
Portable Systems Group

NT OS/2 Named Pipe Specification

Author: David N. Cutler & Gary D. Kimura

Original Draft February 16, 1990
Revision 1.1, March 8, 1990
Revision 1.2, August 14, 1990
Revision 1.3, September 27, 1990
Revision 1.4, October 17, 1990
Revision 1.5, January 23, 1991

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 1

1. Introduction 1
2. Goals 1
3. Overview of OS/2 Named Pipes 1
4. Overview of NT OS/2 Named Pipes 3

4.1 Implementation Alternatives 3
4.2 Named Pipe Directories 4
4.3 Read/Write Buffering Strategy 5

4.3.1 OS/2 Read/Write Buffering Strategy 5
4.3.2 NT OS/2 Read/Write Buffering Strategy 8

4.4 Internal Read/Write Operations 13
4.4.1 Special Read/Write Buffering 13

4.5 Named Pipe States 13
5. NT OS/2 Named Pipe I/O Operations 16

5.1 Create Named Pipe 16
5.2 Create File 20
5.3 Open File 20
5.4 Read File 21
5.5 Write File 22
5.6 Read Terminal File 22
5.7 Query Directory Information 22
5.8 Notify Change Directory 22
5.9 Query File Information 23

5.9.1 Basic Information 23
5.9.2 Standard Information 23
5.9.3 Internal Information 23
5.9.4 Extended Attribute Information 23
5.9.5 Access Information 23
5.9.6 Name Information 23
5.9.7 Position Information 24
5.9.8 Mode Information 24
5.9.9 Alignment Information 24
5.9.10 All Information 24
5.9.11 Pipe Information 24
5.9.12 Local Pipe Information 24
5.9.13 Remote Pipe Information 26

5.10 Set File Information 26
5.10.1 Basic Information 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 2

5.10.2 Disposition Information 26
5.10.3 Link Information 27
5.10.4 Position Information 27
5.10.5 Mode Information 27
5.10.6 Pipe Information 27
5.10.7 Remote Pipe Information 27

5.11 Query Extended Attributes 28
5.12 Set Extended Attributes 28
5.13 Lock Byte Range 28
5.14 Unlock Byte Range 28
5.15 Query Volume Information 28
5.16 Set Volume Information 28
5.17 File Control Operations 28

5.17.1 External File Control Operations 28
5.17.1.1 Assign Event 29
5.17.1.2 Disconnect 29
5.17.1.3 Listen 30
5.17.1.4 Peek 31
5.17.1.5 Query Event Information 32
5.17.1.6 Transceive 33
5.17.1.7 Wait For Named Pipe 34
5.17.1.8 Impersonate 35

5.17.2 Internal File Control Operations 36
5.17.2.1 Internal Read 36
5.17.2.2 Internal Write 36
5.17.2.3 Internal Transceive 36

5.18 Flush Buffers 36
5.19 Set New File Size 36
5.20 Cancel I/O Operation 37
5.21 Device Control Operations 37
5.22 Close Handle 37

6. OS/2 API Emulation 37
6.1 DosCallNmPipe 37
6.2 DosConnectNmPipe 37
6.3 DosDisconnectNmPipe 38
6.4 DosMakeNmPipe 38
6.5 DosPeekNmPipe 38

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 3

6.6 DosQNmPHandState 39
6.7 DosQNmPipeInfo 39
6.8 DosQNmPipeSemState 39
6.9 DosRawReadNmPipe 39
6.10 DosRawWriteNmPipe 39
6.11 DosSetNmPHandState 40
6.12 DosSetNmPipeSem 40
6.13 DosTransactNmPipe 40
6.14 DosWaitNmPipe 40

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 1

1. Introduction

This specification discusses the named pipe facilities of NT OS/2. Named pipes provide
a full duplex interprocess communication (IPC) mechanism that can be used locally or
across a network to access application servers. Named pipes provide the transport
medium that is used for the Microsoft remote procedure call (RPC) capabilities.

Named pipes are used extensively by the OS/2 and LAN Manager components of the
NT OS/2 system, and therefore, must be implemented as efficiently as possible.

There are two manifestations of named pipes, those that are local to a system and
those that are remote. This specification addresses both types of named pipes.

In addition to describing the NT OS/2 named pipe facilities, this specification also
discusses the way in which the OS/2 named pipe APIs are emulated.

2. Goals

The major goals for the named pipe capabilities of NT OS/2 are the following:

1. Provide the basic primitives necessary to compatibly emulate the OS/2 named
pipe capabilities.

2. Provide protection and security attributes for named pipes that are comparable
to the capabilities provided for files and other NT OS/2 objects.

3. Provide for LAN Manager server and client redirection of named pipes without
having to enter the OS/2 subsystem.

4. Provide a fully qualified name space for named pipes that fits into the NT OS/2
name structure in a straightforward manner.

5. Provide a high performance design and implementation of named pipes.

Although it is a major temptation, it is not a goal to "fix" the semantics of OS/2 named
pipes. Minor discrepancies, however, will exist between OS/2 and NT OS/2 named
pipes where OS/2 capabilities or semantics are incompatible with those of NT OS/2,
e.g., the named pipe naming and the asynchronous I/O model.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 2

3. Overview of OS/2 Named Pipes

A named pipe provides a full duplex channel that can be used to implement an
interprocess communication (IPC) mechanism between two processes. OS/2 uses
named pipes to implement location-independent remote procedure call (RPC)
capabilities and for communicating with servers on a remote system.

Named pipes have two ends: 1) a client end, and 2) a server end. Both ends are full
duplex——data written from one end can be read from the other end and vice versa.

The server end of a named pipe is created when a new instance of a named pipe is
created, or when a previously created instance is reused. A new instance of a named
pipe is created with the DosMakeNmPipe API in OS/2.

Before either the client or the server ends of a named pipe can be used, the server end
must be connected. In OS/2 this is accomplished with the DosConnectNmPipe API.

Once an instance of a named pipe is created and the server end is connected, then the
client end of the named pipe can be created using the OS/2 DosOpen API.

When both the server end of a named pipe is connected and the client end is opened,
information can flow over the pipe using the OS/2 DosRead and DosWrite APIs.

Named pipes are created with five attributes:

1. A pipe type which is either message or byte stream.

2. A count that limits the maximum number of simultaneous instances of the
named pipe that can be created.

3. An input buffer size that specifies the size of the buffer that is used for inbound
data on the server side of the named pipe.

4. An output buffer size that specifies the size of the buffer that is used for
outbound data from the server side of the named pipe.

5. A default timeout value that is to be used if a timeout value is not specified when
the DosWaitNmPipe API is executed.

The type of a named pipe determines how information is written into the named pipe.
If the named pipe is a message pipe, then information is written into the pipe in the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 3

form of messages which include the byte count and the data of the message. If the
named pipe is a byte stream pipe, then only the data is written into the named pipe.

The maximum instance count is established when the first instance of a specific
named pipe is created (i.e., one of a given name) and cannot later be modified.
Thereafter, up to the maximum instance count of simultaneous instances of the named
pipe can be created to provide an IPC mechanism between any pair of processes.

The input and output buffer sizes are considered hints to the system for the sizes of the
buffers that are needed to buffer inbound and outbound data. The actual buffer sizes
may be either the system default or the specified buffer sizes rounded up to the next
allocation boundary.

The default timeout value specifies a default for the amount of time that a client can
wait for an available instance of a named pipe.

Once the first instance of a named pipe is created subsequent instances of an
identically named pipe are subject to the maximum instances parameter. In addition,
the type of pipe and the default timeout value are ignored and cannot be set when
subsequent instances of the named pipe are created.

In addition to the five attribute parameters, two mode parameters can be specified
when an instance of a named pipe is created or opened:

1. The read mode, which can be either message mode or byte stream mode, but
which must be compatible with the type of the named pipe.

2. The blocking mode, which can be either blocking or nonblocking.

The read mode of a named pipe determines how data will be read from the pipe. If the
named pipe is a message pipe, then data can be read in either message mode or byte
stream mode. However, if the named pipe is a byte stream pipe, then data can only be
read in byte stream mode.

The blocking mode determines what happens when a request cannot be satisfied
immediately. If the mode is blocking, then an implied wait occurs until an operation is
completed. Otherwise, the operation returns immediately with an error status.

Standard open parameters can also be specified when an instance of a named pipe is
created or opened which define the access that is desired to the named pipe (e.g., read

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 4

only, write only, or read/write access), whether the named pipe handle is inherited
when a child process is created, and whether write behind is allowed on writes to the
named pipe.

The open access parameters also specify the configuration of the named pipe when the
first instance of a named pipe is created. A named pipe can have a full duplex or a
simplex configuration. A full duplex named pipe allows data to flow in both directions,
whereas a simplex named pipe only allows data to flow in one direction. The direction
of data flow and configuration are determined by the read only (outbound), write only
(inbound), and read/write (full duplex) open access parameters specified by the server
when the first instance of a named pipe is created.

The server end of a named pipe can be reused by disconnecting the client end. In OS/2,
this is accomplished using the DosDisconnectNmPipe API. The server end of a named
pipe can also be disconnected by closing the respective file handle, but this deletes the
instance of the named pipe and it cannot be reused.

The client end of a named pipe is disconnected by simply closing the respective file
handle.

OS/2 supplies 14 APIs that are specific to named pipes. These APIs are intended mainly
for use by a server. In addition, eleven standard OS/2 I/O system APIs can be executed
using a file handle to a named pipe.

4. Overview of NT OS/2 Named Pipes

4.1 Implementation Alternatives

Named pipes must be integrated into the NT OS/2 I/O system such that standard read
and write requests can be used to read data from and write data to a named pipe. It
also must be possible to accomplish LAN Manager server and client redirection of
named pipes without having to call the OS/2 subsystem.

There are several ways of integrating named pipes into NT OS/2 that meet these
requirements:

1. Implement the named pipe capabilities as an installable file system and extend
NtCreateFile so that the named pipe attributes required by OS/2 can be
specified directly in the NT OS/2 system service call.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 5

2. Implement the named pipe capabilities as an installable file system and use
extended attributes as the means of defining the named pipe attributes required
by OS/2.

3. Implement named pipes as a separate object that is created with its own API, but
which can be opened via a pipe driver.

4. Implement the named pipe capabilities as an installable file system and add an
NT OS/2 I/O system API that specifically creates an instance of a named pipe.

The first alternative requires an already complicated API to be further extended to
accommodate yet another special case.

The second alternative overloads the use of extended attributes to have a special
meaning for named pipes. Extended attributes are not the most efficient or convenient
way of specifying the attribute values and would require special rules about when
they could be read and written.

The third alternative would create a nonstandard object whose API was partly buried
in the I/O system and partly in object-specific APIs.

The fourth alternative adds an additional API to the NT OS/2 I/O system that has
special meaning and is only applicable to named pipes.

The fourth alternative has been chosen as the means of implementing the named pipe
capabilities in NT OS/2. Although this provides an additional I/O system API that is
specific to named pipes, it is the most straightforward and efficient implementation.

4.2 Named Pipe Directories

In OS/2, named pipes have a rigid name syntax with the following form:

 \PIPE\pipe-name

This syntax is recognized by the OS/2 DosOpen API and is routed to the appropriate
system component. The LAN Manager redirector is also capable of recognizing names
of the following form:

\\server-name\PIPE\pipe-name

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 6

The redirector transforms the request into a tree connection to a server and then
performs the appropriate SMB generation.

The NT OS/2 named pipe driver will also implement a flat name space. The syntax for
an NT OS/2 named pipe is of the following form:

\Device\NamedPipe\pipe-name1

\The object name space in NT OS/2 is more general and hierarchical, and we
would like named pipes to follow that scheme; however, because of issues
involving persistent named pipes, and guaranteeing proper behavior given
reparse the first named pipe driver will use a flat name space. Once the issues
are resolved named pipes can be extended to existing file systems as a special
file using reparse or by maintaining a named pipe database in a system file.\

The syntax for a remote NT OS/2 named pipe is of the following form:

\Device\LanmanRedirector\server-name\Pipe\pipe-name

4.3 Read/Write Buffering Strategy

4.3.1 OS/2 Read/Write Buffering Strategy

The OS/2 named pipe capabilities use a two circular buffers for buffering inbound and
outbound writes to a named pipe. This design is dictated by the synchronous I/O model
of OS/2 and it controls the amount of system buffering space that is consumed. The
data is copied twice for each write and read of a named pipe. One copy occurs when
the data is written from a user buffer into a named pipe and another copy occurs
when the data is read out of the named pipe into a user buffer.

An OS/2 named pipe can be either a message or byte stream pipe, which determines
how write data is stored in the pipe buffers. Message pipes can be read in either
message mode or byte stream mode. Byte stream pipes can only be read in byte stream
mode. In addition, a blocking mode can be specified for each open of an instance of a
named pipe. The blocking mode determines whether reads from, and writes to the
named pipe block if sufficient data or space is not available in the named pipe.

1The string "\Device\NamedPipe" refers to the named pipe driver, while the string "\
Device\NamedPipe\" represents the root directory of the named pipe file system.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 7

A message named pipe stores the size of a message and the data for the message. A
byte stream named pipe simply stores the data and no additional information. Reads
from a message named pipe attempt to read a complete message from the pipe in
either message mode or byte stream mode. If the complete message does not fit in the
supplied read buffer, then a full buffer is returned along with an error status that
signifies that there is more data in the message. Reads from a byte stream named pipe
can only be made in byte stream mode and return the data that is currently in the pipe
up to the size of the supplied buffer.

Each inbound and outbound buffer for a named pipe has a read lock, a write lock, a
read semaphore, and a write semaphore. These are used to synchronize the reading
and writing of data to and from the buffer.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 8

When a write to a named pipe buffer begins, the write lock is acquired to prevent any
other writer from writing into the buffer until the current write is finished. If the write
must block because of a lack of available space in the buffer, then the reader
semaphore is signaled, the writer lock is not released, and the writer waits for a reader
to signal the write semaphore. The write lock is released at the completion of the write
operation.

The following describes the OS/2 named pipe write logic.

if (message pipe) then
if (blocking mode) then

write message to pipe, synchronize with reader
return size of message written

else
if (space for message header plus one byte) and
 (data buffer size greater than pipe buffer size) then

write data to pipe, synchronize with reader
return size of message written

else
if (space for data buffer and message header) then

write data to pipe
return size of message written

else
return buffer overflow error

endif
endif

endif
else

if (blocking mode) then
write data to pipe, synchronize with reader
return count of bytes written

else
if (space available in pipe buffer) then

write data to pipe (minimum data buffer/pipe space)
return count of bytes written

else
return buffer overflow error

endif
endif

endif

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 9

When a read from a named pipe buffer begins, the read lock is acquired to prevent
any other reader from reading from the buffer until the current read is finished. If the
read must block because of a lack of available data in the buffer, then the writer
semaphore is signaled, the reader lock is not released, and the reader waits for the
read semaphore to be signaled. The read lock is released at the completion of the read
operation.

The following describes the OS/2 named pipe read logic.

while (data not available in pipe) do
if (blocking mode) then

wait for available data in pipe
else

return no data available error
endif

endwhile

if (message pipe) then
if (data buffer size greater or equal message size) then

if (message mode) then
read message from pipe, synchronize with writer
return size of message read

else
read available data or message from pipe
if (complete message read) then

return size of message read
else

reduce size of message by available data bytes
return count of data bytes read

endif
endif

else
if (message mode) then

read data from pipe, synchronize with writer
reduce size of message by data buffer size
return more data error

else
read available data from pipe
reduce size of message by available data bytes
return count of data bytes read

endif
endif

else
read available data from pipe
return count of data bytes read

endif

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 10

4.3.2 NT OS/2 Read/Write Buffering Strategy

NT OS/2 supports an asynchronous I/O model and uses the concept of quotas to control
the allocation of system buffers. In addition, NT OS/2 supports I/O transfers that are
buffered by the system rather than requiring buffers to be locked down and
nonswappable. Therefore, the buffering scheme used for the NT OS/2 implementation
of named pipes differs markedly from that of OS/2.

The blocking mode of OS/2 is emulated in NT OS/2 with a completion mode. The
completion mode can be specified such that read and write operations are completed
immediately or they are queued and subject to completion when space is available or
data is present.

The inbound and outbound buffers for a named pipe are not actually allocated to real
memory in NT OS/2. Instead, the creator of an instance of a named pipe is simply
charged memory quota for these buffers. Writers and readers can use up to the quota
charged to the creator without having any quota charged against themselves. If the
quota charged to the creator is exhausted and a write request is queued rather than
completed immediately, then the writer is charged for any additional quota that is
required. Likewise, a reader is charged quota if no data is available, the quota charged
to the creator is exhausted, and the read request is queued rather than completed
immediately.

The named pipe capabilities of NT OS/2 requires that the data be copied twice.
However, reads can "pull" data from write buffers and writes can "push" data into
read buffers.

The following is a somewhat simplified discussion of the buffering scheme used for
named pipes in NT OS/2. Boundary conditions and differing pipe types and modes are
not considered. The pipe type is assumed to be message, the read mode is assumed to
be message, and the completion mode is assumed to be queued operation.

The exact behavior of the NT OS/2 named pipe buffering depends on whether a read
occurs before a write or vice versa.

If a write operation occurs before a read operation, then the writer's output buffer is
probed for read accessibility in the requesting mode. A system buffer is allocated that
is the required size to hold the write data and memory quota is charged to the writer if
and only if the quota charged to the creator of the named pipe instance has been

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 11

exhausted (e.g., because of a previous read or write request). A buffer header is
initialized at the front of the system buffer, the write data is copied into the system
buffer, and the buffer header is inserted into the first-in-first-out list of writers. If
quota was not charged to the writer, then the writer's I/O request can be completed
immediately. The system buffer will be deallocated and the creator's quota returned
when a matching read arrives. Otherwise, the write request type is converted to a
buffered request so that upon completion, the I/O system will deallocate the system
buffer and return memory quota as appropriate.

At this point, the I/O operation is either pending or has been completed and control is
returned to the caller. If another write request is received before the first set of write
data is read, then the same operations are performed and the new request is placed at
the end of the pending queue.

At some subsequent point in time, a read request arrives at the read end of the pipe
and it is determined that write data is available at the write end of the pipe. The input
buffer is probed for write accessibility in the requesting mode. The read then proceeds
to "pull" (copy) data directly from the system buffer that was previously allocated for
the write data into the user's input buffer. At the completion of the copy, the read I/O
request is completed.

Completion of the read request involves writing the I/O status block and setting the
completion event. If the original write I/O request was completed at the time of the
write, then the system buffer is deallocated and memory quota is returned for named
pipe write buffering. However, if the write I/O was not completed at the time of the
write, then completion of the write requires writing the I/O status block, setting the
completion event, deallocating the system buffer, and returning quota to the writer.

If an access violation occurs during a copy from the output buffer to a system buffer,
then the write operation is immediately terminated. Previously completed read I/O
requests, if any, are not backed out. This has no effect on the integrity of the system. A
malicious writer could easily accomplish the same effect by simply writing a
shortened message. The write I/O status is set to access violation, the write I/O request
is completed, and successful completion is returned as the service status.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 12

The following describes the NT OS/2 named pipe write logic.

probe output buffer for read access
while (read pending) and (output buffer size not zero) do

copy data from output buffer to read buffer
if (read buffer greater or equal output buffer) then

reduce output buffer size to zero
set read I/O status to successful completion

else
reduce output buffer by read buffer size
if (message mode read) then

set read I/O status to buffer overflow
else

set read I/O status to successful completion
endif

endif
remove read request from read pending list
complete read I/O operation, return quota

endwhile
if (output buffer size not zero) then

if (pipe quota available) then
allocate write buffer, charge quota to pipe
copy data from output buffer to write buffer
insert write request in write pending list
set write I/O status to successful completion
complete write I/O operation
return successful completion

else
if (queued operation) or ((message pipe) and

(output buffer not original size)) then
allocate write buffer, charge quota to writer
copy data from output buffer to write buffer
insert write request in write pending list
return operation pending

else
if (output buffer not original size) then

set write I/O status to successful completion
complete write I/O request
return successful completion

else
abort write I/O operation
return no space available

endif
endif

endif
else

set write I/O status to successful completion
complete write I/O request
return successful completion

endif

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 13

If a read operation occurs before a write, then the reader's input buffer is probed for
write accessibility in the requesting mode. A system buffer is allocated that is the
required size to hold the input data and memory quota is charged to the reader if and
only if the quota charged to the creator of the named pipe instance has been
exhausted (e.g., because of a previous read or write request). A buffer header is
initialized at the front of the system buffer and the header is inserted in a first-in-first-
out list of readers. The read request type is converted to a buffered request so that
upon completion, the I/O system will copy the received data from the system buffer
into the reader's input buffer, deallocate the system buffer, and return memory quota
as appropriate.

At this point, the I/O operation is pending and control is returned to the caller. If
another read request is received before the first read is completed, then the same
operations are performed and the new request is placed at the end of the pending
queue.

At some subsequent point in time, a write request arrives at the write end of the pipe
and it is determined that a read is pending at the read end of the pipe. The output
buffer is probed for read accessibility in the requesting mode. The write then proceeds
to "push" (copy) data directly from the output buffer into the system buffer that was
previously allocated for the read operation. At the completion of the copy, the read
and write I/O requests are both completed.

Completion of the write request involves writing the I/O status block and setting the
completion event, whereas completion of the read request requires copying the read
data from the system buffer to the reader's input buffer, deallocating the system buffer
and returning the memory quota as appropriate, writing the I/O status block, and
setting the completion event.

If an access violation occurs during a copy from a system buffer to the input buffer,
then the read operation is immediately terminated. Previously completed write I/O
requests are not backed out. This has no effect on the integrity of the system. A
malicious reader could easily accomplish the same effect by simply reading and
discarding information. The read I/O status is set to access violation, the read I/O
request is completed, and successful completion is returned as the service status.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 14

The following describes the NT OS/2 named pipe read logic.

probe input buffer for write access
if (write not pending) then

if (queued operation) then
if (pipe quota available) then

allocate read buffer,charge quota to pipe
else

allocate read buffer, charge quota to reader
endif
insert read request in read pending list
return operation pending

else
abort read I/O operation
return no data available

endif
else

set read I/O status to successful completion
while (write pending) and (input buffer size not zero) do

copy data from write buffer to input buffer
if (input buffer greater or equal write buffer) then

if (message mode read) then
reduce input buffer size to zero

else
reduce input buffer by write buffer size

endif
set write I/O status to successful completion
remove write request from write pending list
complete write I/O operation, return quota

else
reduce write buffer by input buffer size
reduce input buffer size to zero
if (message mode read) then

set read I/O status to buffer overflow
endif

endif
endwhile

complete read I/O operation
return successful completion

endif

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 15

4.4 Internal Read/Write Operations

4.4.1 Special Read/Write Buffering

In addition to the above buffering method provided for local named pipe clients and
servers, NT OS/2 provides another buffering method that can be used internally by the
NT OS/2 LAN Manager server. This method allows read and write requests to proceed
such that no buffer allocation is needed for either the read or the write.

The NT OS/2 LAN Manager server supplies the necessary system buffers directly and
only one copy of the data is needed for a read or write operation. Typically, these
buffers are the buffers that are used to receive and transmit data over the network.
Thus, server side redirection can be performed with minimal overhead.

4.5 Named Pipe States

Named pipes can be in one of four states:

1. Disconnected

2. Listening

3. Connected

4. Closing

The initial state of a named pipe is disconnected. When the pipe is in this state, no
client is connected to the pipe and a listen operation can be performed.

Performing a listen operation on a disconnected named pipe causes the pipe to
transition to the listening state.

An open request performed by a client causes a named pipe in the listening state to
enter the connected state. When a named pipe is in the connected state, data can flow
through the pipe.

A named pipe that is in the connected state can transition to either the disconnected
state or the closing state.

The disconnected state is entered when a disconnect operation is performed on the
server end of a named pipe and causes both the input buffer and the output buffer to

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 16

be flushed. No further access is allowed to the client end of the named pipe; however,
the client end must still be closed.

The closing state is entered if a close operation is performed on either end of a named
pipe and causes the input buffer of the closing end to be flushed. Any remaining data
in the output buffer can be read from the opposite end of the named pipe with a read
operation. When no data remains in the output buffer, an end of file indication is
returned.

A named pipe that is in the closing state because the client end of the pipe was closed
can transition to the disconnected state by performing a disconnect operation on the
server end of the pipe.

A named pipe that is in the closing state because the server end of the pipe was closed
is deleted when the client end of the pipe is also closed.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 17

Named Pipe State Transition Diagram

 Nonexistent

 │ (make pipe server end)
 ┌──────────────────────────>│
 │┌─────────────────────────>│
 ││┌────────────────────────>│
 │││ V
 │││ ┌─────────────────────────────┐
 │││ │ │─────────────────────┐
 │││ │ Disconnected │ (server end closed) │
 │││ └──────────────┬──────────────┘ │
 │││ │ │
 │││ │ (listen server end) │
 │││ V │
 │││ ┌─────────────────────────────┐ │
 │││ │ │─────────────────────│
 │││ │ Listening │ (server end closed) │
 │││ └──────────────┬──────────────┘ │
 ││└─────────────────────────┤ │
 ││(server end disconnected) │ (open client end) │
 ││ V │
 ││ ┌─────────────────────────────┐ │
 ││ │ │ │
 ││ │ Connected │ │
 ││ └──────────────┬──────────────┘ │
 │└──────────────────────────┤ │
 │ (server end disconnected) │ (close server or client end) │
 │ V │
 │ ┌─────────────────────────────┐ │
 │ │ │ │
 │ │ Closing │ │
 │ └──────────────┬──────────────┘ │

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 18

 └───────────────────────────┤ │
 (server end disconnected) │ (server end closed) │
 V │
 │
 Deleted <───────────────────────────────┘

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 19

5. NT OS/2 Named Pipe I/O Operations

The following subsections describe the NT OS/2 I/O operations with respect to named
pipes. Additional information can be found in the NT OS/2 I/O System Specification.

5.1 Create Named Pipe

The first instance of a specific named pipe or another instance of an existing named
pipe can be created, and a server end handle opened with the
NtCreateNamedPipeFile function. This function is only for creating local named
pipes and not remote ones.

NTSTATUS
NtCreateNamedPipeFile (

OUT PHANDLE FileHandle,
IN ULONG DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG ShareAccess,
IN ULONG CreateDisposition,
IN ULONG CreateOptions,
IN ULONG NamedPipeType,
IN ULONG ReadMode,
IN ULONG CompletionMode,
IN ULONG MaximumInstances,
IN ULONG InboundQuota,
IN ULONG OutboundQuota,
IN PTIME DefaultTimeout OPTIONAL
);

Parameters:

FileHandle - A pointer to a variable that receives the file handle value.

DesiredAccess - Specifies the type of access that the caller requires to the named
pipe.

DesiredAccess Flags:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 20

SYNCHRONIZE - The file handle may be waited on to synchronize with the
completion of I/O operations.

READ_CONTROL - The ACL and ownership information associated with the
named pipe may be read.

WRITE_DAC - The discretionary ACL associated with the named pipe may
be written.

WRITE_OWNER - Ownership information associated with the named pipe
may be written.

FILE_READ_DATA - Data may be read from the named pipe.

FILE_WRITE_DATA - Data may be written to the named pipe.

FILE_CREATE_PIPE_INSTANCE - This access is needed to create subsequent
instances of the named pipe.

FILE_READ_ATTRIBUTES - Named pipe attributes flags may be read.

FILE_WRITE_ATTRIBUTES - Named pipe attribute flags may be written.

The three following values are the generic access types that the caller may
request along with their mapping to specific access rights:

GENERIC_READ - Maps to FILE_READ_DATA and FILE_READ_ATTRIBUTES.

GENERIC_WRITE - Maps to FILE_WRITE_DATA and
FILE_WRITE_ATTRIBUTES.

GENERIC_EXECUTE - Maps to SYNCHRONIZE.

ObjectAttributes - A pointer to a structure that specifies the object attributes;
refer to the I/O System Specification for details.

IoStatusBlock - A pointer to a structure that receives the final completion status.
The actual action taken by the system is written into the Information field of
this structure. For example, it indicates if a new named pipe and instance
was created or just a new instance.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 21

ShareAccess - Specifies the share access and configuration of the named pipe.

ShareAccess Flags:

FILE_SHARE_READ - Indicates that client end handles can be opened for
read access to the named pipe.

FILE_SHARE_WRITE - Indicates that client end handles can be opened for
write access to the named pipe.

CreateDisposition - Specifies the action to be taken if the named pipe does or does
not already exist.

CreateDisposition Values:

FILE_CREATE - Indicates that if the named pipe already exists, then the
operation should fail. If the named pipe does not already exist, then the
first instance of the named pipe should be created.

FILE_OPEN - Indicates that if the named pipe already exists, then another
instance of the named pipe should be created. If the named pipe does
not already exist, then the operation should fail.

FILE_OPEN_IF - Indicates that if a named pipe already exists, then another
instance of the named pipe should be created. If the named pipe does
not already exist, then the first instance of the named pipe should be
created.

CreateOptions - Specifies the options that should be used when creating the first
instance or a subsequent instance of a named pipe.

CreateOptions Flags:

FILE_SYNCHRONOUS_IO_ALERT - Indicates that all operations on the named
pipe are to be performed synchronously. Any wait that is performed on
behalf of the caller is subject to premature termination by alerts.

FILE_SYNCHRONOUS_IO_NONALERT - Indicates that all operations on the
named pipe are to be performed synchronously. Any wait that is

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 22

performed on behalf of the caller is not subject to premature
termination by alerts.

NamedPipeType - Specifies the type of the named pipe. This parameter is only
meaningful when the first instance of a named pipe is created.

NamedPipeType Values:

FILE_PIPE_MESSAGE_TYPE - Indicates that the named pipe is a message
pipe. Data written to the pipe is stored such that message boundaries
are maintained. Message named pipes can be read in message mode or
in byte stream mode.

FILE_PIPE_BYTE_STREAM_TYPE - Indicates that the named pipe is a byte
stream pipe. Data written to the pipe is stored as a continuous stream
of bytes. Byte stream pipes can only be read in byte stream mode.

ReadMode - Specifies the mode in which the named pipe is read.

ReadMode Values:

FILE_PIPE_MESSAGE_MODE - Indicates that data is read from the named
pipe a message at a time. This value may not be specified unless the
named pipe is a message pipe.

FILE_PIPE_BYTE_STREAM_MODE - Indicates that data is read from the
named pipe as a continuous stream of bytes. This value may be
specified regardless of the type of the named pipe.

CompletionMode - Specifies whether I/O operations are to be queued or completed
immediately when conditions are such that the I/O operation cannot be
completed without being deferred for subsequent processing, e.g., a read
operation on a named pipe that contains no write data.

CompletionMode Values:

FILE_PIPE_QUEUE_OPERATION - Indicates that I/O operations are to be
queued pending completion at a later time if they cannot be
immediately completed when the I/O operation is issued.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 23

FILE_PIPE_COMPLETE_OPERATION - Indicates that I/O operations are not to
be queued if they cannot be completed immediately when the I/O
operation is issued.

MaximumInstances - Specifies the maximum number of simultaneous instances
of the named pipe. This parameter is only meaningful when the first
instance of a named pipe is created.

InboundQuota - Specifies the pool quota that is reserved for writes to the inbound
side of the named pipe.

OutboundQuota - Specifies the pool quota that is reserved for writes to the
outbound side of the named pipe.

DefaultTimeout - Specifies an optional pointer to a timeout value that is to be used
if a timeout value is not specified when waiting for an instance of a named
pipe. This parameter is only meaningful when the first instance of a named
pipe is created.

This service either creates the first instance of a specific named pipe and establishes its
basic attributes or creates a new instance of an existing named pipe which inherits the
attributes of the first instance of the named pipe. If creating a new instance of an
existing named pipe the user must have FILE_CREATE_PIPE_INSTANCE access to the
named pipe object.

If a new named pipe is being created, then the Access Control List (ACL) from the
object attributes parameter defines the discretionary access control for the named
pipe. If a new instance of an existing named pipe is created, then the ACL is ignored.

If a new named pipe is created, then the configuration of the named pipe is
determined from the FILE_SHARE_READ and FILE_SHARE_WRITE flags of the share
access parameter. If both flags are specified, then the named pipe is a full duplex pipe
and can be read and written by clients. If either one or the other is specified, but not
both, then the named pipe is a simplex pipe and can only be read (outbound) or
written (inbound) by clients. If neither one is specified, then
STATUS_INVALID_PARAMETER is returned. If a new instance of an existing named
pipe is created, then the share access parameter is ignored.

If a new named pipe is created, then the type of the named pipe, the maximum
instances, and the default timeout value are taken from their corresponding

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 24

parameters. If a new instance of an existing named pipe is created, then these
parameters are ignored.

The create options, completion mode, and read mode are set to their specified values.

The actual pool quota that is reserved for each side of the named pipe is either the
system default, the system minimum, the system maximum, or the specified quota
rounded up to the next allocation boundary.

The name of the named pipe is taken from the object attributes parameter, which
must be specified.

An instance of a named pipe is always deleted when the last handle to the instance of
the named pipe is closed.

If STATUS_SUCCESS is returned as the service status, then a new instance of a named
pipe was successfully created. The Information field of the I/O status block indicates if
this is the first instance of the named pipe (FILE_CREATED) or a new instance of an
existing named pipe (FILE_OPENED).

If STATUS_INVALID_PARAMETER is returned as the service status, then an invalid
value was specified for one or more of the input parameters.

If STATUS_INSTANCE_NOT_AVAILABLE is returned as the service status, the named
pipe already exists and creating another instance would cause the maximum number
of instances to be exceeded.

5.2 Create File

The NtCreateFile function can be used to open a client end handle to an instance of a
specified named pipe.

In order to use this function to open a named pipe, the named pipe must already exist
and the CreateDisposition value must be specified as either FILE_OPEN or
FILE_OPEN_IF.

When a named pipe is opened, a search is conducted for an available instance of the
specified named pipe. If an instance of the named pipe is found that has a state of
listening, then the state of the named pipe is set to connected, the read mode is set to
byte stream, the completion mode is set to queued operation, and the open I/O request

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 25

is completed. If one or more listen I/O requests are pending for the server end of the
named pipe, then the listen I/O requests are completed with a status of
STATUS_SUCCESS.

If a named pipe of specified name cannot be found, then
STATUS_OBJECT_NAME_NOT_FOUND is returned as the service status.

If an instance of the named pipe cannot be found with a state of listening, then
STATUS_PIPE_NOT_AVAILABLE is returned as the service status.

5.3 Open File

The NtOpenFile function can be used to open a client end handle to an instance of a
specified named pipe.

When a named pipe is opened, a search is conducted for an available instance of the
specified named pipe. If an instance of the named pipe is found that has a state of
listening, then the state of the named pipe is set to connected, the read mode is set to
byte stream, the completion mode is set to queued operation, and the open I/O request
is completed. If one or more listen I/O requests are pending for the server end of the
named pipe, then the listen I/O requests are completed with a status of
STATUS_SUCCESS.

If a named pipe of specified name cannot be found, then
STATUS_OBJECT_NAME_NOT_FOUND is returned as the service status.

If an instance of the named pipe cannot be found with a state of listening, then
STATUS_PIPE_NOT_AVAILABLE is returned as the service status.

5.4 Read File

The NtReadFile function can be used to read data from a named pipe. Data is read
according to the read mode of the specified named pipe and I/O operations are
completed according to the completion mode of the specified named pipe.

The byte offset and key parameters of the NtReadFile function are ignored by the
named pipe file system.

The specified named pipe must be in the connected or closing state in order to read
information from the pipe.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 26

If STATUS_PENDING is returned as the service status, then the read I/O operation is
pending and its completion must be synchronized using the standard NT OS/2
mechanisms. Any other service status indicates that the read I/O operation has already
been completed. If a success status is returned, then the I/O status block contains the
I/O completion information. Otherwise, the service status determines any error that
may have occurred.

If the specified handle is not open to a named pipe that is in the connected or closing
state, then STATUS_INVALID_PIPE_STATE is returned as the service status.

If the I/O status STATUS_ACCESS_VIOLATION is returned, then part of the read buffer
became inaccessible after it was probed for write access and the I/O status block
contains the number of bytes that were read.

If the I/O status STATUS_END_OF_FILE is returned, then there is no data in the pipe
and the write end of the pipe has been closed.

The I/O status STATUS_PIPE_EMPTY is returned when there is no data in the pipe but
the write end of the pipe is still opened and the pipe is opened for complete
operations.

If the I/O status STATUS_BUFFER_OVERFLOW is returned, then the read I/O operation
was completed successfully, but the size of the input buffer was not large enough to
hold the entire input message. A full buffer of data is returned; additional data can be
read from the message using the NtReadFile function. The I/O status block contains
the number of bytes that were read.

If the I/O status STATUS_SUCCESS is returned, then the read I/O operation was
completed successfully and the I/O status block contains the number of bytes that were
read.

If an event is associated with the write end of the specified named pipe and any data is
actually read from the pipe, then the event is set to the Signaled state. Writers can use
this information to synchronize their access to the named pipe.

5.5 Write File

The NtWriteFile function can be used to write data to a named pipe. Data is written
according to the type of the specified named pipe and I/O operations are completed
according to the completion mode of the specified named pipe.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 27

The byte offset and key parameters of the NtWriteFile function are ignored by the
named pipe file system.

The specified named pipe must be in the connected state in order to write information
to the pipe.

If STATUS_PENDING is returned as the service status, then the write I/O operation is
pending and its completion must be synchronized using the standard NT OS/2
mechanisms. Any other service status indicates that the write I/O operation has
already been completed. If a success status is returned, then the I/O status block
contains the I/O completion information. Otherwise, the service status determines any
error that may have occurred.

If the specified handle is not open to a named pipe that is in the connected state, then
STATUS_INVALID_PIPE_STATE is returned as the service status.

If the I/O status STATUS_ACCESS_VIOLATION is returned, then part of the write buffer
became inaccessible after it was probed for read access and the I/O status block
contains the number of bytes that were written.

If the I/O status STATUS_SUCCESS is returned, then the write I/O operation was
completed successfully and the I/O status block contains the number of bytes that were
written.

If an event is associated with the read end of the specified named pipe and any data is
actually written to the pipe, then the event is set to the Signaled state. Readers can use
this information to synchronize their access to the named pipe.

A zero length write to a message type pipe adds a logical EOF to the to the pipe.

5.6 Read Terminal File

This function is not supported by named pipes.

5.7 Query Directory Information

The NtQueryDirectoryFile function can be used to enumerate files within the root
named pipe file system directory (i.e., "\Device\NamedPipe\"). All the standard NT OS/2
information classes are supported. NtOpenFile is used to open the root named pipe
directory. This function is not supported for remote named pipes.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 28

5.8 Notify Change Directory

The NtNotifyChangeDirectoryFile function can be used to monitor modifications to
the root named pipe file system directory. The standard NT OS/2 capabilities are
supported. This function is not supported for remote named pipes.

5.9 Query File Information

Information about a file can be obtained with the NtQueryInformationFile function.
All information classes, with the exception of extended attribute information, are
supported for named pipes with special interpretation of the returned data as
appropriate. An additional information class is also provided to return information
that is specific to named pipes.

Information is returned by the named pipe file system for named pipes and for the
named pipe root directory. The following subsections describe the information that is
returned for named pipe entries. The information returned for the root directory is
identical to the information that is returned by other file systems and is described in
the NT OS/2 I/O System Specification.

5.9.1 Basic Information

Basic information about a named pipe includes the creation time, the time of the last
access, the time of the last write, the time of the last change, and the attributes of the
named pipe. The file attribute value for a named pipe is FILE_ATTRIBUTE_NORMAL.
This function is only supported by local named pipes.

5.9.2 Standard Information

Standard information about a named pipe includes the allocation size, the end of file
offset, the device type, the number of hard links, whether a delete is pending, and the
directory indicator. This function is only supported by local named pipes.

The allocation size is the amount of pool quota charged to the creator of an instance of
a named pipe. This is the sum of the quota charged for the inbound and outbound
buffers. The end of file offset is the number of bytes that are available in the inbound
buffer. The device type is FILE_DEVICE_NAMED_PIPE, the number of hard links is
one, delete pending is TRUE, and the directory indicator is FALSE.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 29

5.9.3 Internal Information

Internal information about a named pipe includes a named pipe file-system-specific
identifier. This value is unique for each instance of a named pipe.

5.9.4 Extended Attribute Information

The extended attribute information size is always returned as zero by the named pipe
file system. This function is only supported by local named pipes.

5.9.5 Access Information

Access information about a named pipe includes the granted access flags. This
function is only supported by local named pipes.

5.9.6 Name Information

Name information about a named pipe includes the name of the named pipe. This
function is only supported by local named pipes.

5.9.7 Position Information

Position information about a named pipe includes the current byte offset. The current
byte offset is the number of bytes that are available in the input buffer. This function
is only supported by local named pipes.

5.9.8 Mode Information

Mode information about a named pipe includes the I/O mode of the named pipe. This
function is only supported by local named pipes.

5.9.9 Alignment Information

The alignment information class is not supported by the named pipe file system. This
function is only supported by local named pipes.

5.9.10 All Information

The all information class includes information that can be returned by all file systems
and is described above under each of the individual subsections. This function is only
supported by local named pipes.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 30

5.9.11 Pipe Information

Pipe information for both local and remote named pipes include the read and
completion mode for the specified end of the named pipe. An access of
FILE_READ_ATTRIBUTE is required to query the pipe information of a named pipe.

FilePipeQueryInformation - Data type is FILE_PIPE_INFORMATION.

typedef struct _FILE_PIPE_INFORMATION {
ULONG ReadMode;
ULONG CompletionMode;

} FILE_PIPE_INFORMATION;

FILE_PIPE_INFORMATION:

ReadMode - The mode in which the named pipe is being read
(FILE_PIPE_MESSAGE_MODE or FILE_PIPE_BYTE_STREAM_MODE).

CompletionMode - The mode in which I/O operations are handled
(FILE_PIPE_QUEUE_OPERATION or FILE_PIPE_COMPLETE_OPERATION).

5.9.12 Local Pipe Information

Information for a local named pipe includes the type of the pipe, the maximum
number of instances of the named pipe that can be created, the current number of
instances of the named pipe, the quota charged for the input buffer, the number of
bytes of data available in the input buffer, the quota charged for the output buffer, the
quota available for writing into the output buffer, the state of the named pipe, and the
end of the named pipe. An access of FILE_READ_ATTRIBUTE is required to query the
local pipe information of a named pipe. This function is only supported by local
named pipes.

FilePipeQueryInformation - Data type is FILE_PIPE_LOCAL_INFORMATION.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 31

typedef struct _FILE_PIPE_LOCAL_INFORMATION {
ULONG NamedPipeType;
ULONG NamedPipeConfiguration;
ULONG MaximumInstances;
ULONG CurrentInstances;
ULONG InboundQuota;
ULONG ReadDataAvailable;
ULONG OutboundQuota;
ULONG WriteQuotaAvailable;
ULONG NamedPipeState;
ULONG NamedPipeEnd;

} FILE_PIPE_LOCAL_INFORMATION;

FILE_PIPE_LOCAL_INFORMATION:

NamedPipeType - The type of the named pipe (FILE_PIPE_MESSAGE_TYPE or
FILE_PIPE_BYTE_STREAM_TYPE).

NamedPipeConfiguration - The configuration of the named pipe
(FILE_PIPE_INBOUND, FILE_PIPE_OUTBOUND, FILE_PIPE_FULL_DUPLEX).

MaximumInstances - The maximum number of simultaneous instances of the
named pipe that are allowed.

CurrentInstances - The current number of instances of the named pipe. For a
remote named pipe this field is set to MAXULONG.

InboundQuota - The amount of pool quota that is reserved for buffering writes to
the inbound side of the named pipe. For a remote named pipe this field is
set to MAXULONG.

ReadDataAvailable - The number of bytes of read data that are available in the
input buffer. For a remote named pipe this field is set to MAXULONG.

OutboundQuota - The amount of pool quota that is reserved for buffering writes
to the outbound side of the named pipe. For a remote named pipe this field
is set to MAXULONG.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 32

WriteQuotaAvailable - The number of bytes of pool quota that are available for
writing data. For a remote named pipe this field is set to MAXULONG.

NamedPipeState - The current state of the named pipe
(FILE_PIPE_DISCONNECTED_STATE, FILE_PIPE_LISTENING_STATE,
FILE_PIPE_CONNECTED_STATE, or FILE_PIPE_CLOSING_STATE).

NamedPipeEnd - The end of the pipe that is referred to by the specified open file
handle (FILE_PIPE_CLIENT_END or FILE_PIPE_SERVER_END).

5.9.13 Remote Pipe Information

Information for a remote named pipe includes the collect data time and the maximum
collection count for the specified named pipe. An access of FILE_READ_ATTRIBUTE is
required to query the pipe information of a named pipe. This function is only
supported by remote named pipes.

FilePipeQueryInformation - Data type is FILE_PIPE_REMOTE_INFORMATION.

typedef struct _FILE_PIPE_REMOTE_INFORMATION {
TIME CollectDataTime;
ULONG MaximumCollectionCount;

} FILE_PIPE_REMOTE_INFORMATION;

FILE_PIPE_REMOTE_INFORMATION:

CollectDataTime - Specifies the amount of time that the workstation collects data
to send to the remote named pipe before it sends it.

MaximumCollectionCount - Specifies the maximum number of bytes that the
workstation stores before it sends data to the remote named pipe.

5.10 Set File Information

Information about a file can be changed with the NtSetInformationFile function.
Most information classes are supported for local named pipes with the exception of
link and position information.

Information can be set for named pipes. The following subsections describe the
information that can be set for named pipes.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 33

5.10.1 Basic Information

Basic information about a named pipe that can be set includes the creation time, the
time of the last access, the time of the last write, the time of the last change, and the
attributes of the named pipe. This function is only supported by local named pipes.

The associated times included in this class can be set to any appropriate value. The file
attribute field can only be set to FILE_ATTRIBUTE_NORMAL.

5.10.2 Disposition Information

The disposition information class is not supported by named pipes.

Named pipes are always considered temporary and are deleted when the last handle is
closed (i.e., when the last instance of a named pipe is closed and deleted the named
pipe, itself, is also deleted.

5.10.3 Link Information

This information class is not supported by named pipes.

5.10.4 Position Information

This information class is not supported by named pipes.

5.10.5 Mode Information

Mode information about a named pipe that can be set includes the I/O mode of the
named pipe.

5.10.6 Pipe Information

Pipe information about a named pipe that can be set includes the read mode and
completion mode of the named pipe. No special access is required to set the pipe
information.

FilePipeSetInformation - Data type is FILE_PIPE_INFORMATION.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 34

typedef struct _FILE_PIPE_INFORMATION {
ULONG ReadMode;
ULONG CompletionMode;

} FILE_PIPE_INFORMATION;

FILE_PIPE_INFORMATION:

ReadMode - The mode in which the named pipe is to be read
(FILE_PIPE_MESSAGE_MODE or FILE_PIPE_BYTE_STREAM_MODE).

CompletionMode - The mode in which I/O operations are to be handled
(FILE_PIPE_QUEUE_OPERATION or FILE_PIPE_COMPLETE_OPERATION).

If the type of the specified named pipe is a byte stream pipe and the new read mode is
message mode, then STATUS_INVALID_PARAMETER is returned as the service status.

If the new completion mode for the specified named pipe is complete operations, the
current completion mode is queue operations, and one or more I/O operations are
currently queued to the specified end of the named pipe, then STATUS_PIPE_BUSY is
returned as the service status and no pipe information is changed.

If the new read mode and the new completion mode are compatible with the current
state of the specified named pipe, then the set information I/O request is completed
with a status of STATUS_SUCCESS and STATUS_SUCCESS is returned as the service
status.

5.10.7 Remote Pipe Information

Information about a remote named pipe that can be set includes the collect data time
and the maximum collection count. No special access is required to set the pipe
information.

FilePipeSetInformation - Data type is FILE_PIPE_REMOTEINFORMATION.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 35

typedef struct _FILE_PIPE_REMOTE_INFORMATION {
TIME CollectDataTime;
ULONG MaximumCollectionCount;

} FILE_PIPE_REMOTE_INFORMATION;

FILE_PIPE_REMOTE_INFORMATION:

CollectDataTime - Sets the amount of time that the workstation can collect before
sending it to the remote named pipe.

MaximumCollectionCount - Sets the maximum number of bytes that the
workstation stores before sending data to the remote named pipe.

5.11 Query Extended Attributes

This function is not supported by named pipes.

5.12 Set Extended Attributes

This function is not supported by named pipes.

5.13 Lock Byte Range

This function is not supported by named pipes.

5.14 Unlock Byte Range

This function is not supported by named pipes.

5.15 Query Volume Information

This function is not supported by named pipes.

5.16 Set Volume Information

This function is not supported by named pipes.

5.17 File Control Operations

The following subsections describe file control operations that can be performed using
a handle that is open to an instance of a named pipe. Certain functions can only be

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 36

executed using a handle that is open to the server end of a named pipe. These
functions are not legal for a handle that is open to the client end of a named pipe. The
wait for named pipe instance function and the query event information function both
require a handle that is open to the named pipe file system itself.

5.17.1 External File Control Operations

External file control operations can be executed by all users of the NT OS/2 named
pipe facilities and do not require any special privileges.

5.17.1.1 Assign Event

The assign event file control operation associates or disassociates an event object with
either the client or server end of a named pipe. This function is only supported by
local named pipes.

The control code for this operation is FSCTL_PIPE_ASSIGN_EVENT. The input buffer
parameter specifies the event handle and key value that are to be associated with the
respective end of the named pipe. The input buffer has the following format:

typedef struct _FILE_PIPE_ASSIGN_EVENT_BUFFER {
HANDLE EventHandle;
ULONG KeyValue;
} FILE_PIPE_ASSIGN_EVENT_BUFFER;

FILE_PIPE_ASSIGN_EVENT_BUFFER:

EventHandle - A handle to an event object that is to be associated with the
respective end of the named pipe, or null if the currently associated event
object is to be disassociated.

KeyValue - The key value that is to be associated with the respective end of the
named pipe. If the event handle is null, then this parameter is ignored.

If the event handle is null, then any event object that is currently associated with the
respective end of the named pipe is disassociated and the key value is ignored.

If the event handle is not null, then WRITE access to the event is required. Any
previously associated event object is disassociated and the specified event and key
value are associated with the respective end of the named pipe.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 37

This operation is always completed immediately and never causes an I/O operation to
be queued.

Assigning an event object to either the client or server end of a named pipe provides
additional synchronization capabilities when I/O operations are completed
immediately rather than being queued.

Once an event object is assigned, the event will be set to the Signaled state every time
information is read from, or written to, the opposite end of the named pipe, or the
opposite end of the named pipe is closed. The event object associated with the client
end of the named pipe is also set to the Signaled state when a disconnect operation is
performed on the server end of the pipe.

5.17.1.2 Disconnect

The disconnect file control operation disconnects an instance of a named pipe from a
client and causes the named pipe to enter the disconnected state. Disconnecting a
named pipe causes all data in the pipe to be discarded and no further access to the
named pipe is allowed until a listen operation is performed. The function is only valid
from the server end of a named pipe.

The control code for this operation is FSCTL_PIPE_DISCONNECT. The input and output
parameter buffers are not used.

If the specified handle is not open to the server end of a named pipe, then
STATUS_ILLEGAL_FUNCTION is returned as the service status.

If the named pipe associated with the specified handle is in the disconnected state,
then STATUS_PIPE_DISCONNECTED is returned as the service status.

If the named pipe associated with the specified handle is in the listening state, then the
state of the named pipe is set to disconnected. If one or more listen I/O requests are
waiting for a companion client open request, then the listen I/O requests are
completed with a status of STATUS_PIPE_DISCONNECTED. The disconnect I/O request
is completed with a status of STATUS_SUCCESS and STATUS_SUCCESS is returned as
the service status.

If the named pipe associated with the specified handle is in the connected state, then
the state of the named pipe is set to disconnected, all data in the input and output
buffers is discarded, and outstanding client and server read and write I/O requests are

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 38

completed with a status of STATUS_PIPE_DISCONNECTED. If an event object is
associated with the client end of the named pipe, then the event is set to the Signaled
state. The disconnect I/O request is completed with a status of STATUS_SUCCESS and
STATUS_SUCCESS is returned as the service status.

If the named pipe associated with the specified handle is in the closing state, then the
state of the named pipe is set to disconnected, all data in the input buffer is discarded,
and outstanding server read I/O requests are completed with a status of
STATUS_PIPE_DISCONNECTED. The disconnect I/O request is completed with a status
of STATUS_SUCCESS and STATUS_SUCCESS is returned as the service status.

5.17.1.3 Listen

The listen file control operation is used to transition a named pipe from a disconnected
state to a listening state. When a named pipe is in the listening state, client open
requests can be satisfied and cause the named pipe to transition to the connected state.
This function is only supported by local named pipes.

The control code for this operation is FSCTL_PIPE_LISTEN. The input and output
parameter buffers are not used.

If the specified handle is not open to the server end of a named pipe, then
STATUS_ILLEGAL_FUNCTION is returned as the service status.

If the named pipe associated with the specified handle is in the closing state, then
STATUS_PIPE_CLOSING is returned as the service status.

If the named pipe associated with the specified handle is in the connected state, then
STATUS_PIPE_CONNECTED is returned as the service status.

If the named pipe associated with the specified handle is in the listening state and the
completion mode associated with the server end handle is queue operations, then the
listen I/O request is queued awaiting a companion client open request and
STATUS_PENDING is returned as the service status. Otherwise (the completion mode is
complete operations), STATUS_PIPE_LISTENING is returned as the service status.

If the named pipe associated with the specified handle is in the disconnected state,
then the state of the pipe is set to listening and any outstanding wait for named pipe
I/O requests are completed with a status of STATUS_SUCCESS.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 39

If the completion mode associated with the server end handle is complete operations,
then the listen I/O request is completed with an I/O status of STATUS_PIPE_LISTENING
and STATUS_SUCCESS is returned as the service status.

If the completion mode associated with the server end handle is queue operations,
then the listen I/O request is queued awaiting a companion client open request and
STATUS_PENDING is returned as the service status. When a client open is performed,
the listen I/O request is completed with an I/O status of STATUS_PIPE_CONNECTED.

5.17.1.4 Peek

The peek file control operation reads data from a named pipe in either byte stream or
message mode, but does not actually remove the data from the pipe.

The control code for this operation is FSCTL_PIPE_PEEK. The output buffer parameter
specifies the read buffer for the peek operation. The output buffer has the following
format:

typedef struct _FILE_PIPE_PEEK_BUFFER {
ULONG NamedPipeState;
ULONG ReadDataAvailable;
ULONG NumberOfMessages;
ULONG MessageLength;
CHAR Data[];
} FILE_PIPE_PEEK_BUFFER;

FILE_PIPE_PEEK_BUFFER:

NamedPipeState - The current state of the named pipe
(FILE_PIPE_DISCONNECTED_STATE, FILE_PIPE_LISTENING_STATE,
FILE_PIPE_CONNECTED_STATE, or FILE_PIPE_CLOSING_STATE).

ReadDataAvailable - The number of bytes of read data that are available in the
input buffer.

NumberOfMessages - The number of messages that are currently in the named
pipe. If the named pipe is a message pipe, then this field contains the
number of messages. Otherwise, this field contains zero.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 40

MessageLength - The number of bytes that are contained in the first message in
the named pipe. If the named pipe is a message type pipe, then this field
contains the size of the first message. Otherwise, this field contains zero.

Data - A buffer that receives data read from the named pipe. The number of bytes
of data that were read from the named pipe can be calculated from the I/O
status block.

The specified named pipe must be in the connected or closing state in order to read
information from the pipe.

This function is nearly identical to the NtReadFile function for a named pipe;
however, no data is actually removed from the pipe and the operation is always
completed immediately, i.e., it never causes an I/O operation to be queued.

If the specified handle is not open to a named pipe that is in the connected or closing
state, then STATUS_INVALID_PIPE_STATE is returned as the service status.

If the I/O status STATUS_ACCESS_VIOLATION is returned, then part of the output
buffer became inaccessible after it was probed for write access and the I/O status block
contains the number of bytes that were read.

If the I/O status STATUS_END_OF_FILE is returned, then there is no data in the pipe
and the write end of the pipe has been closed.

If the I/O status STATUS_BUFFER_OVERFLOW is returned, then the peek I/O operation
was completed successfully, but the size of the output buffer was not large enough to
hold the entire input message. A full buffer of data is returned; the actual message size
can be determined from information placed in the output buffer. The I/O status block
contains the number of bytes that were read including the named pipe information.

If the I/O status STATUS_SUCCESS is returned, then the peek I/O operation was
completed successfully and the I/O status block contains the number of bytes that were
read including the named pipe information.

5.17.1.5 Query Event Information

The query event information file control operation returns information about each
named pipe that a specified event object is associated with in the current process. It
does not return information about named pipes that are associated with the specified

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 41

event object in other processes. This function can only be executed using a handle that
is open to the named pipe file system itself. This function is only supported by local
named pipes.

The control code for this operation is FSCTL_PIPE_QUERY_EVENT. The input buffer
specifies the handle for the event object that is to be queried. The output buffer
parameter specifies the information buffer for the query operation. Each entry
returned in the output buffer has the following format:

typedef struct _FILE_PIPE_EVENT_BUFFER {
ULONG NamedPipeState;
ULONG EntryType;
ULONG ByteCount;
ULONG KeyValue;
ULONG NumberRequests;
} FILE_PIPE_EVENT_BUFFER;

FILE_PIPE_EVENT_BUFFER:

NamedPipeState - The current state of the named pipe
(FILE_PIPE_DISCONNECTED_STATE, FILE_PIPE_LISTENING_STATE,
FILE_PIPE_CONNECTED_STATE, or FILE_PIPE_CLOSING_STATE).

EntryType - The type of entry (FILE_PIPE_READ_DATA or
FILE_PIPE_WRITE_SPACE).

ByteCount - The number of bytes of read data that are available (entry type is
FILE_PIPE_READ_DATA) or the number of bytes of available write space
(entry type is FILE_PIPE_WRITE_SPACE).

KeyValue - The key value that is associated with the named pipe.

NumberRequests - The number of read I/O requests that are queued (entry type is
FILE_PIPE_WRITE_SPACE) or the number of write I/O requests that are
queued (entry type is FILE_PIPE_READ_DATA) to the opposite end of the
named pipe.

This operation is always completed immediately and never causes an I/O operation to
be queued.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 42

If a named pipe that is associated with the specified event has both read data available
and write space available, then two entries are returned in the output buffer.

If the specified handle is not an event object, then STATUS_INVALID_PARAMETER is
returned as the service status.

If the I/O status STATUS_ACCESS_VIOLATION is returned, then part of the information
buffer became inaccessible after it was probed for write access and the I/O status block
contains the number of bytes of information that were returned.

If the I/O status STATUS_SUCCESS is returned, then the query event I/O operation was
completed successfully and the I/O status block contains the number of bytes of
information that were returned.

5.17.1.6 Transceive

The transceive file control operation performs a write operation followed by a read
operation on a named pipe such that no other operation can occur between the write
and read operations on the corresponding end of the pipe.

The control code for this operation is FSCTL_PIPE_TRANSCEIVE. The output buffer
parameter specifies the read buffer and the input buffer parameter specifies the data
to be written.

The specified named pipe must be in the connected state in order to perform a
transceive operation on the pipe. The named pipe must also be a message pipe, and
the read mode of the named pipe must be message mode. The completion mode is
ignored for the transceive operation and operations are always queued.

If STATUS_PENDING is returned as the service status, then the transceive I/O operation
is pending and its completion must be synchronized using standard NT OS/2
mechanisms. Any other service status indicates that the transceive I/O operation has
already been completed. If a success status is returned, then the I/O status block
contains the I/O completion information. Otherwise, the service status determines any
error that may have occurred.

If the specified handle is not open to a named pipe that is in the connected state, then
STATUS_INVALID_PIPE_STATE is returned as the service status.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 43

If the read mode associated with the specified handle is not message mode, then
STATUS_INVALID_READ_MODE is returned as the service status.

If a read I/O operation is already pending for the inbound side of the specified named
pipe, or there is currently available data in the inbound side of the named pipe, then
STATUS_PIPE_BUSY is returned as the service status.

If the I/O status STATUS_ACCESS_VIOLATION is returned, then part of the read buffer
or the write buffer became inaccessible after it was probed for write access (read
buffer) or read access (write buffer) and the I/O status block contains the number of
bytes that were read.

If the I/O status STATUS_BUFFER_OVERFLOW is returned, then the transceive I/O
operation was completed successfully, but the size of the output buffer was not large
enough to hold the entire input message. A full buffer of data is returned; additional
data can be read from the message using the NtReadFile function. The I/O status block
contains the number of bytes that were read.

If the I/O status STATUS_SUCCESS is returned, then the transceive I/O operation was
completed successfully and the I/O status block contains the number of bytes that were
read.

If an event is associated with the opposite end of the specified named pipe, then the
event is set to the Signaled state when the write part of the transceive operation is
completed and when the read part of the transceive operation is completed. Readers
and writers can use this information to synchronize their access to the named pipe.

5.17.1.7 Wait For Named Pipe

The wait for named pipe file control operation waits for an instance of a named pipe
with a specified name to attain a state of listening. This function can only be executed
using a handle that is open to the named pipe file system root directory (i.e., "\Device\
NamedPipe\") or redirector (i.e., "\Device\LanmanRedirector").

The control code for this operation is FSCTL_PIPE_WAIT. The input buffer parameter
specifies the device relative name of the named pipe, and an optional timeout value.
The input buffer has the following format:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 44

typedef struct _FILE_PIPE_WAIT_FOR_BUFFER {
TIME Timeout;
ULONG NameLength;
BOOLEAN TimeoutSpecified;
CHAR Name[]
} FILE_PIPE_WAIT_FOR_BUFFER;

FILE_PIPE_WAIT_FOR_BUFFER:

Timeout - Supplies a new timeout value is use other than the default timeout for
the named pipe. This value is only read if TimeoutSpecified is TRUE. A
minimum large integer value (i.e., 0x8000000000000000) means to wait
indefinitely.

NameLength - Supplies the length of the name of the named pipe found in this
buffer.

TimeoutSpecified - Indicates if an overriding timeout value has been specified.

Name - Supplies the name of the named pipe. The name does not include the "\
Device\NamedPipe\" or "\Device\LanmanRedirector\" prefix.

If an instance of a named pipe with the specified name is currently in the listening
state, then the wait for named pipe I/O function is completed with a status of
STATUS_SUCCESS and STATUS_SUCCESS is returned as the service status. Otherwise,
the wait for named pipe I/O request is placed in the wait queue of the specified named
pipe and STATUS_PENDING is returned as the service status.

If an instance of the specified named pipe does not attain a listening state within the
specified timeout period (either the optional one supplied in this function or the
default timeout period specified when the original instance of the named pipe was
created). then the wait for named pipe I/O request is completed with a status of
STATUS_PIPE_WAIT_TIMEOUT.

5.17.1.8 Impersonate

The impersonate file control operation allows the server end of the pipe to
impersonate the client end. Whenever this function is called the named pipe file
system changes the caller's thread to start impersonating the context of the last

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 45

message read from the pipe. Only the server end of the pipe is allowed to invoke this
function. This function is only supported by local named pipes.

The control code for this operation is FSCTL_PIPE_IMPERSONATE. The output and
input parameter buffers are not used.

If the specified handle is not open to the server end of a named pipe, then
STATUS_ILLEGAL_FUNCTION is returned as the service status.

If the named pipe associated with the specified handle is in the disconnected state,
then STATUS_PIPE_DISCONNTECTED is returned as the service status.

If a read operation has never been completed to the server end of the named pipe,
then STATUS_CANNOT_IMPERSONATE is returned as the service status.

If the impersonation is successful then the I/O function is completed with a status of
STATUS_SUCCESS and STATUS_SUCCESS is returned as the service status.

5.17.2 Internal File Control Operations

Internal file control operations can only be executed by components that execute in
kernel mode and directly build and submit I/O requests to the named pipe file system.
These functions are only supported by local named pipes.

5.17.2.1 Internal Read

The internal read file control operation provides the capability to perform a read
operation directly into a system buffer. No quota is charged nor are any buffers
allocated by the named pipe file system.

The control code for this operation is FSCTL_PIPE_INTERNAL_READ. The output buffer
parameter specifies the system buffer into which information is to be read

5.17.2.2 Internal Write

The internal write file control operation provides the capability to perform a write
operation directly from a system buffer. No quota is charged nor are any buffers
allocated by the named pipe file system.

The control code for this operation is FSCTL_PIPE_INTERNAL_WRITE. The input buffer
parameter specifies the system buffer from which information is to be written.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 46

5.17.2.3 Internal Transceive

The internal transceive control operation provides the capability to perform a
transceive operation directly into a system buffer. No quota is charged nor are any
buffers allocated by the named pipe file system.

The control code for this operation is FSCTL_PIPE_INTERNAL_TRANSCIEVE. The input
buffer parameter specifies the buffer from which information is to be written, while
the output buffer parameter specifies the system buffer into which information is to be
read.

5.18 Flush Buffers

The NtFlushBuffersFile function can be used to wait until all currently buffered write
data is read from the opposite end of the specified named pipe.

5.19 Set New File Size

This function is not supported by named pipes.

5.20 Cancel I/O Operation

The NtCancelIoFile function can be used to cancel all I/O operations that were issued
by the subject thread for the specified named pipe. Both read and write operations
initiated by the subject thread are canceled.

5.21 Device Control Operations

No device control operations are supported by the named pipe file system.

5.22 Close Handle

The NtClose function can be used to close a handle to the specified named pipe.

If the specified handle is the last handle that is open to the corresponding end of the
specified named pipe, then the state of the named pipe is set to closing. Read and write
operations that are pending for the inbound side of the named pipe are completed
with an I/O status of STATUS_PIPE_CLOSED. Write operations that are pending for the
outbound side of the named pipe are allowed to complete and cause the close
operation to remain pending until the opposite end of the named pipe is closed,
disconnected, or the information is read from the pipe.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 47

If an event is associated with the opposite end of the specified named pipe, then the
event is set to the Signaled state. Readers and writers can use this information to
synchronize their access to the named pipe.

6. OS/2 API Emulation

The following subsections discuss the emulation of the OS/2 named pipe facilities using
the capabilities provided by NT OS/2. Only those OS/2 functions which require special
handling with respect to named pipes are included.

6.1 DosCallNmPipe

This OS/2 API combines the function of an open, write, read, and a close of a named
pipe.

This service can be emulated with the NtOpen, NtFsControlFile
(FSCTL_PIPE_TRANSCEIVE), and NtClose services. There is no NT OS/2 facility that will
perform this function in a single operation.

6.2 DosConnectNmPipe

This OS/2 API causes an instance of a named pipe that is in the disconnected state to
transition to the listening state and continues the execution of any clients that are
waiting for an available instance of the specified named pipe. This function can only
be executed using a handle that is associated with the server end of a named pipe.

This API can be emulated with the NtFsControlFile service by specifying a function
code of FSCTL_PIPE_LISTEN. The OS/2 subsystem or client DLL issues the listen I/O
request. If the completion mode associated with the specified named pipe handle is
queue operations and the request cannot be immediately satisfied, then
STATUS_PENDING is returned. For this case, the OS/2 subsystem or client DLL must
wait for the I/O operation to complete.

6.3 DosDisconnectNmPipe

This OS/2 API causes an instance of a named pipe to enter the disconnected state. All
data in the input and output buffers of the pipe are discarded and any outstanding
read or write I/O requests are completed with an error status. This function can only
be executed using a handle that is associated with the server end of a named pipe.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 48

This API can be emulated with the NtFsControlFile service by specifying a function
code of FSCTL_PIPE_DISCONNECT. The OS/2 subsystem or client DLL issues the
disconnect I/O request.

6.4 DosMakeNmPipe

This OS/2 API creates an instance of a named pipe and opens a server side handle to
the newly created instance. If the newly created instance is the first instance of the
named pipe, then the attributes of the named pipe are also defined.

This API can be emulated with the NtCreateNamedPipeFile service.

The OS/2 inheritance bit of the open mode is the same as the NT OS/2 handle
attributes field of the object attributes parameter.

The OS/2 write-behind bit of the open mode is the opposite of the NT OS/2
FILE_WRITE_THROUGH flag of the create options parameter. Therefore, a particular
OS/2-compatible behavior can be specified with the NT OS/2 parameter.

The OS/2 access bits of the open mode are the same as the NT OS/2 desired access
parameter.

The NT OS/2 share access flags are used to determine the configuration of the named
pipe (i.e., full duplex or simplex).

The OS/2 wait bit of the pipe mode is the same as the NT OS/2 completion mode
parameter.

The OS/2 read bit of the pipe mode is the same as the NT OS/2 read mode parameter.

The OS/2 pipe type bit of the pipe mode is the same as the NT OS/2 pipe type
parameter.

The OS/2 maximum instances field of the pipe mode is the same as the NT OS/2
maximum instances parameter.

The OS/2 outbound buffer size is the same as the NT OS/2 outbound quota parameter.

The OS/2 inbound buffer size is the same as the NT OS/2 inbound quota parameter.

The OS/2 default timeout is the same as the NT OS/2 default timeout parameter.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 49

6.5 DosPeekNmPipe

This OS/2 API allows information to be read from a named pipe without actually
removing the data from the pipe.

This API can be emulated with NtFsControlFile service by specifying a function code
of FSCTL_PIPE_PEEK. The OS/2 subsystem or client DLL issues the peek I/O request.
The request is completed immediately and the information returned in the output
buffer and I/O status block can be used to generate the output values required by the
OS/2 API.

6.6 DosQNmPHandState

This OS/2 API returns information about the instance of a named pipe that is open to
the specified handle.

This API can be emulated with the NtQueryInformationFile service by specifying the
FilePipeQueryInformation information class.

6.7 DosQNmPipeInfo

This OS/2 API returns information about the instance of a named pipe that is open to
the specified handle.

This API can be emulated with the NtQueryInformationFile service by specifying the
FilePipeQueryInformation and FileNameInformation information classes.

6.8 DosQNmPipeSemState

This OS/2 API returns information about all named pipes that are associated with a
specified semaphore handle.

This API can be emulated with NtFsControlFile service by specifying a function code
of FSCTL_PIPE_QUERY_EVENT. The OS/2 subsystem or client DLL issues the query
event I/O request. The request is completed immediately and the information returned
in the output buffer and I/O status block can be used to generate the output values
required by the OS/2 API.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 50

6.9 DosRawReadNmPipe

This OS/2 API provides the capability to read all the available data, including message
headers, from a named pipe.

This is an undocumented function in OS/2 and will not be implemented as a user-
visible function by the OS/2 subsystem.

There seems to be no real use for this function.

6.10 DosRawWriteNmPipe

This OS/2 API provides the capability to write data, including message headers, to a
named pipe.

This is an undocumented function in OS/2 and will not be implemented as a user-
visible function by the OS/2 subsystem.

The only known user-level need for this function is to enable the writing of a zero
length message to a message pipe. This capability will be provided in a different
manner by the NT OS/2 name pipe file system.

6.11 DosSetNmPHandState

This OS/2 API sets information about the instance of a named pipe that is open to the
specified handle.

This API can be emulated with the NtSetInformationFile service by specifying the
FilePipeSetInformation information class.

6.12 DosSetNmPipeSem

This API associates a semaphore and key value with a named pipe.

This API can be emulated with NtFsControlFile service by specifying a function code
of FSCTL_PIPE_ASSIGN_EVENT.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Named Pipe Specification 51

6.13 DosTransactNmPipe

This OS/2 API combines the function of a write operation and a read operation on a
named pipe. The transact operation is performed on the named pipe such that no
other operation can occur between the write and read operations.

This API can be emulated with the NtFsControlFile service by specifying a function
code of FSCTL_PIPE_TRANSCEIVE and then waiting for the I/O request to complete.

6.14 DosWaitNmPipe

This OS/2 API provides the ability for a client to wait until an instance of a named pipe
with a specified name attains a state of listening.

This API can be emulated with the NtFsControlFile service by specifying a function
code of FSCTL_PIPE_WAIT and then waiting for the I/O request to complete.

The I/O request will automatically be completed if the default timeout interval that
was specified when the original instance of the named pipe was created is exceeded. If
a timeout value is specified by the user, then the overriding timeout period should be
used in the FSCTL pipe wait call.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Revision History:

Original Draft, February 16, 1990

Revision 1.1, March 8, 1990

1. Incorporate technical and editorial changes from internal review.

Revision 1.2, August 14, 1990

1. Removed directory hierarchy.

2. Removed raw mode read and write.

3. Added optionally timeout parameter to wait for named pipe.

4. Removed all references to EAs and symbolic links.

5. Minor editoral changes.

Revision 1.3, September 27, 1990

1. Removed owner information query/set operation.

2. Changed unbuffered read/write to internal read/write.

3. Added internal transceive operation.

4. Minor editoral changes.

Revision 1.4, October 17, 1990

1. Added impersonation.

Revision 1.5, January 23, 1991

1. Clarify that NtCreateNamedPipeFile and directory query are for local pipes
only.

2. In query Pipe information state which fields remote pipes returns as
MAXULONG.

3. Remove FILE_WRITE_THROUGH option in NtCreateNamedPipeFile.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

4. Change wait for named pipe to take a handle to the root directory and not
the file system itself.

5. Add remote named pipes.

	1. Introduction
	2. Goals
	3. Overview of OS/2 Named Pipes
	4. Overview of NT OS/2 Named Pipes
	4.1 Implementation Alternatives
	4.2 Named Pipe Directories
	4.3 Read/Write Buffering Strategy
	4.3.1 OS/2 Read/Write Buffering Strategy
	4.3.2 NT OS/2 Read/Write Buffering Strategy

	4.4 Internal Read/Write Operations
	4.4.1 Special Read/Write Buffering

	4.5 Named Pipe States

	5. NT OS/2 Named Pipe I/O Operations
	5.1 Create Named Pipe
	5.2 Create File
	5.3 Open File
	5.4 Read File
	5.5 Write File
	5.6 Read Terminal File
	5.7 Query Directory Information
	5.8 Notify Change Directory
	5.9 Query File Information
	5.9.1 Basic Information
	5.9.2 Standard Information
	5.9.3 Internal Information
	5.9.4 Extended Attribute Information
	5.9.5 Access Information
	5.9.6 Name Information
	5.9.7 Position Information
	5.9.8 Mode Information
	5.9.9 Alignment Information
	5.9.10 All Information
	5.9.11 Pipe Information
	5.9.12 Local Pipe Information
	5.9.13 Remote Pipe Information

	5.10 Set File Information
	5.10.1 Basic Information
	5.10.2 Disposition Information
	5.10.3 Link Information
	5.10.4 Position Information
	5.10.5 Mode Information
	5.10.6 Pipe Information
	5.10.7 Remote Pipe Information

	5.11 Query Extended Attributes
	5.12 Set Extended Attributes
	5.13 Lock Byte Range
	5.14 Unlock Byte Range
	5.15 Query Volume Information
	5.16 Set Volume Information
	5.17 File Control Operations
	5.17.1 External File Control Operations
	5.17.1.1 Assign Event
	5.17.1.2 Disconnect
	5.17.1.3 Listen
	5.17.1.4 Peek
	5.17.1.5 Query Event Information
	5.17.1.6 Transceive
	5.17.1.7 Wait For Named Pipe
	5.17.1.8 Impersonate

	5.17.2 Internal File Control Operations
	5.17.2.1 Internal Read
	5.17.2.2 Internal Write
	5.17.2.3 Internal Transceive

	5.18 Flush Buffers
	5.19 Set New File Size
	5.20 Cancel I/O Operation
	5.21 Device Control Operations
	5.22 Close Handle

	6. OS/2 API Emulation
	6.1 DosCallNmPipe
	6.2 DosConnectNmPipe
	6.3 DosDisconnectNmPipe
	6.4 DosMakeNmPipe
	6.5 DosPeekNmPipe
	6.6 DosQNmPHandState
	6.7 DosQNmPipeInfo
	6.8 DosQNmPipeSemState
	6.9 DosRawReadNmPipe
	6.10 DosRawWriteNmPipe
	6.11 DosSetNmPHandState
	6.12 DosSetNmPipeSem
	6.13 DosTransactNmPipe
	6.14 DosWaitNmPipe

