
Portable Systems Group

NT OS/2 Local Inter-Process Communication (LPC) Specification

Author: Steven R. Wood

Revision 1.5, February 17, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 1

.Begin Table C.

1. Overview...1
1.1. Port Object..1
1.2. Port Message Queues...2
1.3. Port Creation..3

2. Inter-Process Communication System Services..5
2.1. NtCreatePort...5
2.6. Port Message Structure..14
2.7. Port Map Information Structure...16
2.8. NtRequestPort..17
2.9. NtRequestWaitReplyPort..18
2.10. NtReplyPort..19
2.11. NtReplyWaitReplyPort..20
2.12. NtReplyWaitReceivePort..21
2.13. NtImpersonateClientOfPort...22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 1

1. Overview

The NT OS/2 system is implementing the majority of the Application Program
Interfaces (API's) using the Client/Server model where an application's call to an API is
intercepted by a stub in the client process that packages up the parameters to the call
and sends them to a server process that will actually implement the API. The Local
Inter-Process Communication (LPC) package is the system facility that allows the stub
procedure to communicate the data to the server process and wait for a response. The
design of the LPC facility is guided by the fact that it will be used primarily to model a
synchronous procedure call between two processes in the same memory domain.

1.1. Port Object

The primary data structure used to implement the NT OS/2 LPC mechanism is the Port
Object. There are two types of port objects needed; a connection port and a
communication port.

A connection port is created by a server process with a name. A server process usually
maintains at least one thread that is listening for connection requests. A client process
connects to the server process using the name of the connection port. Whenever a
connection request is sent to a connection port, the server thread wakes up, examines
the connection request and decides whether to reject or accept the connection. If the
connection request is accepted, then the LPC facility creates two communication ports,
one for the client and one for the server. The communication port objects have no
names and cannot be inherited by child processes. Connection ports have names, but
cannot be inherited.

A port object contains the following information:

 Flags that indicate which of the following queues are present.
 An optional queue for Connection messages.
 An optional queue for Request messages.
 A pointer to a connection port object.
 A pointer to a communication port object.
 Context value associated with a communication port.
 A zone segment that divided evenly into multiple chunks of a single size, which

is the maximum message length. The zone segment consists of a singly linked
list of free blocks, guarded by a spin lock.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 2

 An event that is clear whenever a message is placed on the zone free list and the
free list was empty at the time of insertion. Threads can wait on this event if
they ever encounter an empty free list.

 An optional memory section handle that is mapped into both the client process
and the server process address spaces. Location and size information is also
recorded here so the memory can be unmapped later.

A connection port has a queue for Connection messages. It may also have a queue for
Request messages if the ReceiveAnyPort parameter is specified on the call to
NtCreatePort. The pointer to the connection port object points to the connection port
object itself. The pointer to the connected communication port is NULL, as is the
context value.

A server communication port does not have a queue for Connection messages. It may
have a queue for Request messages if the ReceiveThisPort parameter is specified on
the call to NtCompleteConnectPort. The pointer to the connection port object points
to the connection port that the connection request came in on. The pointer to the
communication port object points to the client communication port. The context value
is set to the value specified on the call to NtCompleteConnectPort.

A client communication port does not have a queue for Connection messages. It has a
small queue for Request messages that will be used to queue lost reply messages. The
pointer to the connection port object points to the connection port that the connection
request came in on. The pointer to the communication port object points to the server
communication port. The context value is set to NULL.

The purpose of the optional memory section associated with a port is to optimize
message passing. Since the maximum size of a message is fixed at connection port
creation time, the intent is that for messages that are too big to fit in the message
queue, the data is placed in the section object and the address of the data is passed via
the message queue. The LPC mechanism has no knowledge of the format of the
section object, it is only concerned with making the section visible to both the
client and server processes whenever a connection is established. The memory is
managed by the process that created the section. So the client process is solely
responsible for managing the memory in the section object associated with the client
communication port. Likewise the server process is solely responsible for managing

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 3

the memory associated with the server communication port. The server will only
need to provide a section object if it needs to perform callbacks to the client process.

1.2. Port Message Queues

Message queues are used for both Connection messages and Request messages. Each
queue contains the following information:

 A linked list of messages that have been queued.
 A counting semaphore that is released whenever a message is placed in the

queue.
 A serial number field that is used to generate unique message Ids as each

message is placed in the queue.
 A maximum message size.

Port objects and queues for port objects are allocated out of non-paged pool memory.
Pool quota for a pair of communication ports is charged to the client process that
caused the communication ports to be created with a call to NtConnectPort. Pool
quota for a connection port is charged to the server process. There is no quota
charging done when a message is queued to a port, since the storage for messages is
pre-allocated in the zone segment. The zone segment of the sender's port is used for
request message allocation. The zone segment of the connection port is used for
connection request message allocation.

The size of messages is fixed at the time the connection port is created. The size
specified at connection port creation time is the maximum size of message the server
is prepared to accept. The amount of data that is actually sent can be less than or equal
to the message size. There is a limit on the size that can be specified on at port
creation time, since space for queued messages is allocated out of pool memory in the
system portion of the address space.

1.3. Port Creation

Port objects are created in two ways. A connection port is created by calling the
NtCreatePort system service.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 4

A pair of communication port objects is created whenever a server process accepts a
connection request to a connection port. These are called the client port and the
server port. When the client process sends a request to its port, it appears in the
server port's request queue. When the server process sends a message to its port it
appears in the client port's message queue. The client port and server port are bound
together internally. The client port handle is valid only to the client process and the
server port handle is valid only to the server process.

The following API calls are defined for ports:

 NtCreatePort - used by server process to create a connection port
 NtConnectPort - used by client processes to connect to a server process
 NtListenPort - used by server process to listen for connection requests
 NtAcceptConnectPort - used by server process to accept or reject a connection
request
 NtCompleteConnectPort - used by server process to complete the acceptance of a
connection request
 NtRequestPort - used to send a datagram message
 NtRequestWaitReplyPort - used to send a message and wait for a reply
 NtReplyPort - used to reply to a particular message
 NtReplyWaitReplyPort - used to reply to a particular message and then wait for a
reply to a previous message
 NtReplyWaitReceivePort - used by server process to wait for a message from a
client process
 NtImpersonateClientOfPort - used by server thread to temporarily acquire the
identifier set of a client thread

The following is an overview of how the API calls are used by the client and server
processes:

Server Process:

Process initialization calls NtCreatePort to create a connection port object.

The main server thread then blocks in a call to NtListenPort. Whenever it returns it
means that a new client process has called NtConnectPort. The server examines the
connection request and calls NtAcceptConnectPort to either accept or reject the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 5

connection request. If it wants to accept, then it can also specify a section object for
use when issuing callbacks to the client. NtAcceptConnectPort returns the server
communication port handle to the server and causes the client process to return from
its call to NtConnectPort with the client communication port handle. The server's
main thread then goes back to the NtListenPort call to block waiting for another new
client connection request.

One or more server request threads are blocked in NtReplyWaitReceivePort, waiting
for a message to any of the connected server communication port objects. When
NtReplyWaitReceivePort returns, the server will have a message, along with a
unique identifier for the client thread that sent the message, a unique identifier for
this particular message and the context value associated with the communication port
that was the target of the request.

After processing a message, a server request thread will use the
NtReplyWaitReceivePort call to send a reply back to the previous message received
(based on the unique message identifier) and then wait for another request.

Client Process:

Process initialization will allocate a section object for passing information to the server
process. NtConnectPort will then be called to create a port handle that is connected
to the server process. NtConnectPort will return with an error if called incorrectly or
if the server rejects the connection request.

Otherwise, when it returns, the client will have a valid communication port handle
that is connected to the server process. NtConnectPort will block if there is no server
thread waiting in a corresponding call to NtListenPort. A side effect of
NtConnectPort is to make the client's section object visible in the server process'
address space (most likely at a different virtual address than the client's). The base
address of the client's section object in the server's address space will be returned to
the client.

Whenever a thread in the client process wants to send a request to the server, it will
call NtRequestWaitReplyPort, which will send the request and wait for a reply.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 6

Callbacks:

The server can call back to the client process by using the NtRequestWaitReplyPort
service, specifying a particular message identifier. This will unblock the client process,
which is waiting for a reply to that message. The client process will examine the
message and determine that it is a request instead of a reply. The client will process
the request and send a reply using the NtReplyWaitReplyPort service. This service
will send the reply back to the server and then block waiting for the original reply. If
during the process of handling the callback request from the server, the client process
calls NtRequestWaitReplyPort to send another request to the server, then the server
will perform similar logic when it notices that it received a request instead of a reply.

2. Inter-Process Communication System Services

2.1. NtCreatePort

A server process can create a named connection port with the NtCreatePort service:

NTSTATUS
NtCreatePort(
 OUT PHANDLE PortHandle,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 IN ULONG MaxConnectionInfoLength,
 IN ULONG MaxMessageLength,
 IN BOOLEAN ReceiveAnyPort
)

Parameters:

PortHandle - A pointer to a variable that will receive the connection port object handle
value.

ObjectAttributes - A pointer to a structure that specifies the name of the object, an
access control list (ACL) to be applied to the object, and a set of object attribute flags.
ObjectAttributes Structure - See the Object Manager Specification for a detailed
description of the fields in this structure. If the ObjectName field is not specified, then
an unconnected communication port is created rather than a connection port. This is

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 7

useful for sending and receiving messages between threads of a single process. If the
SecurityDescriptor field is not specified, then any process will be allowed to access this
port. The Attributes field must be zero or OBJ_CASE_INSENSITIVE, as none of the other
standard values are relevant for this call. Connection ports cannot be inherited, are
always placed in the process's handle table and are exclusive to the creating process.

MaxConnectionInfoLength - Specifies the maximum length of additional information
that can be sent with a connection request via the NtConnectPort system service. The
value of this parameter cannot exceed PORT_MAXIMUM_CONNECTINFO_LENGTH
bytes.

MaxMessageLength - Specifies the maximum length of messages sent or received on
communication ports created from this connection port. The value of this parameter
cannot exceed PORT_MAXIMUM_MESSAGE_LENGTH bytes.

ReceiveAnyPort - A Boolean value that specifies if request messages queued to
communication ports cloned from this connection port are to be queued to the
connection port rather than the communication port.

Return Value: Status code that indicates whether or not the operation was successful.

A connection port is created with the name and attributes specified in the
ObjectAttributes structure. A handle to the connection port object is returned in the
location pointed to by the PortHandle parameter. The returned handle can then be
used to listen for connection requests to that port name, using the NtListenPort
service.

The standard object architecture defined desired access parameter is not necessary
since this service can only create a new port, not access an existing port.

A named connection port cannot be used to send and receive messages. It is only valid
as a parameter to the NtListenPort service.

An unnamed connection port can be used to send and receive messages within the
process that created it.

The following errors can be returned by this function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 8

 - STATUS_INVALID_PARAMETER
 - STATUS_INVALID_PORT_ATTRIBUTES
 - STATUS_OBJECT_PATH_INVALID
 - STATUS_OBJECT_PATH_NOT_FOUND
 - STATUS_OBJECT_PATH_SYNTAX_INVALID
 - STATUS_OBJECT_NAME_INVALID
 - STATUS_OBJECT_NAME_COLLISION
 - STATUS_NO_MEMORY

2.2. NtConnectPort

A client process can connect to a server process by name using the NtConnectPort
service:

NTSTATUS
NtConnectPort(
 OUT PHANDLE PortHandle,
 IN PSTRING PortName,
 IN PSECURITY_QUALITY_OF_SERVICE SecurityQos,
 IN ULONG PortAttributes,
 IN OUT PPORT_VIEW ClientView OPTIONAL,
 OUT PREMOTE_PORT_VIEW ServerView OPTIONAL,
 OUT PULONG MaxMessageLength OPTIONAL,
 IN OUT PVOID ConnectionInformation OPTIONAL,
 IN OUT PULONG ConnectionInformationLength OPTIONAL,
 IN BOOLEAN Alertable,
 IN PTIME Timeout OPTIONAL
)

Parameters:

PortHandle - A pointer to a variable that will receive the client communication port
object handle value.

PortName - A pointer to a port name string. The form of the name is [\name...\name]\
port_name.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 9

SecurityQos - A pointer to security quality of service information to be applied to the
server on the client's behalf.

PortAttributes - A set of flags that control the behavior of this port.
 PortAttributes Flags: (none yet defined.)

ClientView - An optional pointer to a structure that specifies the section that all client
threads will use to send messages to the server.
 ClientView Structure:
 ULONG Length - Specifies the size of this data structure in bytes.
 HANDLE SectionHandle - Specifies an open handle to a section object.
 ULONG SectionOffset - Specifies a field that will receive the actual offset, in bytes,

from the start of the section. The initial value of this parameter specifies the byte
offset within the section that the client's view is based. The value is rounded
down to the next host page size boundary.

 ULONG ViewSize - Specifies a field that will receive the actual size, in bytes, of the
view. If the value of this parameter is zero, then the client's view of the section
will be mapped starting at the specified section offset and continuing to the end
of the section. Otherwise, the initial value of this parameter specifies the size, in
bytes, of the client's view and is rounded up to the next host page size boundary.

 PVOID ViewBase - Specifies a field that will receive the base address of the section
in the client's address space.

 PVOID ViewRemoteBase - Specifies a field that will receive the base address of the
client's section in the server's address space. Used to generate pointers that are
meaningful to the server.

ServerView - An optional pointer to a structure that will receive information about the
server process' view in the client's address space. The client process can use this
information to validate pointers it receives from the server process.
 ServerView Structure:
 ULONG Length - Specifies the size of this data structure in bytes.
 PVOID ViewBase - Specifies a field that will receive the base address of the server's

section in the client's address space.
 ULONG ViewSize - Specifies a field that will receive the size, in bytes, of the

server's view in the client's address space. If this field is zero, then server has no
view in the client's address space.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 10

MaxMessageLength - An optional pointer to a variable that will receive the maximum
length of messages that can be sent to the server. The value of this parameter will be
equal to or greater than the value specified for the MaxMessageLength parameter to
NtCreatePort. It might be greater to allow for optimal use of the memory associated
with a port object.

ConnectionInformation - An optional pointer to uninterpreted data. This data is
intended for clients to pass package, version and protocol identification information to
the server to allow the server to determine if it can satisfy the client before accepting
the connection. Upon return to the client, the ConnectionInformation data block
contains any information passed back from the server by its call to the
NtAcceptConnectPort service. The output data overwrites the input data.

ConnectionInformationLength - Pointer to the length of the ConnectionInformation data
block. The output value is the length of the data stored in the ConnectionInformation
data block by the server's call to the NtAcceptConnectPort service. This parameter is
OPTIONAL only if the ConnectionInformation parameter is null, otherwise it is
required.

Alertable - A Boolean value that specifies if the wait is user mode alertable.

Timeout - An optional pointer to timeout value that specifies the absolute or relative
time over which any wait is to be completed. If not specified then the service will wait
indefinitely.

Return Value: Status code that indicates whether or not the operation was successful.

The PortName parameter specifies the name of the server port to connect to. It must
correspond to an object name specified on a call to NtCreatePort. The service sends a
connection request to the server thread that is listening for them with the
NtListenPort service. The client thread then blocks until a server thread receives the
connection request and responds with a call to the NtAcceptConnectPort service. The
server thread receives the ID of the client thread, along with any information passed
via the ConnectionInformation parameter. The server thread then decides to either
accept or reject the connection request.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 11

The server communicates the acceptance or rejection with the NtAcceptConnectPort
service. The server can pass back data to the client about the acceptance or rejection
via the ConnectionInformation data block.

If the server accepts the connection request, then the client receives a communication
port object in the location pointed to by the PortHandle parameter. This object handle
has no name associated with it and is private to the client process (i.e. it cannot be
inherited by a child process). The client uses the handle to send and receive messages
to/from the server process using the NtRequestWaitReplyPort service.

If the ClientView parameter was specified, then the section handle is examined. If it is
a valid section handle, then the portion of the section described by the SectionOffset
and ViewSize fields will be mapped into both the client and server process' address
spaces. The address in client address space will be returned in the ViewBase field. The
address in the server address space will be returned in the
ViewRemoteBase field. The actual offset and size used to map the section will be
returned in the SectionOffset and ViewSize fields. Since the LPC system services do not
explicitly manage the memory described by the view section, it is up to the caller to
insure that the memory is committed prior to being referenced.

A client can control how the server gets to use its security attributes (IDs, privileges, et
cetera) at port connection time. This is done by specifying security quality of service
information using the SecurityQos parameter.

If the server rejects the connection request, then no communication port object handle
is returned, and the return status indicates an error occurred. The server may
optionally return information in the ConnectionInformation data block giving the
reason the connection requests was rejected.

If the PortName does not exist, or the client process does not have sufficient access
rights then the returned status will indicate that the port was not found.

The following errors can be returned by this function:

 - STATUS_INVALID_PARAMETER
 - STATUS_INVALID_PORT_ATTRIBUTES
 - STATUS_OBJECT_PATH_INVALID

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 12

 - STATUS_OBJECT_PATH_NOT_FOUND
 - STATUS_OBJECT_PATH_SYNTAX_INVALID
 - STATUS_OBJECT_NAME_INVALID
 - STATUS_OBJECT_NAME_NOT_FOUND
 - STATUS_ACCESS_DENIED
 - STATUS_PORT_CONNECTION_REFUSED
 - STATUS_INVALID_PORT_HANDLE
 - STATUS_NO_MEMORY

2.3. NtListenPort

A server thread can listen for connection requests from client threads using the
NtListenPort service:

NTSTATUS
NtListenPort(
 IN HANDLE PortHandle,
 OUT PCONNECTION_REQUEST ConnectionRequest,
 OUT PVOID ConnectionInformation OPTIONAL,
 IN OUT PULONG ConnectionInformationLength OPTIONAL,
 IN BOOLEAN Alertable,
 IN PTIME Timeout OPTIONAL
)

Parameters:

PortHandle - Specifies the connection port to listen for connection requests to.

ConnectionRequest - Pointer to a structure that describes the connection request the
client is making:
 ConnectionRequest Structure:
 ULONG Length - Specifies the size of this data structure in bytes.
 CLIENT_ID ClientId - A structure that contains the client identifier of the thread

that sent the request.
 ClientId Structure:
 ULONG UniqueProcessId - A unique value for each process in the system.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 13

 ULONG UniqueThreadId - A unique value for each thread in the system.
 ULONG RequestId - A unique value that identifies this connection request.
 ULONG PortAttributes - Specifies the value of the PortAttributes parameter that

the client specified on the NtConnectPort call.
 ULONG ClientViewSize - Specifies the value of the ViewSize field of the ClientView

parameter that the client specified on the NtConnectPort call. Allows the server
to prevent clients from consuming an unreasonable amount of the server's
address space.

ConnectionInformation - An optional pointer to uninterpreted data from the
corresponding call to NtConnectPort. This data is intended for clients to pass
package, version and protocol identification to the server to allow it to determine if it
can satisfy the client before accepting the connection.

ConnectionInformationLength - A pointer to the maximum length of the
ConnectionInformation data block. The output value is the actual length of data stored
in the ConnectionInformation data block. This parameter is OPTIONAL only if the
ConnectionInformation parameter is NULL, otherwise it is required.

Alertable - A Boolean value that specifies if the wait is user mode alertable.

Timeout - An optional pointer to timeout value that specifies the absolute or relative
time over which any wait is to be completed. If not specified then the service will wait
indefinitely.

Return Value: Status code that indicates whether or not the operation was successful.

This call will return each time a client thread makes a call to the NtConnectPort
service with a name that matches the name of the connection port object specified by
the PortHandle parameter. Upon return, the location pointed to by the
ConnectionRequest parameter will contain information about the connection request.
The contents of this data structure must be passed to the NtAcceptConnectPort
service to either accept or reject the connection request.

If the ConnectionInformation parameter is specified, then it will receive the
corresponding data the client specified with the ConnectionInformation parameter of
the NtConnectPort service. The ConnectionInformationLength parameter specifies the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 14

amount of data that can be received and its output value is the actual amount of data
received.

The server process can examine the ConnectionRequest and ConnectionInformation
data structures to determine whether or not to accept the connection request. In
either case the server process must respond with a call to the NtAcceptConnectPort
service to communicate the acceptance or rejection to the client thread.

If the server accepts a connection request, then it must also call the
NtCompleteConnectPort service to actually release the client process from its wait
inside NtConnectPort. The reason for a two stage acceptance is to allow the server
process to save away in its internal data structure that describes a connection to a
client, the OUT parameters returned by the NtAcceptConnectPort service.

A server process can maintain multiple threads waiting for connection requests in the
NtListenPort service, although it is anticipated that only one thread will be used in
most cases.

2.4. NtAcceptConnectPort

A server process can accept or reject a client connection request using the
NtAcceptConnectPort service:

NTSTATUS
NtAcceptConnectPort(
 OUT PHANDLE PortHandle,
 IN PVOID PortContext,
 IN PCONNECTION_REQUEST ConnectionRequest,
 IN BOOLEAN AcceptConnection,
 IN BOOLEAN ReceiveThisPort,
 IN OUT PPORT_VIEW ServerView OPTIONAL,
 OUT PREMOTE_PORT_VIEW ClientView OPTIONAL,
 IN PVOID ConnectionInformation OPTIONAL,
 IN ULONG ConnectionInformationLength OPTIONAL
)

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 15

Parameters:

PortHandle - A pointer to a variable that will receive the server communication port
object handle value.

PortContext - A pointer value that is saved in the server communication port structure
created by this service. This value is not interpreted by the system, but is returned by
the NtReplyWaitReceive service whenever a message is received from the server
communication port created by this call.

ConnectionRequest - A pointer to a structure that describes the connection request
being accepted or rejected:
 ConnectionRequest Structure:
 ULONG Length - Specifies the size of this data structure in bytes.
 CLIENT_ID ClientId - Specifies a structure that contains the client identifier of the

thread that sent the request.
 ClientId Structure:
 ULONG UniqueProcessId - A unique value for each process in the system.
 ULONG UniqueThreadId - A unique value for each thread in the system.
 ULONG RequestId - A unique value that identifies the connection request being

completed.
 ULONG PortAttributes - This field has no meaning for this service.
 ULONG ClientViewSize - This field has no meaning for this service.

AcceptConnection - Specifies a Boolean value which indicates where the connection
request is being accepted or rejected. A value of TRUE means that the connection
request is accepted and a server communication port handle will be created and
connected to the client's communication port handle. A value of FALSE means that the
connection request is not accepted.

ReceiveThisPort - Specifies a Boolean value which indicates if this server
communication port should have its own receive queue or if all messages sent to this
port should be queued in the receive queue of the communication port.

ServerView - A pointer to a structure that specifies the section that the server process
will use to send messages back to the client process connected to this port.
 ServerView Structure:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 16

 ULONG Length - Specifies the size of this data structure in bytes.
 HANDLE SectionHandle - Specifies an open handle to a section object.
 ULONG SectionOffset - Specifies a field that will receive the actual offset, in bytes,

from the start of the section. The initial value of this parameter specifies the byte
offset within the section that the server's view is based. The value is rounded
down to the next host page size boundary.

 ULONG ViewSize - Specifies a field that will receive the actual size, in bytes, of the
view. If the value of this parameter is zero, then the server's view of the section
will be mapped starting at the specified section offset and continuing to the end
of the section. Otherwise, the initial value of this parameter specifies the size, in
bytes, of the server's view and is rounded up to the next host page size boundary.

 PVOID ViewBase - Specifies a field that will receive the base address of the section
in the server's address space.

 PVOID ViewRemoteBase - Specifies a field that will receive the base address of the
server's section in the client's address space. Used to generate pointers that are
meaningful to the client.

ClientView - An optional pointer to a structure that will receive information about the
client process' view in the server's address space. The server process can use this
information to validate pointers it receives from the client process.
 ClientView Structure:
 ULONG Length - Specifies the size of this data structure in bytes.
 PVOID ViewBase - Specifies a field that will receive the base address of the client's

section in the server's address space.
 ULONG ViewSize - Specifies a field that will receive the size, in bytes, of the client's

view in the server's address space. If this field is zero, then client has no view in
the server's address space.

ConnectionInformation - An optional pointer to uninterpreted data that is to be
returned to the caller of NtConnectPort.

ConnectionInformationLength - Specifies the length of the ConnectionInformation data
block. This parameter is OPTIONAL only if the ConnectionInformation parameter is
null, otherwise it is required. The length cannot be greater than the length received
from the client.

Return Value: Status code that indicates whether or not the operation was successful.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 17

The ConnectionRequest parameter must specify a connection request returned by a
previous call to the NtListenPort service. This service will either complete the
connection if the AcceptConnection parameter is TRUE, or reject the connection
request if the AcceptConnection parameter is FALSE.

In either case, if the ConnectionInformation parameter is specified, then any data it
points to is returned to the client process via the ConnectionInformation parameter
that was specified on the NtConnectPort service call. The amount of data returned to
the client is specified by the ConnectionInformationLength parameter.

If the connection request is accepted, then two communication port objects will be
created and connected together. One will be inserted in the client process' handle
table and returned to the client via the PortHandle parameter it specified on the
NtConnectPort service. The other will be inserted in the server process' handle table
and returned via the PortHandle parameter specified on the NtAcceptConnectPort
service. In addition all of the server's communication ports will be linked together
with the head of the queue in the connection port object. This allows a server thread to
wait for any message to any of its connected communication ports.

If the connection request is accepted, and the ServerView parameter was specified,
then the section handle is examined. If it is valid, then the portion of the section
described by the SectionOffset and ViewSize fields will be mapped into both the client
and server process address spaces. The address in server's address space will be
returned in the ViewBase field. The address in the client's address space will be
returned in the ViewRemoteBase field. The actual offset and size used to map the
section will be returned in the SectionOffset and ViewSize fields. Since the LPC system
services do not explicitly manage the memory described by the view section, it is up to
the caller to insure that the memory is committed prior to being referenced.

If the server accepts a connection request, then it must also call the
NtCompleteConnectPort service to actually release the client process from its wait
inside NtConnectPort. The reason for a two stage acceptance is to allow the server
process to save away in its internal data structure that describes a connection to a
client, the OUT parameters returned by the NtAcceptConnectPort service,
PortHandle, ClientView and ServerView.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 18

Communication port objects are temporary objects that have no names and cannot be
inherited. When either the client or server process calls the NtClose service for a
communication port, the port will be deleted since there can never be more than one
outstanding handle for each communication port. The port object type specific delete
procedure will then be invoked. This delete procedure will examine the
communication port, and if it is connected to a server communication port, it will
queue an LPC_PORT_CLOSED datagram to the server's message queue. This will allow
server process to notice when a port becomes disconnected, either because of an
explicit call to NtClose or an implicit call due to process termination.

2.5. NtCompleteConnectPort

After accepting a connection with the NtAcceptConnectPort service, a server process
can release a client process from its wait inside of the NtConnectPort service with the
NtCompleteConnectPort service:

NTSTATUS
NtCompleteConnectPort(
 IN HANDLE PortHandle
)

Parameters:

PortHandle - Specifies a server communication port returned by the
NtAcceptConnectPort Service.

Return Value: Status code that indicates whether or not the operation was successful.

A server process must call this service whenever it accepts a connection request with
the NtAcceptConnectPort service. This service will then satisfy the wait of the client
process inside of the NtConnectPort service.

The reason for a two stage acceptance is to allow the server process to save away in its
internal data structure that describes a connection to a client, the OUT parameters

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 19

returned by the NtAcceptConnectPort service, PortHandle, ClientView and
ServerView.

2.6. Port Message Structure

A port message is a variable size structure that can be placed in the message queue of
a port. It contains information filled in by the system that uniquely identifies the
thread that sent the message, along with a serial number that uniquely identifies the
message so that reply messages can be matched up with the message being replied to.
The type declaration for a port message only specifies the fixed size header that is
associated with all messages. The application specific data associated with a message
should immediately follow the fixed size header.

typedef struct _PORT_MESSAGE {
 CSHORT DataLength;
 CSHORT TotalLength;
 CSHORT Type;
 CSHORT MapInfoOffset;
 CLIENT_ID ClientId;
 ULONG MessageId;
} PORT_MESSAGE, *PPORT_MESSAGE;

PORT_MESSAGE Structure:

DataLength - Specifies the size, in bytes, of the data portion of this message. Must be
less than the TotalLength field.

TotalLength - Specifies the total size of this data structure in bytes. The maximum size
of the message is limited by the value of the MaxMessageLength parameter to the
NtCreatePort service.

Type - For messages being sent, this field is filled in by the system service that sends
the message. For messages being received, this field identifies the source of the
message.
 Type Values:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 20

 LPC_DATAGRAM - Indicates that this is a request message generated by a call to
NtRequestPort. No reply is expected.

 LPC_REQUEST - Indicates that this is a request message generated by a call to
NtRequestWaitReplyPort. The sender is expecting a reply.

 LPC_REPLY - Indicates that this is a reply to a previous request message that was
generated by a call to NtReplyPort or NtReplyWaitReplyPort or
NtReplyWaitReceivePort.

 LPC_LOST_REPLY - Indicates that the recipient of a message was unable to reply to
a message it received. The message data buffer contains the reply that could not
be delivered. This message is queue to a communication port whenever a reply
was attempted and the sending thread was not waiting for a reply.

 LPC_PORT_CLOSED - Indicates that the client thread has closed its port and
therefore become disconnected from the server. This message is sent from the
client process to the server when the port is closed.

 LPC_CLIENT_DIED - Indicates that the client thread has died. The ClientId field
contains the ID of the client thread. The message data buffer contains the thread
termination code. This datagram is queued to each port associated with the
dying thread via the NtRegisterThreadTerminationPort system service.

 LPC_EXCEPTION - Indicates that an unhandled exception occurred in the client
thread. The message data buffer contains the number of the exception. The
client thread is blocked waiting for a reply to this message. The reply states
whether or not the server process handled the exception. This message is sent to
the ExceptionPort associated with a process as specified via the call to the
NtCreateProcess system service.

 LPC_DEBUG_EVENT - Indicates that this is a debugger event. This message is sent
to the DebugPort associated with a process as specified via the call to the
NtCreateProcess system service.

MapInfoOffset - Offset within the message structure of a PORT_MAP_INFORMATION
data structure. If zero, then there is no PORT_MAP_INFORMATION data structure
associated with this message. Must be a valid offset within the message buffer.

ClientId - a structure that contains the client identifier of the thread that sent the
message.
 ClientId Structure:
 ULONG UniqueProcessId - A unique value for each process in the system.
 ULONG UniqueThreadId - A unique value for each thread in the system.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 21

MessageId - unique value that identifies this message.

The MessageType, ClientId and MessageId fields are filled in by the system service that
sends the messages. For messages being received they identify the source of the
message. For messages being replied to the ClientId and MessageId fields are used to
determine who is waiting for the reply.

Note that the actual message structure contains two unions to allow for the code
generated by the stub compiler to efficiently initialize the first four fields of a message
using just two store instructions.

2.7. Port Map Information Structure

In order to support passing large pieces of data efficiently, the LPC mechanism
supports the ability to pass objects that lie on a page boundary and whose size is a
multiple of the page size. The MapInfoOffset field above enables this feature and
causes one or more page aligned regions in the sender's address space to be doubly
mapped into the receiver's address space for the duration of the message.

If the MapInfoOffset field is not zero, then it is an offset within the message data buffer
of a PORT_MAP_INFORMATION data structure.

typedef struct _PORT_MAP_INFORMATION {
 ULONG CountMapEntries;
 PORT_MAP_ENTRY MapEntries[];
} PORT_MAP_INFORMATION, *PPORT_MAP_INFORMATION;

PORT_MAP_INFORMATION Structure:

CountMapEntries - The number of entries in the MapEntries array.

MapEntries - Specifies an array of PORT_MAP_ENTRY structures.
 PORT_MAP_ENTRY Structure:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 22

 PVOID Base - Specifies the address of first page in a region of the sender's address
space that is to be doubly mapped into the receiver's address space. This address
must be aligned on a page boundary.

 ULONG Size - Specifies the number of bytes to map. This value must be a multiple
of the page size; if zero, then no pages are mapped.

The address of the Port Map Information structure can be computed as follows:

PPORT_MAP_INFORMATION MapInfo =
 (PPORT_MAP_INFORMATION)((PCH)PortMsg + PortMsg->MapInfoOffset);

The mapping occurs when the message is received by the target thread. The mapping
is destroyed when the target thread replies to the message.

2.8. NtRequestPort

A client and server process can send datagram messages using the NtRequestPort
service:

NTSTATUS
NtRequestPort(
 IN HANDLE PortHandle,
 IN PPORT_MESSAGE RequestMessage
)

Parameters:

PortHandle - Specifies the handle of the communication port to send the request
message to.

RequestMessage - Specifies a pointer to the request message.

Return Value: Status code that indicates whether or not the operation was successful.

The Type field of the message is set to LPC_DATAGRAM by the service.

The message pointed to by the RequestMessage parameter is placed in the message
queue of the port connected to the communication port specified by the PortHandle

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 23

parameter. This service returns an error if PortHandle is invalid or if the MessageId
field of the PortMessage structure is non-zero.

2.9. NtRequestWaitReplyPort

A client and server process can send a request and wait for a reply using the
NtRequestWaitReplyPort service:

NTSTATUS
NtRequestWaitReplyPort(
 IN HANDLE PortHandle,
 IN PPORT_MESSAGE RequestMessage,
 OUT PPORT_MESSAGE ReplyMessage,
 IN BOOLEAN Alertable,
 IN PTIME Timeout OPTIONAL
)

Parameters:

PortHandle - Specifies the handle of the communication port to send the request
message to.

RequestMessage - Specifies a pointer to a request message to send.

ReplyMessage - Specifies the address of a variable that will receive the reply message.
This parameter may point to the same buffer as the RequestMessage parameter.

Alertable - A Boolean value that specifies if the wait is user mode alertable.

Timeout - An optional pointer to timeout value that specifies the absolute or relative
time over which any wait is to be completed. If not specified then the service will wait
indefinitely.

Return Value: Status code that indicates whether or not the operation was successful.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 24

If the Type field of the RequestMessage structure is equal to LPC_REQUEST, then this is
identified as a callback request. The ClientId and MessageId fields are used to identify
the thread that is waiting for a reply. This thread is unblocked and the current thread
that called this service then blocks waiting for a reply.

The Type field of the message is set to LPC_REQUEST by the service. Otherwise the
Type field of the message must be zero and it will be set to LPC_REQUEST by the
service. The message pointed to by the RequestMessage parameter is placed in the
message queue of the port connected to the communication port specified by the
PortHandle parameter. This service returns an error if PortHandle is invalid. The
calling thread then blocks waiting for a reply.

The reply message is stored in the location pointed to by the ReplyMessage parameter.
The ClientId, MessageId and message type fields will be filled in by the service.

The Timeout parameter is used as the timeout value when waiting for a reply. If the
wait times out, then an error code is returned.

2.10. NtReplyPort

A client and server process can send a reply to a previous request message with the
NtReplyPort service:

NTSTATUS
NtReplyPort(
 IN HANDLE PortHandle,
 IN PPORT_MESSAGE ReplyMessage,
 IN LPC_REPLY_BOOST ReplyBoost OPTIONAL
)

Parameters:

PortHandle - Specifies the handle of the communication port that the original message
was received from.

ReplyMessage - Specifies a pointer to the reply message to be sent. The ClientId and
MessageId fields determine which thread will get the reply.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 25

ReplyBoost - This optional parameter specifies the amount of priority boost the thread
waiting for the reply message is to receive. This parameter may only be specified if the
calling thread has the SE_LPC_REPLY_BOOST_PRIVILEGE privilege. This parameter
and the privilege test are ignored if the ReplyMessage parameter is not specified.
 ReplyBoost Values:
 NoLpcReplyBoost - no priority boost will be given to the thread waiting for the

reply. No privilege is required to specify this value.
 LowLpcReplyBoost - a small priority boost will be given to the thread waiting for

the reply.
 MediumLpcReplyBoost - a medium priority boost will be given to the thread

waiting for the reply.
 HighLpcReplyBoost - a large priority boost will be given to the thread waiting for

the reply.

Return Value: Status code that indicates whether or not the operation was successful.

The Type field of the message is set to LPC_REPLY by the service. If the MapInfoOffset
field of the reply message is non-zero, then the PORT_MAP_INFORMATION structure it
points to will be processed and the relevant pages in the caller's address space will be
unmapped.

The ClientId and MessageId fields of the ReplyMessage structure are used to identify
the thread waiting for this reply. If the target thread is in fact waiting for this reply
message, then the reply message is copied into the thread's message buffer and the
thread's wait is satisfied.

If the thread is not waiting for a reply or is waiting for a reply to some other
MessageId, then the message is placed in the message queue of the port that is
connected to the communication port specified by the PortHandle parameter and the
Type field of the message is set to LPC_LOST_REPLY.

2.11. NtReplyWaitReplyPort

A client and server process can send a reply to a previous message and block waiting
for a reply using the NtReplyWaitReplyPort service:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 26

NTSTATUS
NtReplyWaitReplyPort(
 IN HANDLE PortHandle,
 IN OUT PPORT_MESSAGE ReplyMessage,
 IN LPC_REPLY_BOOST ReplyBoost OPTIONAL,
 IN BOOLEAN Alertable,
 IN PTIME Timeout OPTIONAL
)

Parameters:

PortHandle - Specifies the handle of the communication port that the original message
was received from.

ReplyMessage - Specifies a pointer to the reply message to be sent. The ClientId and
MessageId fields determine which thread will get the reply. This buffer also receives
any reply that comes back from the wait.

ReplyBoost - This optional parameter specifies the amount of priority boost the thread
waiting for the reply message is to receive. This parameter may only be specified if the
calling thread has the SE_LPC_REPLY_BOOST_PRIVILEGE privilege. This parameter
and the privilege test are ignored if the ReplyMessage parameter is not specified.
 ReplyBoost Values:
 NoLpcReplyBoost - no priority boost will be given to the thread waiting for the

reply. No privilege is required to specify this value.
 LowLpcReplyBoost - a small priority boost will be given to the thread waiting for

the reply.
 MediumLpcReplyBoost - a medium priority boost will be given to the thread

waiting for the reply.
 HighLpcReplyBoost - a large priority boost will be given to the thread waiting for

the reply.

Alertable - A Boolean value that specifies if the wait is user mode alertable.

Timeout - An optional pointer to timeout value that specifies the absolute or relative
time over which any wait is to be completed. If not specified then the service will wait
indefinitely.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 27

Return Value: Status code that indicates whether or not the operation was successful.

This service works the same as NtReplyPort, except that after delivering the reply
message, it blocks waiting for a reply to a previous message. When the reply is
received, it will be placed in the location specified by the ReplyMessage parameter.

2.12. NtReplyWaitReceivePort

A client and server process can receive messages using the NtReplyWaitReceivePort
service:

NTSTATUS
NtReplyWaitReceivePort(
 IN HANDLE PortHandle,
 OUT PVOID *PortContext OPTIONAL,
 IN PPORT_MESSAGE ReplyMessage OPTIONAL,
 IN LPC_REPLY_BOOST ReplyBoost OPTIONAL,
 OUT PPORT_MESSAGE ReceiveMessage,
 IN BOOLEAN Alertable,
 IN PTIME Timeout OPTIONAL
)

Parameters:

PortHandle - Specifies the handle of the connection or communication port to do the
receive from.

PortContext - Specifies an optional pointer to a variable that is to receive the context
value associated with the communication port that the message is being received
from. This context variable was specified on the call to the NtAcceptConnectPort
service.

ReplyMessage - This optional parameter specifies the address of a reply message to be
sent. The ClientId and MessageId fields determine which thread will get the reply. See
description of NtReplyPort for how the reply is sent. The reply is sent before blocking
for the receive.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 28

ReplyBoost - This optional parameter specifies the amount of priority boost the thread
waiting for the reply message is to receive. This parameter may only be specified if the
calling thread has the SE_LPC_REPLY_BOOST_PRIVILEGE privilege. This parameter
and the privilege test are ignored if the ReplyMessage parameter is not specified.
 ReplyBoost Values:
 NoLpcReplyBoost - no priority boost will be given to the thread waiting for the

reply. No privilege is required to specify this value.
 LowLpcReplyBoost - a small priority boost will be given to the thread waiting for

the reply.
 MediumLpcReplyBoost - a medium priority boost will be given to the thread

waiting for the reply.
 HighLpcReplyBoost - a large priority boost will be given to the thread waiting for

the reply.

ReceiveMessage - Specifies the address of a variable to receive the message.

Alertable - A Boolean value that specifies if the wait is user mode alertable.

Timeout - An optional pointer to timeout value that specifies the absolute or relative
time over which any wait is to be completed. If not specified then the service will wait
indefinitely.

Return Value: Status code that indicates whether or not the operation was successful.

If the ReplyMessage parameter is specified, then the reply will be sent using
NtReplyPort.

If the PortHandle parameter specifies a connection port, then the receive will return
whenever a message is sent to a server communication port that does not have its own
receive queue and the message is therefore queued to the receive queue of the
connection port.

If the PortHandle parameter specifies a server communication port that does not have
a receive queue, then behaves as if the associated connection port handle was
specified. Otherwise the receive will return whenever message is placed in the receive
queue associated with the server communication port.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 29

The received message will be returned in the variable specified by the ReceiveMessage
parameter. If the MapInfoOffset field of the reply message is non-zero, then the
PORT_MAP_INFORMATION structure it points to will be processed and the relevant
pages will be mapped into the caller's address space. The service returns an error if
there is not enough room in the caller's address space to accommodate the mappings.

2.13. NtImpersonateClientOfPort

A server process can utilize the security context of a client process with the
NtImpersonateClientOfPort service:

NTSTATUS
NtImpersonateClientOfPort(
 IN HANDLE PortHandle,
 IN PPORT_MESSAGE Message
)

Parameters:

PortHandle - Specifies the handle of the communication port that the message was
received from.

Message - Specifies an address of a message that was received from the client that is to
be impersonated. The ClientId field of the message identifies the client thread that is to
be impersonated. The client thread must be waiting for a reply to the message in
order to impersonate the client.

Return Value: Status code that indicates whether or not the operation was successful.

This service establishes an impersonation token for the calling thread. The
impersonation token corresponds to the context provided by the port client. The client
must currently be waiting for a reply to the specified message.

This service returns an error status code if the client thread is not waiting for a reply
to the message. The security quality of service parameters specified by the client upon
connection dictate what use the server will have of the client's security context.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Local Inter-Process Communication (LPC) Specification 30

For complicated or extended impersonation needs, the server may open a copy of the
client's token (using NtOpenThreadToken()). This must be done while impersonating
the client.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

	1. Overview
	1.1. Port Object
	1.2. Port Message Queues
	1.3. Port Creation

	2. Inter-Process Communication System Services
	2.1. NtCreatePort
	2.6. Port Message Structure
	2.7. Port Map Information Structure
	2.8. NtRequestPort
	2.9. NtRequestWaitReplyPort
	2.10. NtReplyPort
	2.11. NtReplyWaitReplyPort
	2.12. NtReplyWaitReceivePort
	2.13. NtImpersonateClientOfPort

