS_ALERTED.

If the WaitMode parameter is UserMode and the Alertable parameter TRUE, then the
thread can also be awakened to deliver a user mode APC. Kernel mode APCs always
cause the subject thread to be awakened if the Wait IRQL is zero and there is not a
kernel APC in progress.

The Timeout parameter is optional. If a timeout value is specified, then the Wait will be
automatically satisfied if the timeout occurs before the specified Wait conditions are
met.

If a zero timeout value is specified, then the Wait will not actually Wait regardless of
whether it can be satisfied or not. An explicit timeout value of zero allows for the testing
of a set of Wait conditions, and conditionally performing any side effects if the Wait can
be immediately satisifed (e.g. the acquisition of a mutex).

The expiration time of the timeout is expressed as either an absolute time at which the
Wait is to be automatically satisifed, or a time that is relative to the current system time.
If the value of the Timeout parameter is negative, then the expiration time is relative.
Otherwise, the expiration time is absolute.

The values returned by the KeWaitForSingleObject function determine how the Wait
was satisfied.

A value of STATUS_SUCCESS is returned if the dispatcher object specified by the Object
parameter satisfied the Wait.

A value of STATUS_ABANDONED is returned if the dispatcher object specified by the
Object parameter satisfied the Wait and is a mutant object that was previously
abandoned.

A value of STATUS_ALERTED is returned if the Wait was completed because the thread
was alerted.

If a value of STATUS_TIMEOUT is returned, then timeout occurred before the specified
wait condition was met. Note that this value can be returned when an explicit timeout

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 102

value of zero is specified and the specified set of wait conditions cannot be immediately
met.

A value of STATUS_USER_APC is returned if a user mode APC is to be delivered.

4. Miscellaneous Operations

Several miscellaneous functions are provided to perform hardware-related operations
and to provide the operations necessary to debug a multiprocessor operating system.

The exact implementation for some of these operations varies, depending on the
particular host architecture. Implementation notes have been provided for these
functions.

Programming interfaces that support miscellaneous operations include:

KeBugCheck - Generate bug check halt
KeContextFromKframes - Move machine state to context frames
KeContextToKframes - Move machine state from context frames
KeFillEntryTb - Fill translation buffer entry
KeFlushDcache - Flush data cache
KeFlushEntireTb - Flush entire translation buffer
KeFlushIcache - Flush instruction cache
KeFlushIoBuffers - Flush I/O buffers from the data cache
KeFlushSingleTb - Flush single translation buffer entry
KeFreezeExecution - Freeze processor execution
KeGetCurrentApcEnvironment - Get the current APC environment
KeGetCurrentIrql - Get the current IRQL
KeGetPreviousMode - Get previous processor mode
KeLowerIrql - Lower the current IRQL to the specified value
KeQuerySystemTime - Query the current system time
KeRaiseIrql - Raise the current IRQL to the specified value
KeRundownThread - Run down thread before termination
KeSetSystemTime - Set the current system time
KeStallExecutionProcessor - Stall processor execution
KeUnFreezeExecution - Unfreeze processor execution

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 103

4.1 Bug Check

A bug check halt can be generated with the KeBugCheck function:

VOID
KeBugCheck (

IN ULONG BugCheckCode
);

Parameters:

BugCheckCode - A value that specifies the reason for the bug check.

A bug check is a system-detected error that causes a controlled shutdown of the
system. The various kernel mode components of the system perform online consistency
checking. When an inconsistency is discovered, a bug check is generated.

4.2 Context Frame Manipulation

The kernel trap handler is responsible for saving and restoring machine state when an
interrupt, exception, system call, or other trapping condition is detected by system
hardware.

Depending on the type of trapping condition, the trap handler may save only the
volatile register state, or may save both the volatile and the nonvolatile register state. In
addition, the previous processor state and floating point status are also saved.

This state information is saved on the kernel stack in the form of a call frame. Separate
call frames are used to store the volatile and the nonvolatile register state. These
frames are called the trap frame and exception frame respectively.

A third structure, called a context frame, is constructed from the information contained
in the trap and exception frames. This structure contains the complete machine state
for a thread of execution.

A context frame is used to specify the initial machine state of a thread, to save the
previous machine state when an exception handler is invoked, and to continue the
execution of a thread after an exception has been handled.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 104

The kernel supplies two routines to marshal information to/from a context frame.

4.2.1 Move Machine State To Context Frame

Saved machine state can be moved from a trap frame and/or an exception frame to a
context frame with the KeContextFromKframes function:

VOID
KeContextFromKframes (

IN PKTRAP_FRAME TrapFrame,
IN PKEXCEPTION_FRAME ExceptionFrame,
IN OUT PCONTEXT ContextFrame
);

Parameters:

TrapFrame - A pointer to a trap frame.

ExceptionFrame - A pointer to an exception frame.

ContextFrame - A pointer to a context frame.

Saved machine state is moved from the specified trap frame and/or the specified
exception frame to the specified context frame. The ContextFlags field of the context
frame controls the information that is moved.

ContextFlags Field

CONTEXT_CONTROL - Specifies that the processor state information from the
trap frame is to be moved to the context frame.

CONTEXT_FLOATING_POINT - Specifies that the floating point register state from
the trap and exception frames is to be moved to the context frame.

CONTEXT_INTEGER - Specifies that the integer register state from the trap and
exception frames is to be moved to the context frame.

CONTEXT_PIPELINE - Specifies that the floating point pipe state is to be moved
from the trap frame to the context frame.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 105

CONTEXT_FULL - Specifies that all of the state information from the trap and
exception frames is to be moved to the context frame.

4.2.2 Move Machine State From Context Frame

Saved machine state can be moved from a context frame to a trap frame and/or an
exception frame with the KeContextToKframes function:

VOID
KeContextToKframes (

IN OUT PKTRAP_FRAME TrapFrame,
IN OUT PKEXCEPTION_FRAME ExceptionFrame,
IN PCONTEXT ContextFrame,
IN ULONG ContextFlags,
IN KPROCESSOR_MODE PreviousMode
);

Parameters:

TrapFrame - A pointer to a trap frame.

ExceptionFrame - A pointer to an exception frame.

ContextFrame - A pointer to a context frame.

ContextFlags - A set of flags that specifies the state information that is to be moved
from the specified context frame to the specified trap frame and/or the
specified exception frame.

ContextFlags Flags

CONTEXT_CONTROL - Specifies that the processor state information from the
context frame is to be moved to the trap frame.

CONTEXT_FLOATING_POINT - Specifies that the floating point register state from
the context frame is to be moved to the trap and exception frames.

CONTEXT_INTEGER - Specifies that the integer register state from the context
frame is to be moved to the trap and exception frames.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 106

CONTEXT_PIPELINE - Specifies that the floating point pipe state is to be moved
from the context frame to the trap frame.

CONTEXT_FULL - Specifies that all of the state information from the context
frame is to be moved to the trap and exception frames.

PreviousMode - The processor mode for which the context frame is specified.

Saved machine state is moved from the specified context frame to the specified trap
frame and/or the specified exception frame. The ContextFlags parameter specifies the
information that is to be moved. The PreviousMode parameter determines which bits the
caller may specify if the processor state information is being moved to the trap frame.

4.3 Fill Entry Translation Buffer

A page table entry can be inserted into the translation buffer of the current processor
with the KeFillEntryTb function:

VOID
KeFillEntryTb (

IN HARDWARE_PTE Pte[1],
IN PVOID Virtual,
IN BOOLEAN Invalid
);

Parameters:

Pte - A pointer to a page table entry, or a pair of page table entries, that are to be
inserted into the translation buffer of the current processor.

Virtual - The virtual address that corresponds to the first page table entry.

Invalid - A boolean value that determines whether a translation buffer entry should
be invalidated if the host architecture does not provide a software-managed
translation buffer.

This function is intended for use by memory management software for the following
cases:

1. A page table entry transitions from the invalid to the valid state.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 107

2. A page table entry transitions from the unmodified (clean) to the modified (dirty)
state.

3. A page table entry transitions from the unaccessed to the accessed state.

None of these transitions affects other processors in the configuration; however, they
provide the opportunity to optimize the filling of the translation buffer on systems that
have a software-managed translation buffer.

If the page table entry is transitioning from the invalid to the valid state, then the Invalid
parameter should be FALSE. Otherwise, the Invalid parameter should be TRUE.

If the specified virtual address is already mapped by the translation buffer, then the
contents of the specified page table entry(s) replace the page table entry in the
translation buffer. Otherwise, a new translation buffer entry is created that maps the
specified virtual address.

IMPLEMENTATION NOTES:

The Intel i860 does not have a software-managed translation buffer. It also cannot
invalidate a single translation buffer entry. Therefore, if the Invalid parameter is TRUE,
then the entire translation buffer is invalidated. Otherwise, no operation is performed.

The Intel i386 and i486 do not have a software-managed translation buffer. Also neither
of these processors can invalidate a single translation buffer entry. Therefore, if the
Invalid parameter is TRUE, the entire translation buffer is invalidated. Otherwise, no
operation is performed.

\ The i486 can invalidate a single translation buffer entry, but it is not yet supported. \

The MIPS r3000, r4000SP, and r4000MP have software-managed translation buffers.
Therefore, the specified page table entry either replaces the current translation buffer
entry or a new translation buffer entry is created to map the specified virtual address.

4.4 Flush Data Cache

The data cache can be flushed on all processors, or only that set of processors that are
currently executing threads that belong to the current thread's process with the
KeFlushDcache function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 108

VOID
KeFlushDcache (

IN BOOLEAN AllProcessors
);

Parameters:

AllProcessors - A boolean value that determines which data caches are to be flushed.

This function is intended for use by memory management and device driver software to
keep the data cache coherent with DMA I/O operations.

If the AllProcessors parameter is TRUE, then the data cache is flushed on all processors in
the system. Otherwise, only the data caches on processors running threads that belong
to the current thread's process are flushed.

IMPLEMENTATION NOTES:

The Intel i860 employs a writeback data cache with virtual tags that does not maintain
coherency with DMA I/O operations. Therefore, this function must flush the data cache.

The Intel i386 and i486 employ data caches that maintain coherency with I/O
operations. Therefore, this function performs no operation.

The MIPS r3000 and r4000SP employ data caches that do not maintain coherency with
I/O operations. Therefore, the data cache must be flushed for this function.

The MIPS r4000MP employs a data cache that maintains coherency with I/O operations.
Therefore, this function performs no operation.

4.5 Flush Entire Translation Buffer

The entire translation buffer can be flushed on all processors, or only that set of
processors that are currently executing threads that belong to the current thread's
process with the KeFlushEntireTb function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 109

VOID
KeFlushEntireTb (

IN BOOLEAN Invalid,
IN BOOLEAN AllProcessors
);

Parameters:

Invalid - A boolean value that specifies why the translation buffer is being flushed.

AllProcessors - A boolean value that determines which translation buffers are to be
flushed.

This function is intended for use by memory management software when virtual pages
are deleted, removed from the process working set, or their protection is changed.
Normally, the entire translation buffer is not flushed when virtual pages are removed
from the process working set. However, when a number of pages are removed all at
once, it is more efficient to simply flush the entire translation buffer rather than flush
individual entries.

If the value of the Invalid parameter is TRUE, then the translation buffer is being flushed
because one or more pages have become invalid and not present in memory. If the
value of the Invalid parameter is FALSE, then the translation buffer is being flushed
because the protection on one or more pages has been changed.

If the AllProcessors parameter is TRUE, then the entire translation buffer is flushed on all
processors in the system. Otherwise, only the translation buffers on processors running
threads that belong to the current thread's process are flushed.

IMPLEMENTATION NOTE:

The Intel i860 employs a data cache with virtual tags. It also cannot flush the translation
buffer without also flushing the instruction cache. If the Invalid parameter is TRUE, then
the data cache is flushed in addition to flushing the instruction cache and invalidating
the translation buffer. Otherwise, the instruction cache is flushed and the translation
buffer is invalidated.

The Intel i386 and i486 flush the translation buffer for this function.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 110

The MIPS r3000, r4000SP, and r4000MP flush the random part of the software-managed
translation buffer for this function. The fixed part of the translation buffer is not
affected.

4.6 Flush Instruction Cache

The instruction cache can be flushed on all processors, or only that set of processors
that are currently executing threads that belong to the current thread's process with
the KeFlushIcache function:

VOID
KeFlushIcache (

IN BOOLEAN AllProcessors
);

Parameters:

AllProcessors - A boolean value that determines which instruction caches are to be
flushed.

This function is intended for use by system debuggers. When a breakpoint is inserted in
system code, the instruction caches of all processors in the system must be flushed. If a
breakpoint is placed in process code, then only the instruction caches of processors
executing threads that belong to current thread's process need to be flushed.

The executive also exports this function for use by code that modifies the instruction
stream. After each such modification, and before attempting to execute the modified
instructions, the instruction cache must be flushed.

If the AllProcessors parameter is TRUE, then the instruction cache is flushed on all
processors in the system. Otherwise, only the instruction caches on processors running
threads that belong to the current thread's process are flushed.

IMPLEMENTATION NOTES:

The Intel i860 does not maintain coherency between the data and instruction caches. It
also cannot flush the instruction cache without invalidating the translation buffer.
Therefore, the instruction cache is flushed and the translation buffer is invalidated for
this function.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 111

The Intel i386 and i486 maintain coherency between the data and instruction caches.
Therefore, no operation is performed for this function.

The MIPS r3000, r4000SP, and r4000MP do not maintain coherency between the
instruction and data caches. Therefore, the instruction cache is flushed for this function.

4.7 Flush I/O Buffers

The memory region occupied by an I/O buffer can be flushed from both the instruction
and data caches of all processors in the system with the KeFlushIoBuffers function:

VOID
KeFlushIoBuffers (

IN PMDL Mdl,
IN BOOLEAN ReadOperation
);

Parameters:

Mdl - A pointer to a memory descriptor list that describes the areas of memory
occupied by the I/O buffer.

ReadOperation - A boolean value that determines whether the flush is being
performed for a read operation.

This function is intended for use by device drivers and affects all processors in the
system.

If the ReadOperation parameter is TRUE, then the I/O operation is reading information
into memory that may be valid in the instruction and data caches. If the ReadOperation
parameter is FALSE, then the I/O operation is writing data from memory to a device and
information may be present in the data cache and not in memory.

IMPLEMENTATION NOTES:

The Intel i860 employs a writeback data cache and an instruction cache that do not
maintain coherency with I/O operations. Therefore, the data cache must be flushed for
both read and write operations. The Intel i860 also cannot flush the instruction cache
without invalidating the translation buffer. Therefore, if the ReadOperation parameter is

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 112

TRUE, then the instruction cache is flushed and the translation buffer is also invalidated
for this function.

The Intel i386 and i486 maintain data and instruction cache coherency with I/O
operations. Therefore, no operation is performed for this function.

\ The i486 has a write buffer which may have to be flushed before all I/O operations. \

The MIPS r3000 employs a write-through data cache and does not maintain coherency
with I/O operations for either of the instruction or data caches. Therefore, if the
ReadOperation parameter is TRUE, then both the instruction and data caches must be
flushed. Otherwise, no operation is performed for this function.

\ The r3000 has a write buffer which must be flushed before all I/O operations. \

The MIPS r4000SP employs a writeback data cache and an instruction cache that do not
maintain coherency with I/O operations. Therefore, the data cache must be flushed for
both read and write operations. In addition, if the ReadOperation parameter is TRUE,
then the instruction cache is also flushed for this function.

The MIPS r4000MP employs a writeback data cache that maintains coherency with I/O
operations. However, cache coherency is not maintained for the instruction cache with
I/O operations. Therefore, if the ReadOperation parameter is TRUE, then the instruction
cache is flushed. Otherwise, no operation is performed for this function.

4.8 Flush Single Translation Buffer Entry

A single entry can be flushed from the translation buffer of all processors, or only that
set of processors that are currently executing threads that belong to the current
thread's process with the KeFlushSingleTb function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 113

HARDWARE_PTE
KeFlushSingleTb (

IN PVOID Virtual,
IN BOOLEAN Invalid,
IN BOOLEAN AllProcessors,
IN PHARDWARE_PTE PtePointer,

 IN HARDWARE_PTE PteValue
);

Parameters:

Virtual - A virtual address that is within the page whose translation buffer entry is
to be flushed.

Invalid - A boolean value that specifies why the translation buffer is being flushed.

AllProcessors - A boolean value that determines which translation buffers are to be
flushed.

PtePointer - A Pointer to a page table entry which is to be updated with the new
PteValue.

PteValue - The new Pte value.

Return Value:

The contents of the page table entry PtePointer refers to before the entry is set to
PteValue.

This function is intended for use by virtual memory management software when a
virtual page is deleted, removed from the process working set, or its protection is
changed. If several virtual pages are removed from a process's address space at once or
their protection is changed, then it may be more efficient to use the KeFlushEntireTb
function.

If the value of the Invalid parameter is TRUE, then the translation buffer is being flushed
because a page has become invalid and is not present in memory. If the value of the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 114

Invalid parameter is FALSE, then the translation buffer is being flushed because the
protection on a page has been changed.

If the AllProcessors parameter is TRUE, then the specified translation buffer entry is
flushed on all processors in the system. Otherwise, only the specified translation buffer
entry on process running threads that belong to the current thread's processor are
flushed.

IMPLEMENTATION NOTE:

The Intel i860 employs a data cache with virtual tags. It also cannot invalidate a single
entry from the translation buffer nor can it invalidate the translation buffer without also
flushing the instruction cache. If the Invalid parameter is TRUE, then the data cache is
flushed in addition to flushing the instruction cache and invalidating the translation
buffer. Otherwise, the instruction cache is flushed and the translation buffer is
invalidated.

The Intel i386 and i486 cannot flush a single entry from the translation buffer.
Therefore, the entire translation buffer is invalidated for this function.

\ The i486 can invalidate a single translation buffer entry, but it is not yet supported. \

The MIPS r3000, r4000SP, and r4000MP provide the capability to flush a single entry
from the random part of the software-managed translation buffer. Therefore, a single
translation buffer entry is invalidated for this function.

4.9 Freeze Execution

The execution of all other processors in the system, excluding the current processor,
can be frozen with the KeFreezeExecution function:

KIRQL
KeFreezeExecution (

);

The IRQL is raised to the highest level, the execution of all other processors in the host
configuration is frozen, and the previous IRQL is returned as the function value.

This function does not return control to the caller until the execution of all other
processors has been frozen. It is intended for use by system debuggers and should be

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 115

called whenever the debugger is entered so that a consistent picture of the
multiprocessor system can be examined and modified.

4.10 Get Current APC Environment

The APC execution environment for the current thread can be obtained with the
KeGetCurrentApcEnvironment function:

KAPC_ENVIRONMENT
KeGetCurrentApcEnvironment (

);

The APC execution environment is obtained from the current thread and returned as
the function value.

Possible values that can be returned by this function include:

o OriginalApcEnvironment - The current APC environment is the thread's parent
process.

o AttachedApcEnvironment - The current APC environment is a process that has
been attached by the current thread.

4.11 Get Current IRQL

The current IRQL can be obtained with the KeGetCurrentIrql function:

KIRQL
KeGetCurrentIrql (

);

The current IRQL is returned as the function value.

4.12 Get Previous Mode

The previous processor mode can be obtained with the KeGetPreviousMode function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 116

KPROCESSOR_MODE
KeGetPreviousMode (

);

The previous processor mode is obtained from the processor status. This function can
be used to determine the previous processor mode during a system service.

4.13 Lower IRQL

The current IRQL can be lowered with the KeLowerIrql function:

VOID
KeLowerIrql (

IN KIRQL NewIrql
);

Parameters:

NewIrql - The new IRQL value.

If the new IRQL is greater than the current IRQL, then a bug check will occur. Otherwise,
the current IRQL is set to the specified value.

4.14 Query System Time

The current system time can be queried with the KeQuerySystemTime function:

VOID
KeQuerySystemTime (

OUT PTIME CurrentTime
);

Parameters:

CurrentTime - A pointer to a variable that receives the current system time.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 117

This function returns the current system time in 100ns units. It is the responsibility of
the executive to maintain the correspondence between system time and external time
as seen by a user of the system.

4.15 Raise IRQL

The current IRQL can be raised with the KeRaiseIrql function:

KIRQL
KeRaiseIrql (

IN KIRQL NewIrql
);

Parameters:

NewIrql - The new IRQL value.

If the new IRQL is less than the current IRQL, then a bug check will occur. Otherwise,
the current IRQL is set to the specified value.

4.16 Run Down Thread

Data structures for the current thread that must be guarded by the dispatcher database
lock can be run down with the KeRundownThread function:

VOID
KeRundownThread (

);

This function is intended for use just prior to terminating a thread. It run downs
appropriate data structures and performs operations necessary to terminate the
thread.

Operations performed include:

1. Processing of the mutant ownership list which causes each mutant object owned
by the current thread to be released with an abandoned status.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 118

4.17 Set System Time

The current system time can be set with the KeSetSystemTime function:

VOID
KeSetSystemTime (

IN PTIME NewTime,
OUT PTIME OldTime,
);

Parameters:

NewTime - A pointer to a variable that specifies the new system time.

OldTime - A pointer to a variable that receives the previous system time.

This function returns the previous system time in 100ns units and sets the system time
to the specified value. It is the responsibility of the executive to maintain the
correspondence between system time and external time as seen by a user of the
system.

4.18 Stall Execution

The execution of the current processor can be stalled with the
KeStallExecutionProcessor function:

VOID
KeStallExecutionProcessor (

IN ULONG MicroSeconds
);

Parameters:

MicroSeconds - The number of microseconds for which execution is to be stalled.

This function stalls the execution of the current processor by executing a processor-
dependent routine that busy waits at least the specified number of microseconds, but
not significantly longer.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 119

This routine is intended for use by device drivers and other software that must wait a
short interval which is less than a clock tick, but larger than a few instructions.

IMPLEMENTATION NOTES:

This function is guaranteed to busy wait for at least the number of specified
microseconds and is calibrated at system initialization. Long intervals tend to be very
accurate, whereas, short intervals may busy wait for a period that is slightly longer than
the specified number of microseconds.

4.19 Unfreeze Execution

The execution of all other processors in a host configuration, excluding the current
processor, can be resumed with the KeUnfreezeExecution function:

VOID
KeUnfreezeExecution (

IN KIRQL Irql
);

Parameters:

Irql - The previous IRQL value that is to be restored.

The execution of all processors in the system, excluding the current processor, is
unfrozen, the previous IRQL is restored, and the instruction cache of each processor in
the configuration is flushed.

This function is intended for use by system debuggers and should be called when
execution is to be continued after entering the debugger and calling
KeFreezeExecution function. Before the execution of an unfrozen processor is
continued, its instruction cache and translation buffer are flushed.

5. Intel x86 Specific Functions.

There is a small set of special functions peculiar to the Intel x86 family of processors,
which are necessary to fully exploit those processors. These functions are used
primarily to manipulate x86 specific control structures, such as the Ldt.

Programming interfaces:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 120

Ke386SetLdtProcess - Set Ldt for a process
Ke386SetDescriptorProcess - Set entry in Ldt a process

5.1 Load an Ldt for a process.

An Ldt (Local Descriptor Table) can be made the active Ldt for a process with
Ke386SetLdtProcess:

VOID
Ke386SetLdtProcess (

PKPROCESS Process,
PLDT_ENTRY Ldt[],
ULONG Limit
);

Parameters:

Process - Pointer to KPROCESS object describing the process for which the Ldt is to
be set.

Ldt - Pointer to an array of LDT_ENTRYs (that is, a pointer to an Ldt.

Limit - Ldt limit (must be 0 mod 8)

The specified LDT (which may be null) will be made the active Ldt of the specified
process, for all threads thereof, on whichever processors they are running. The change
will take effect before the call returns.

An Ldt address of NULL or a Limit of 0 will cause the process to receive the NULL Ldt.

This function only exists on i386 and i386 compatible processors.

No checking is done on the validity of Ldt entries.

IMPLEMENATION NOTES:

While a single Ldt structure can be shared among processes, any edits to the Ldt of one
of those processes will only be synchronized for that process. Thus, processes other
than the one the change is applied to may not see the change correctly.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 121

5.2 Set and Entry in a Process's Ldt.

An individual entry in the Ldt of a process may be edited with
Ke386SetDescriptorProcess:

VOID
Ke386SetDescriptorProcess (

PKPROCESS Process,
ULONG Offset,
LDT_ENTRY LdtEntry
);

Parameters:

Process - Pointer to KPROCESS object describing the process for which the
descriptor edit is to be performed.

Offset - Byte offset into the Ldt of the descriptor to edit. Must be 0 mod 8.

LdtEntry - Value to edit into the descriptor in hardware format. No checking is
done on the validity of this item.

The specified LdtEntry (which could be 0, not present, etc) will be edited into the
specified Offset in the Ldt of the specified Process. This will be synchronized across all
the processors executing the process. The edit will take affect on all processors before
the call returns.

Get an Entry from a Thread's Gdt.

Get an Entry from a Thread's Gdt.

5.3 Get an Entry from a Thread's Gdt.

An individual entry in the Gdt of a thread may be obtained using
Ke386GetGdtEntryThread:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 122

VOID
Ke386GetGdtEntryThread (

IN PKTHREAD Thread,
IN ULONG Offset,
IN PGDT_ENTRY Descriptor
);

Parameters:

Thread —— Supplies a pointer to the thread from whose Gdt the entry is to come.

Offset —— Supplies the descriptor number of the descriptor to return. This value
must be 0 mod 8.

Descriptor —— Returns the descriptor contents

The Gdt entry specified by Selector will be copied from the specified thread's Gdt, into
Descriptor.

For descriptors that don't exist when the thread is not running (KGDT_R3_TEB, and
KGDT_LDT), the descriptor values will be "materialized".

For descriptors that are processor specific, rather than thread specific, the current
processor's value will be returned.

For all other Gdt descriptors, the descriptor will be copied from the Gdt.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 123

Revision History:

Original Draft 1.0, March 8, 1989

Revision 1.1, March 16, 1989

1. Add text to describe the muxwait object.

2. Add text to describe the interrupt object.

3. Add text to describe the power notify object.

4. Add text to describe the power status object.

5. Add text to describe the generic wait functions.

6. Addition of text to describe the miscellaneous functions.

7. Add text to overview of document.

Revision 1.2, March 29, 1989

1. Change KeDelayExecution to return a wait completion value.

2. Complete section on multiprocessor synchronization.

3. Complete section on device queue object.

4. Delete muxwait object and replace with a wait multiple function that takes an
array of pointer to dispatcher objects as a parameter.

Revision 1.3, April 18,1989

1. Alphabetically order section on miscellaneous functions.

2. Add KeBugCheck, KeLowerIrql, and KeRaiseIrql miscellaneous functions.

3. A thread will start execution at IRQL APC_LEVEL rather than with APCs
disabled.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 124

4. Returning from the executive thread start up routine will cause a thread to
enter user mode provide that a user mode context was supplied when the
thread was initialized.

5. Add three parameters to thread initialization to optionally describe user
mode context.

6. Delete builtin user mode alert APC. Alerting a thread that is waiting alertable
causes a wait completion status of ALERTED to be returned.

7. Replace all reference to DPC_LEVEL with DISPATCH_LEVEL.

8. Put interrupt level names in hardware interrupt table.

9. Add pointers to the PRCB which point to the time expiration and power notify
DPC's that are system wide.

10. Change thread context to include ten pipeline state registers rather than six.

11. Change KeResumeThread and KeSuspendThread to return a CHAR rather
than a UCHAR.

12. Delete voluntary and preemption wait counters from thread object.

13. Reduce number of APC and DPC system parameters to two.

14. If a device is Not-Busy, then release device queue spin lock but do not lower
IRQL before returning.

15. Allow interrupt service routine to user the floating point registers for block
moves and graphics functions.

16. If a thread is awakened to deliver a user mode APC, then return a status of
USER_APC.

Revision 1.4, May 4, 1989

1. Delete increment parameter from KeReleaseMutex.

2. Change Count and Limit parameters of KeInitializeSemaphore from ULONG
to LONG.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 125

3. Change KeReadStateSemaphore to return a LONG rather than a ULONG.

4. Change KeReleaseSemaphore to return a LONG rather than a ULONG and
change the type of the Adjustment parameters from ULONG to LONG.

5. Set the value of a semaphore to the maximum value if an attempt is made to
adjust the count of a semaphore above the limit.

6. Add system startup routine to KeInitializeThread for executive level
initialization.

7. Change the wait functions to return NTSTATUS rather than ULONG.

8. Change the type of the WaitType parameter from KWAIT_TYPE to WAIT_TYPE.

Revision 1.5, May 8, 1989

1. Change data type of the KeBugCheck parameter to ULONG.

2. Add Invalid parameter to KeFlushEntireTb and KeFlushSingleTb to allow
specification of why the flush is being performed.

Revision 1.6, August 14, 1989

1. General correction of typos and grammatical errors as suggested by Helenc
review. Clarification and rewrite of several sections.

2. Reorganization of section 1.0 with the deletion of redundant information.

3. Added miscellaneous functions to get the previous processor mode, get the
current IRQL, and to set the current IRQL.

4. The interrupt object section was extensively rewritten to match the actual
implementation.

5. The time parameter in the KeDelayExecution function was changed to a
pointer to a time value.

Revision 1.7, November 15, 1989

1. Delete KeSetCurrentIrql function which was an optimization of the
KeRaiseIrql function that didn't require saving the old IRQL.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 126

2. Add functions KeContextToKframes and KeContextFromKframes to move
information in the trap frame and the exception frame to/from the context
frame.

3. Add priority increment parameter to the KeInsertQueueApc function.

4. Change KeInitializeThread function to replace the optional trap and
exception frame parameters with an optional context frame argument. If the
context frame parameter is specified, then it is assumed that the thread will
execute in user mode.

5. Change KeAcquireSpinlock function to return the old IRQL as an output
parameter and delete the Wait parameter from the KeReleaseSpinlock
function.

6. Change KeInsertDeviceQueue and KeInsertByKeyDevice functions to
neither raise nor lower IRQL.

7. Split the event object into two types of event objects: synchronization and
notification.

8. Change the definition of the state of an event object to be a count.

9. Add a parameter to the KeInitializeApc function to specify the APC execution
environment. Add a function (KeGetApcEnvironment) that returns the
current APC environment.

Revision 1.8, November 16, 1989

1. Add optional parameter to KeWaitForMultipleObjects that allows more than
the builtin number of objects to be waited on concurrently.

2. Add abandoned return status from KeWaitForMultipleObjects when one or
more of the dispatcher objects satisfying the Wait is an abandoned mutant
object.

3. Add new mutant object which provides for user level mutexes. Add the
functions KeInitializeMutant, KeReadStateMutant, and KeReleaseMutant
to manipulate the mutant object.

Revision 1.9, November 17, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 127

1. Add KeRundownThread function to provide kernel thread rundown when a
thread is deleted.

2. Minor edits and corrections.

Revision 1.10, January 6, 1990

1. Change name of KeReadSystemTime to KeQuerySystemTime.

2. Add miscellaneous kernel function (KeSetSystemTime) to set the system
time.

Revision 1.11, June 6, 1990

1. Change text that explains how a binary semaphore can be used like a
synchronization event to include a statement that the semaphore cannot be
over Signaled.

2. Change the definition of KeInitializeSemaphore to omit any checks on the
limit and initial value of the semaphore.

3. Change the semantics of release semaphore such that an attempt to over
Signal the semaphore does not cause the current count to be set to the
maximum value. The current count remains unchanged and the exception
STATUS_SEMAPHORE_COUNT_EXCEEDED is raised.

4. Once set, the abandoned status of a mutant object cannot be cleared and will
continually be returned by the kernel wait services. The mutant object,
however, will continue to function and ownership can be requested and
released.

5. If an attempt is made to release a mutant object by a nonowner with the
Abandoned parameter FALSE, then either the exception
STATUS_ABANDONED or STATUS_MUTANT_NOT_OWNED will be raised.

6. Remove the hard assignment of Interrupt Request Levels (IRQL's) to kernel
functions and replace with symbolic assignments. Explain that IRQL's are
hierarchically ordered by priority.

7. Change the return type of KeResumeThread and KeSuspendThread to
ULONG.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 128

8. An attempt to suspend a thread more than MAXIMUM_SUSPEND_COUNT
times causes the exception STATUS_SUSPEND_COUNT_EXCEEDED to be
raised.

9. Add KeFreezeThread and KeUnfreezeThread functions to suspend and
resume a thread on behalf of the system. These functions are identical to
suspend and resume, but are not exported to user mode.

10. Add KeRundownThread function to run down appropriate kernel data
structures before thread termination.

11. Add KeStallExecution function to enable executive software to stall
execution for short periods of time.

12. Add KeFlushIoBuffers function to flush the memory region occupied by an
I/O buffer from the data and instruction caches.

13. Remove text that described the KeFlushIcache and KeFlushDcache
functions as intended for use in systems in which DMA I/O operations do not
invalidate caches.

14. Add KeFillEntryTb function to update TB entries in systems with software-
managed translation buffers.

15. Make explanation of thread context more general and not specific to the Intel
i860.

Revision 1.12, September 19, 1990 (Bryan Willman)

1. Add Profile object section.

Revision 1.13, March 11, 1991

1. Change the operation of the power notify object so that a DPC object is not
required and make the operation repeatable.

2. Add parameter to KeInitializeProcess to specific the default data alignment
handling mode for children threads.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Kernel Specification 129

3. Add KeSetAutoAlignmentThread and KeQueryAutoAlignmentThread
functions to set and query the data alignment handling mode of the current
thread.

4. Change the name of the KeDelayExecution function to
KeDelayExecutionThread and move the explanatory text to the section on
thread objects.

5. Change the name of the KeStallExecution function to
KeStallExecutionProcessor.

6. Change REQUEST_LEVEL with IPI_LEVEL.

7. Add KeQueryBasePriorityThread and KeSetBasePriorityThread functions
to set and query the base priority of a thread object.

Revision 1.14, May 2, 1991

1. Add x86 specific section, Ke386SetLdtProcess and
Ke386SetDescriptorProcess.

Revision 1.15, May 28, 1991 (daveh)

1. Added Ke386GetThreadGdt

Revision 1.16, June 18, 1991 (bryanwi)

1. Added ShareVector parameter to KeInitializeInterrupt.

2. Applied spelling checker to document.

Revision 1.17, August 7, 1991 (shielint)

1. Made KeFlushSingleTb spec match reality

Revision 1.18, August 8, 1991 (bryanwi)

1. Removed coordinator, added SynchronizeIrql to KeInitializeInterrupt.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

	1. Overview
	1.1 Kernel Execution Environment
	1.2 Kernel Use of Hardware Priority Levels
	1.3 Primary Kernel Data Structures
	1.4 Multiprocessor Synchronization
	1.4.1 Executive Multiprocessor Synchronization
	1.4.1.1 Acquire Executive Spin Lock
	1.4.1.2 Release Executive Spin Lock

	1.5 Dispatching
	1.5.1 Dispatcher Database
	1.5.2 Idle Thread

	2. Kernel Objects
	2.1 Dispatcher Objects
	2.1.1 Event Object
	2.1.1.1 Initialize Event
	2.1.1.2 Pulse Event
	2.1.1.3 Read State Event
	2.1.1.4 Reset Event
	2.1.1.5 Set Event

	2.1.2 Mutual Exclusion Objects
	2.1.2.1 Mutant Object
	2.1.2.1.1 Initialize Mutant
	2.1.2.1.2 Read State Mutant
	2.1.2.1.3 Release Mutant

	2.1.2.2 Mutex Object
	2.1.2.2.1 Initialize Mutex
	2.1.2.2.2 Read State Mutex
	2.1.2.2.3 Release Mutex
	2.1.2.2.4 Mutex Contention Data

	2.1.3 Semaphore Object
	2.1.3.1 Initialize Semaphore
	2.1.3.2 Read State Semaphore
	2.1.3.3 Release Semaphore

	2.1.4 Thread Object
	2.1.4.1 Initialize Thread
	2.1.4.2 Alert Thread
	2.1.4.3 Alert and Resume Thread
	2.1.4.4 Confine Thread
	2.1.4.5 Delay Execution
	2.1.4.6 Disable Queuing of APCs
	2.1.4.7 Enable Queuing of APCs
	2.1.4.8 Force Resumption of Thread
	2.1.4.9 Freeze Thread
	2.1.4.10 Query Data Alignment Mode
	2.1.4.11 Query Base Priority
	2.1.4.12 Read State Thread
	2.1.4.13 Ready Thread
	2.1.4.14 Resume Thread
	2.1.4.15 Rundown Thread
	2.1.4.16 Set Affinity Thread
	2.1.4.17 Set Data Alignment Mode
	2.1.4.18 Set Base Priority
	2.1.4.19 Set Priority Thread
	2.1.4.20 Suspend Thread
	2.1.4.21 Terminate Thread
	2.1.4.22 Test Alert Thread
	2.1.4.23 Unfreeze Thread
	2.1.4.24 Thread Performance Data

	2.1.5 Timer Object
	2.1.5.1 Initialize Timer
	2.1.5.2 Cancel Timer
	2.1.5.3 Read State Timer
	2.1.5.4 Set Timer

	2.2 Control Objects
	2.2.1 Asynchronous Procedure Call (APC) Object
	2.2.1.1 Initialize APC
	2.2.1.2 Flush Queue APC
	2.2.1.3 Insert Queue APC
	2.2.1.4 Remove Queue APC

	2.2.2 Deferred Procedure Call (DPC) Object
	2.2.2.1 Initialize DPC
	2.2.2.2 Insert Queue DPC
	2.2.2.3 Remove Queue DPC

	2.2.3 Device Queue Object
	2.2.3.1 Initialize Device Queue
	2.2.3.2 Insert Device Queue
	2.2.3.3 Insert By Key Device Queue
	2.2.3.4 Remove Device Queue
	2.2.3.5 Remove Entry Device Queue

	2.2.4 Interrupt Object
	2.2.4.1 Initialize Interrupt
	2.2.4.2 Connect Interrupt
	2.2.4.3 Disconnect Interrupt
	2.2.4.4 Synchronize Execution

	2.2.5 Power Notify Object
	2.2.5.1 Initialize Power Notify
	2.2.5.2 Insert Power Notify
	2.2.5.3 Remove Power Notify

	2.2.6 Power Status Object
	2.2.6.1 Initialize Power Status
	2.2.6.2 Insert Power Status
	2.2.6.3 Remove Power Status

	2.2.7 Process Object
	2.2.7.1 Initialize Process
	2.2.7.2 Attach Process
	2.2.7.3 Detach Process
	2.2.7.4 Exclude Process
	2.2.7.5 Include Process
	2.2.7.6 Set Priority Process
	2.2.7.7 Process Accounting Data

	2.2.8 Profile Object
	2.2.8.1 Initialize Profile
	2.2.8.2 Start Profile
	2.2.8.3 Stop Profile
	2.2.8.4 Set System Profile Interval
	2.2.8.5 Query System Profile Interval

	3. Wait Operations
	3.1 Wait For Multiple Objects
	3.2 Wait For Single Object

	4. Miscellaneous Operations
	4.1 Bug Check
	4.2 Context Frame Manipulation
	4.2.1 Move Machine State To Context Frame
	4.2.2 Move Machine State From Context Frame

	4.3 Fill Entry Translation Buffer
	4.4 Flush Data Cache
	4.5 Flush Entire Translation Buffer
	4.6 Flush Instruction Cache
	4.7 Flush I/O Buffers
	4.8 Flush Single Translation Buffer Entry
	4.9 Freeze Execution
	4.10 Get Current APC Environment
	4.11 Get Current IRQL
	4.12 Get Previous Mode
	4.13 Lower IRQL
	4.14 Query System Time
	4.15 Raise IRQL
	4.16 Run Down Thread
	4.17 Set System Time
	4.18 Stall Execution
	4.19 Unfreeze Execution

	5. Intel x86 Specific Functions.
	5.1 Load an Ldt for a process.
	5.2 Set and Entry in a Process's Ldt.
	Get an Entry from a Thread's Gdt.
	Get an Entry from a Thread's Gdt.
	5.3 Get an Entry from a Thread's Gdt.

