
Portable Systems Group

NT OS/2 Object Management Specification

Author: Steven R. Wood

Revision 1.6, May 24, 1991
Original Draft February 17, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 1

1. Overview... 1
1.1 What is an Object?... 1
1.2 Object Management Goals... 1
1.3 Object Data Structures.. 1
1.4 Object Header... 1
1.5 Object Types.. 2
1.6 Object Handles.. 3
1.7 Object Attributes Structure... 4
1.8 Resource Quotas and Objects.. 5
1.9 Object Retention... 6
1.10 Exclusive Object Handles.. 6
1.11 Object Name Space.. 7
1.12 Preventing Deadlock... 8

2. Object Executive APIs.. 9
2.1 Creating Object Types... 9
2.2 Object Type Procedure Templates... 11

2.2.1 Object Dump Procedure... 12
2.2.2 Object Open Procedure.. 12
2.2.3 Object Close Procedure... 13
2.2.4 Object Delete Procedure... 14
2.2.5 Object Parse Procedure.. 15
2.2.6 Object Security Procedure... 17

2.3 Creating An Object... 18
2.4 Creating an Instance of an Object... 20
2.5 Open Object by Name... 23
2.6 Open Object by Pointer.. 24
2.7 Referencing An Object.. 26
2.8 Reference Object by Name.. 27
2.9 Reference Object by Pointer.. 29
2.10 Making an Object Temporary.. 30
2.11 Dereferencing an Object.. 30
2.12 Object Management during Process Creation and Deletion.......... 31

2.12.1 Process Creation Hook... 31
2.12.2 Process Deletion Hook.. 31

2.13 Dump Object Support... 32
2.14 Check Traverse Access... 34
2.15 Check Create Instance access... 35

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 2

2.16 Check Create Object Access... 36
2.17 Check Implicit Object Access.. 37
2.18 Checking Access for Object Reference... 38
2.19 Locking a security descriptor... 39
2.20 Unlocking a security descriptor... 39
2.21 Query an object's Security Descriptor field.. 39
2.22 Set an object's Security Descriptor field.. 40
2.23 Query an object's Security information... 41
2.24 Release an object's Security information.. 41
2.25 Set Security Quota Charged for object... 42
2.26 Validate security information against quota..................................... 43

3. Object System Services.. 43
3.1 Create Directory Object.. 43
3.2 Open Object Directory.. 45
3.3 Query Object Directory... 46
3.4 Create Symbolic Link.. 48
3.5 Open Symbolic Link.. 49
3.6 Query Symbolic Link... 50
3.7 Wait For Single Object.. 50
3.8 Wait for Multiple Objects... 51
3.9 Duplicate Handle.. 53
3.10 Close Handle.. 54
3.11 Making an Object Temporary.. 55
3.12 Query Object... 56
3.13 Set Security Descriptor for an Object... 58
3.14 Query Security Descriptor for an Object... 59

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 1

1. Overview

This specification describes the Object Management for the NT OS/2 system. Object
Management is provided by a set of routines that are available within the NT OS/2
executive and invoked from kernel mode. This specification also describes generic
object management user level NT routines and support for directories.

1.1 What is an Object?

An object is an opaque data structure that defines a protected entity that is
implemented and manipulated by the operating system. A particular object type is
described by the set of operations that may be performed upon it (wait, create, clear,
set, cancel,...) and its relationship to other objects. All objects have the same standard
set of rules for creation, deletion, protection, access, management, and naming.

1.2 Object Management Goals

o Provide an extensible, well defined mechanism for the definition and
manipulation of executive data structures.

o Provide uniform rules for object retention. This is especially important in a
multiprocessor system.

o Provide uniform security and protection that allows certification at C2 and
beyond without modification.

o Provide a mechanism to add new object types to the system without modifying
existing system code. This means that only the object type specific routines
should have knowledge of the internal structure of a particular object type.

o Provide orthogonal specification of APIs which operate on objects.

o Provide attributes on objects to support POSIX compatibility.

o Provide a naming hierarchy which is integrated with the file system and mimics
the OS/2 and POSIX file system directory hierarchy.

1.3 Object Data Structures

An instance of an object type is represented by a data structure which contains a
standard object header and an object type specific object body. The object

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 2

management routines operate on the object header, while the object type's specific
routines operate on the object body.

1.4 Object Header

The object header contains information used by the object management routines to
manipulate the object. The following items are maintained in the object header:

o Pointer to the name of the object, if any.

o Pointer to the directory object which contains this object's name, if any.

o Pointer to the SecurityDescriptor for the object, if any.

o AccessMode of the object, either KernelMode only or UserMode and
KernelMode.

o Pointer to the Owner Process of the object for exclusive objects, if any.

o Retention counts for the object.

o Pointer to an optional handle count data base, that maintains a per process
handle count for a given object.

o Pointer to the object type structure that defines the type of the object.

o Permanent / temporary attribute.

o Paged and nonpaged pool quota charges associated with the object.

o Structure control linking all objects of the same type together.

1.5 Object Types

Every object has an object type. The object type is defined by an Object Type
Descriptor structure. An object type is nothing more than an object whose object body
contains the following information:

o Type specific mutex.

o Structure control linking all objects of the same type together.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 3

o Dispatcher object offset.

o Pool type to use when allocating space for objects of this type.

o Invalid object attribute bits.

o Mapping vector to map generic access bits into standard and/or specific access
bits.

o Valid access bits.

o Pointer to a type specific dump procedure, if any.

o Pointer to a type specific delete procedure, if any.

o Pointer to a type specific open procedure, if any.

o Pointer to a type specific close procedure, if any.

o Pointer to a type specific parse procedure, if any.

o Pointer to a type specific security procedure, if any.

These items are used to manage type specific attributes of each object. The type
specific mutex is acquired whenever an object of that type is being created, deleted, or
having its security descriptor examined or modified. This prevents race conditions
between object creation and deletion.

The SecurityDescriptor associated with an object type descriptor is examined for
OBJECT_TYPE_CREATE access by the ObCreateObject function every time an object of
the corresponding object type is created. This provides a mechanism to grant or deny
the ability to create objects of a specific type on an individual identifier basis using the
SecurityDescriptor associated with the object type descriptor structure.

The name is used to uniquely identify the type. All type names are stored in the \
ObjectTypes object directory.

The pool type determines whether the object header and object body are allocated
from paged pool or non-paged pool.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 4

The dispatcher offset is used to implement a generic wait function. Waiting on an
object waits on the offset within the object body specified by the dispatcher offset.
This allows a program to wait on multiple objects of different types or a single object
of unknown type, without having to know the object type.

The six type specific procedures are called whenever a type specific action must be
performed from within the context of the object manager.

1.6 Object Handles

An object handle is a 32-bit opaque pointer to an object. There may be more than one
handle for a given object, as a result of sharing via inheritance or naming. Associated
with each handle is a pointer to the object, a granted access mask that was computed
at the time the handle was created and handle attributes such as where the handle
should be inherited on child process creation.

Object handles are created by inserting an object into an object table. An object table
consists of an array of object table entries. An object handle is an index into an object
table to the object table entry for that handle. The object table entry contains the
information associated with the handle (i.e. the pointer to the object, the granted
access mask and the handle attributes). There is an object table associated with each
process. Thus handles are process specific, and meaningless outside of the context in
which the handle was created. All object handles associated with a process are
automatically "closed" upon that process terminating.

Each object table has a mutex associated with it. This mutex is acquired any time the
object table is examined or modified.

The low order 2 bits of a 32-bit object handle are set to zero by the system when a
handle is created and are ignored by all system services that accept a handle. This
allows applications to encode application specific type information in the low order
two bits.

In the debugging version of the system, part of each 32-bit object handle is reserved
for a serial number that is also stored in the associated object table entry. When an
object handle is used to reference an object, the serial number in the 32-bit handle is
compared with that in the object table entry and an error is returned if they don't
match. This will catch cases when an old handle is reused inadvertantly.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 5

When creating a handle to an object, the caller may specify a DesiredAccess parameter.
The Object Manager probes the security descriptor associated with an object with the
DesiredAccess parameter. If all requested access bits are allowed by the security
descriptor then the access is granted, and the DesiredAccess parameter is stored in the
object table entry as the granted access mask.

Some objects may require a more sophisticated access control scheme than simply
checking the bits in the security descriptor. For example, a particular kind of access to
an object may be granted by being given explicit permission via the security
descriptor, or by having a privilege, or by having a particular kind of access to the
object's container. In order to accomodate access schemes such as these, the caller
may create an AccessState structure (via SeCreateAccessState). An AccessState
structure contains the desired access mask, a record of the currently granted access
mask, and room for a set of privileges. The caller performs whatever kind of access
checking is necessary to suit it's needs, clearing bits in the imbedded DesiredAccess
mask as appropriate. When all of the object specific logic is complete, the structure is
then passed to the object manager for whatever security processing remains.

When referencing an object via an object handle, the caller also specifies a
DesiredAccess parameter. However, in this case, the test for access is nothing more
than a bit test against the granted access mask stored in the associated object table
entry. Thus object handle creation encapsulates the security check for NT OS/2. Please
refer to the Local Security chapter for a description of the bits defined for
DesiredAccess, and for a description of the AccessState structure.

1.7 Object Attributes Structure

When a handle to an object is created, the object is specified with an Object Attributes
structure. The structure identifies the object by name, specifies attributes about the
object and/or handle being created and specifies an optional security descriptor to
associate with the created object.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 6

typedef struct _OBJECT_ATTRIBUTES {
ULONG Length;
HANDLE RootDirectory;
PSTRING ObjectName;
ULONG Attributes;
PVOID SecurityDescriptor;
PVOID SecurityQualityOfService; \par} OBJECT_ATTRIBUTES,

*typedefOBJECT_ATTRIBUTES

OBJECT_ATTRIBUTES Structure:

Length ——Specifies the length of this structure. Must be set to
sizeof(OBJECT_ATTRIBUTES).

RootDirectory ——An optional handle to a directory object that specifies where to
start the name lookup. If this field is specified, then the ObjectName field
must also be specified.

If this field is not specified and the ObjectName field is specified, then the
name lookup begins in the root directory of the object name space.

ObjectName ——A pointer to an object name string. The form of the name is:

[\name...\name]\object_name

The name must begin with a leading path separator character (\) if the
RootDirectory field is NOT specified. If the RootDirectory field is
specified, then it must NOT begin with a leading path separator as the
name is relative to that directory.

Attributes ——A set of flags that control attributes about the object and the handle.

Attributes Flags:

OBJ_INHERIT ——The open handle is to be inherited by child process's
whenever the calling process creates a new process.

OBJ_EXCLUSIVE ——The object is to be accessed exclusively by the current
process. Invalid if OBJ_INHERIT also specified.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 7

OBJ_PERMANENT ——The object is to be created as a permanent object.

OBJ_CASE_INSENSITIVE ——Indicates that the name lookup should be
performed in a manner which ignores the case of ObjectName rather
than performing an exact match search.

OBJ_OPENIF ——Return a handle to an already existing object if an object by
the same name already exists. If the name does not exist, and the call is
a create, then create the name.

SecurityDescriptor ——An optional pointer to a security descriptor to associate with
this object. See the Local Security Specification for a description of a
Security Descriptor. If an object is created without a security descriptor,
then access to the object will be uncontrolled.

SecurityQualityOfService ——An optional pointer to the security quality of service
parameters specified by the client for this communication session.

1.8 Resource Quotas and Objects

Objects are allocated from system memory, either paged or nonpaged pool. When an
object is created the resource charges are specified and stored in the object's header.
When a process creates a handle for an object, the resource charges stored in the
object's header are levied against the process. This occurs whenever any handle is
created to an object. So if process A creates an object and a handle to go with it, it gets
charged quota for that object. If process A then creates process B, such that process B
inherits a handle to the object, then process B is also charged quota for the same
object. The same is true if process A creates a second handle to the same object.

The resource charge is removed whenever a handle is closed. The resource charge
includes the space for the object header, the object body, the handle table entry, the
object name, if any and the security descriptor, if any. If there is no security
descriptor, then a fixed amount is charged (256 bytes) in case the process later
attaches a security descriptor to the object with the NtSetSecurityObject system
service.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 8

1.9 Object Retention

Once an instance of an object has been created, two fields and the permanent flag
contained within the object's header, control retention. The fields are named
HandleCount and PointerCount.

The HandleCount represents the number of references to this object from various
object tables. This count is incremented each time an object is inserted into an object
table. It is decremented each time a handle is closed, either with NtClose or as a result
of process termination. If this count becomes zero, a check is made to determine if an
attempt should be made to delete the object's name. If the permanent flag in the
object's header is false and the object has a name, then an attempt is made to delete
the object's name by conditionally removing its directory entry. Conditional deletion
means that the necessary mutexes are released, the directory mutex is acquired, the
directory entry is located and the HandleCount is checked again. If the count is still
zero, the object's name is deleted. This is done because the object was declared as
temporary and the last handle to the object has been closed.

Once the conditional deletion of the object's name has occurred, the PointerCount for
the object is decremented.

The PointerCount represents the number of pointers in existence which refer to the
object. When an object is first created with the ObCreateObject function, this count is
set to one to account for the reference returned to the caller. In addition, if the object
has a name, the count is set to two to account for the pointer from the directory object
which contains the name. This count is incremented for each object table that refers
to the object.

The PointerCount is also updated as the object is referenced and dereferenced. When
the PointerCount is decremented to zero, the object is deleted as there are no pointers
outstanding. The PointerCount is never allowed to be decremented below the value of
the HandleCount.

1.10 Exclusive Object Handles

Exclusive object handles provide a method of obtaining exclusive access to a system
wide resource such as a tape drive. The semantics provided by exclusive handles
cannot be provided by access protection because access protection determines who
can access an object, while an exclusive handle essentially "reserves" an object.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 9

Exclusive object handles are provided by specifying OBJ_EXCLUSIVE in the object
attributes structure.

Exclusive object creation has the following rules:

o Any instance of an object whose type allows exclusion, may be opened or
created for exclusion provided the HandleCount is zero.

o Any instance of an object which has a non-zero HandleCount and is not marked
as exclusive cannot be opened for exclusion.

o Any instance of an object which has a non-zero HandleCount and is marked as
exclusive can only be opened for exclusion from the owning process. This
allows the owning process to open an exclusive object multiple times.

Finally, exclusive object handles may not be inherited by other processes. This means
that an error will be returned if both OBJ_EXCLUSIVE and OBJ_INHERIT are specified
in the object attributes structure.

1.11 Object Name Space

The Object Manager manages the global name space for NT OS/2. This name space is
used to access all named objects that are contained in the local machine environment.
Some of the objects that can have names are:

directory objects

object type objects

symbolic link objects

semaphore and event objects

process and thread objects

section and segment objects

port objects

device objects

file system objects

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 10

file objects

The object name space is modelled after OS/2 file naming convention, where directory
names in a path are separated by a backslash (\). Case insensitivity is optional
whenever a name lookup is performed. Case is always preserved when a name is
inserted into a directory.

During system initialization, the Object Manager creates the root directory of the
object name space. The NtCreateDirectoryObject system service can be used to
create other directories within the object name space. The ObInsertObject function
can be used to create object names within a directory object.

The entire object name space is guarded by a single mutex. This mutex is acquired
whenever an portion of the directory structure is examined or modified.

A name lookup occurs whenever a new object is being inserted or an existing object is
being opened by name. The name lookup is accomplished by searching in the root
directory for the first name in the path. If no matching name is found, an error is
returned.

The root directory defaults to the actual root directory of the global name space.
However, then specifying an object name, a root directory handle may also be
specified. This is the only form of relative name lookup supported by the Object
Manager.

If a matching name is found and there are more tokens left in the name string, the
corresponding object header is examined. If the object is not a directory object, its
corresponding object type structure is examined for a parse routine. If no parse
routine exists, an error status code is returned. Otherwise, the directory mutex is
released, and the parse routine is called.

The parse routine can return one of three values: STATUS_SUCCESS to indicate that the
object was found, STATUS_REPARSE to indicate that a reparse should occur or an error
status code to indicate that the name was not found or invalid.

The parse procedure is passed pointers to both the complete name string and the
remaining portion of the name string. If the parse routine returns reparse it should
deallocate the original string and allocate the new string to parse, or modify the
original string.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 11

After the Object Manager's system initialization, the object name space looks like:

\ - Root Directory
\ObjectTypes - Object Type Name Directory
\ObjectTypes\Type - Type Object Type
\ObjectTypes\Directory - Directory Object Type
\ObjectTypes\SymbolicLink - Symbolic Link Object Type

Other components of system initialization will create additional type, directory and
object names within the object name space.

1.12 Preventing Deadlock

To detect deadlock, the kernel associates a level number with each mutex. If an
attempt is made to acquire a mutex with a level number less than a currently owned
mutex a system bugcheck occurs. Associated with the Object Management routines
are three levels of mutex.

o The lowest level is the object table mutex.

o The next higher level is the directory mutex.

o The highest level is the type specific mutex.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 12

2. Object Executive APIs

2.1 Creating Object Types

New object types can be added to the system with the ObCreateObjectType function:

NTSTATUS
ObCreateObjectType(

IN PSTRING TypeName,
IN POBJECT_TYPE_INITIALIZER ObjectTypeInitializer,
IN PULONG DispatcherObjectOffset OPTIONAL,
IN PSECURITY_DESCRIPTOR SecurityDescriptor OPTIONAL,
OUT POBJECT_TYPE *ObjectType
)

Parameters:

TypeName ——A required pointer to a name string. This name must not contain
the path separator character (OBJ_NAME_PATH_SEPARATOR), otherwise the
STATUS_INVALID_OBJECT_NAME error status code is returned.

ObjectTypeInitializer ——A required pointer to a structure that specifies type
specific information about the new object type being created.

OBJECT_TYPE_INITIALIZER Structure:

ULONG Length ——Specifies the size of this data structure in bytes.

ULONG InvalidAttributes ——Specifies object attributes that are invalid for
objects of this type. An attempt to specify any these attributes when
creating an object of this type will result in the
STATUS_INVALID_PARAMETER error status code being returned. This
field may not specify any bits that are not contained in
OBJ_VALID_ATTRIBUTES.

GENERIC_MAPPING GenericMapping ——Specifies the mapping of the
GENERIC_READ, GENERIC_WRITE and GENERIC_EXECUTE access rights
for this object type.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 13

ULONG ValidAccessMask ——Specifies the valid access bits that may be
specified with the DesiredAccess parameter when creating a handle to
an object of this type. The mask is only used to remove unsupported
access bits and does not cause an error if an unsupported access bit is
specified. Thus specifying a DesiredAccess of -1 (all ones) will result in
requesting a DesiredAccess equal to the ValidAccessMask for the type of
object being created.

POOL_TYPE PoolType ——Specifies the type of pool, one of NonPagedPool or
PagedPool. This parameter must specify NonPagedPool if the
DispatcherObjectOffset parameter is specified. The
STATUS_INVALID_PARAMETER error status code is returned if the later
condition is not met.

BOOLEAN MaintainHandleCount ——Specifies whether a handle count data
base should be maintained. If TRUE, then for each object of this type, a
data base is kept that keeps track of how many handles to that object
each process currently has. This allows the Open/Close object type
procedures to implement special logic when the first handle to an
object is created and when the last handle to an object within a process
is closed. If this field is TRUE then at least one of the OpenProcedure or
CloseProcedure fields must be non-NULL, otherwise the
STATUS_INVALID_PARAMETER error status code is returned.

OB_DUMP_METHOD DumpProcedure ——An optional pointer to the
procedure to invoke on object dumping. This procedure is useful for
the debugging version of NT OS/2 to allow a uniform way to dump the
contents of an object in human readable form.

If this field is NULL, no routine is called when an object is dumped.

OB_OPEN_METHOD OpenProcedure ——An optional pointer to the procedure
to invoke whenever a handle to an object of this type is created.

If this field is NULL, no routine is called when a handle to an object of
this type is created.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 14

OB_CLOSE_METHOD CloseProcedure ——An optional pointer to the
procedure to invoke whenever a handle to an object of this type is
destroyed.

If this field is NULL, no routine is called when a handle to an object of
this type is destroyed.

OB_DELETE_METHOD DeleteProcedure ——An optional pointer to the
procedure to invoke on object deletion. This procedure is responsible
for deallocating any pool which was allocated by object type specific
routines and performing any "cleanup" operations. When the
DeleteProcedure returns, the object management routines deallocate
the object structure, unlinks the object from its object type structure,
etc.

If this field is NULL, no routine is called before deallocating the object
structure.

OB_PARSE_METHOD ParseProcedure ——An optional pointer to the parse
routine for this object type. If, during name parsing, an object of this
type is encountered and additional parse tokens exist, this routine is
invoked.

OB_SECURITY_METHOD SecurityProcedure ——An optional pointer to the
procedure to invoke whenever the SecurityDescriptor associated with
an object is set or queried via the NtSetSecurityObject and
NtQuerySecurityObject system services. Note that another procedure
(SeAssignSecurity) and not this procedure is used to insert an original
security descriptor on an object.

If this field is NULL, then the SeDefaultObjectMethod will be called
instead.

SecurityDescriptor ——An optional pointer to a Security Descriptor. This descriptor
will be attached to the type object. Any attempt to create an object of this
type will require the OBJECT_TYPE_CREATE access right.

DispatcherObjectOffset ——An optional pointer to the offset into the object body of
a kernel dispatcher object for wait operations. If this value is not specified

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 15

then an object of this type cannot be used as an argument to the
NtWaitForSingleObject and NtWaitForMultipleObjects system services.

ObjectType ——A pointer to a variable which receives the location of the object
type structure created.

Return Value:

Status code that indicates whether or not the operation was successful.

The create object type function creates an object type structure. This function returns
a pointer to the object type structure via the ObjectType parameter.

The TypeName is inserted into the \ObjectTypes object directory. If the name already
exists, then this function will return an error.

This function returns one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_INVALID_PARAMETER ——one of the parameters was invalid.

o STATUS_OBJECT_NAME_INVALID ——the type name string contained a path
separator character (OBJ_NAME_PATH_SEPARATOR).

o STATUS_NO_MEMORY ——unable to allocate NonPagedPool for the object type
structure.

2.2 Object Type Procedure Templates

This section describes the six different procedure types that can be associated with an
object type. These procedures are called whenever certain actions are performed
upon an object whose object type structure contains the addresses of these procedures.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 16

2.2.1 Object Dump Procedure

VOID
typedef
(*OB_DUMP_METHOD)(

IN PVOID Object,
IN POB_DUMP_CONTROL DumpControl OPTIONAL
)

Parameters:

Object ——A pointer to the object's body.

DumpControl ——An optional pointer to a dump control structure. This structure
specifies the output stream and the detail level. If not specified then output
should be sent to the standard output stream. Default detail level is 1.

OB_DUMP_CONTROL Structure:

PVOID Stream ——an opaque pointer to an output stream.

ULONG DetailLevel ——level of detail to show, along with some modifiers.
See ObDumpObject description for values.

This function is called whenever one of the ObDumpObject functions is called for an
object of this type. This procedure is free to write to the output stream an ASCII
representation of its contents. The content is governed by the DetailLevel parameter.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 17

2.2.2 Object Open Procedure

VOID
typedef
(*OB_OPEN_METHOD)(

IN OB_OPEN_REASON OpenReason,
IN PEPROCESS Process,
IN PVOID Object,
IN ACCESS_MASK GrantedAccess,
IN ULONG HandleCount OPTIONAL
)

Parameters:

OpenReason ——Indicates one of four specific reasons for the handle being created.
These are:

OpenReason Values:

ObCreateHandle ——a handle to a new object is being created via the
ObInsertObject interface.

ObOpenHandle ——a handle to an existing object is being created via the
ObInsertObject, ObOpenObjectByName or the
ObOpenObjectByPointer interface.

ObDuplicateHandle ——a handle to an existing object is being created via the
NtDuplicateObject system service.

ObInheritHandle ——a handle to an existing object is being created a a result
of object inheritence during process creation.

Process ——Specifies a pointer to the process for which the handle has been
created.

Object ——Specifies a pointer to the object for which the handle has been created.

GrantedAccess ——Specifies the granted access mask associated with the newly
created handle.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 18

HandleCount ——Optional parameter, that is non-zero if the MaintainHandleCount
in the associated object type structure is TRUE. If non-zero then represents
the number of handles to the specified Object that have been created in the
object table associated with the specified Process. Interesting value is 1,
which means this is the first handle to the specified Object for the specified
Process.

This function is called whenever a handle to an object is created. The OpenReason
parameter specifies the reason the handle is being created.

This function is called after the handle has actually been inserted in the object table
for the specified process, but before the object type mutex has been released. This
means that the function must not attempt to manipulate any object handles itself, as it
my result in an attempt to recusively acquire the object type mutex.

2.2.3 Object Close Procedure

VOID
typedef
(*OB_CLOSE_METHOD)(

IN PEPROCESS Process OPTIONAL,
IN PVOID Object,
IN ACCESS_MASK GrantedAccess,
IN ULONG HandleCount
)

Parameters:

Process ——Specifies a pointer to the process for which the handle has been
destroyed.

Object ——Specifies a pointer to the object for which the handle is been destroyed.

GrantedAccess ——Specifies the granted access mask that was associated with the
destroyed handle.

HandleCount ——Optional parameter, that is non-zero if the MaintainHandleCount
in the associated object type structure is TRUE. If non-zero then represents
the number of handles to the specified Object that have been created in the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 19

object table associated with the specified Process, including the handle that
has just been destroyed. Interesting value is 1, which means this is the last
handle to the specified Object for the specified Process.

This function is called whenever a handle to an object is destroyed.

This function is called after the handle has actually been deleted from the object table
for the specified process, but before the object type mutex has been released. This
means that the function must not attempt to manipulate any object handles itself, as it
my result in an attempt to recusively acquire the object type mutex. Also, the object
name, if any, is still valid when this function is called.

2.2.4 Object Delete Procedure

VOID
typedef
(*OB_DELETE_METHOD)(

IN PVOID Object
)

Parameters:

Object ——A pointer to the object's body.

This function is called whenever the PointerCount associated with the object is
decremented to zero, and the object is a temporary object. See the section on Object
Retention for a description of how the PointerCount can become zero.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 20

2.2.5 Object Parse Procedure

NTSTATUS
typedef
(*OB_PARSE_METHOD)(

IN PVOID ParseObject,
IN POBJECT_TYPE ObjectType,
IN OUT PACCESS_STATE AccessState,
IN KPROCESSOR_MODE AccessMode,
IN ULONG Attributes,
IN OUT PSTRING CompleteName,
IN OUT PSTRING RemainingName,
IN OUT PVOID Context OPTIONAL,
IN PSECURITY_QUALITY_OF_SERVICE SecurityQos OPTIONAL,
OUT PVOID *Object
)

Parameters:

ParseObject ——a pointer to the object, whose type contains this procedure as its
ParseProcedure.

ObjectType ——A pointer that supplies the type of object being referenced.

AccessState ——A pointer to a structure that contains a record of desired types of
access, already granted access types, and a list of privileges that may have
been used to obtain some of the granted access types. If privileges are
passed, a control flag in the argument indicates whether any of the
privileges or all of the privileges are needed to open the object.

AccessMode ——Indicates the access mode to use for the access check. One of
UserMode or KernelMode.

Attributes ——A set of flags that control the object attributes.

OBJ_CASE_INSENSITIVE ——Indicates that the name lookup should be
performed in a manner which ignores the case of the ObjectName
rather than performing an exact match search.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 21

CompleteName ——A pointer to the complete path name being parsed.

RemainingName ——A pointer to the portion of the complete path name that
remains to be parsed.

Context ——An optional pointer that is passed uninterpreted to the ParseProcedure.
It is the same Context parameter that was passed to the routine that
triggered the name lookup.

SecurityQos ——An optional pointer to the security quality of service parameters
specified by the client for this communication session.

Object ——A pointer to a variable which receives the address of the object that the
remaining name parsed to.

Return Value:

Status code that indicates whether or not the operation was successful.

CompleteName and RemainingName both point to the same string, with
RemainingName describing a suffix of the CompleteName. Storage for the name string
is from paged or nonpaged pool. This allows parse routines to allocate storage for a
new name, copy any information necessary into the newly allocated storage, and
deallocate the storage containing the previous name string. The Buffer fields in the
CompleteName and RemainingName structures would then be updated to point to the
newly allocated string and the Length fields would be updated as appropriate.

This function is called whenever an object is looked up by name. See the Object Name
Space section for a description about how name lookup is performed.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_REPARSE ——a success status code that tells the object manager to start
the parse over at the beginning of the CompleteName string. The assumption
being that the function modified the CompleteName string to point to a new
name, such as the target of a symbolic link.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 22

o STATUS_OBJECT_PATH_SYNTAX_BAD ——if the parse failed because of an ill
formed path name.

o STATUS_OBJECT_PATH_NOT_FOUND ——if the parse was terminated because a
path component was not found and there were characters remaining to parse.

o STATUS_OBJECT_NAME_NOT_FOUND ——if the parse was terminated because a
path component was not found and there were no more characters remaining to
parse.

o STATUS_OBJECT_PATH_INVALID ——if the parse succeeded and matched an
object, but there were more characters remaining to be parsed.

o STATUS_ACCESS_DENIED ——if any of the access tests involved in creating the
object failed.

2.2.6 Object Security Procedure

NTSTATUS
typedef
(*OB_SECURITY_METHOD)(

IN PVOID Object,
IN SECURITY_OPERATION_CODE OperationCode,
IN PSECURITY_INFORMATION SecurityInformation,
IN OUT PSECURITY_DESCRIPTOR SecurityDescriptor,
IN OUT PULONG CapturedLength,
IN OUT PSECURITY_DESCRIPTOR *ObjectsSecurityDescriptor,
IN POOL_TYPE PoolType,
IN PGENERIC_MAPPING GenericMapping
)

Parameters:

Object ——A pointer to an object

OperationCode ——Indicates one of three specific operations that the method can
perform.

OperationCode Values:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 23

SetSecurityDescriptor ——used to alter the security descriptor protecting an
operation. The security method will take the input security descriptor
and apply the portions of it specified by the SecurityInformation
argument to the object.

QuerySecurityDescriptor ——used to return to the caller a copy of the portions
of object's security descriptor requested by the SecurityInformation
argument. The information will be returned in the form of a security
descriptor in the SecurityDescriptor buffer.

DeleteSecurityDescriptor ——used when an instance of an object is being
deleted. The method will cleanup (and delete as necessary) any storage
associated with the object's security descriptor.

AssignSecurityDescriptor ——used when an instance of an object is being
created and security is being assigned to the object for the first time.
The method will take the contents of the SecurityDescriptor field and
assign it to the object.

SecurityInformation ——Specifies which security information is being set or
queried.

SecurityDescriptor ——Points to buffer to either set or read the security descriptor
from. This buffer will be probed and captured as necessary by this
procedure. This parameter is ignored for the delete operation.

This parameter is ignored for the delete operation.

CapturedLength ——For a query operation this specifies the size, in bytes, of the
output security descriptor buffer and on return contains the number of
bytes needed to store the complete security descriptor. If the length needed
is greater than the length supplied the operation will fail. This parameter is
ignored for the set and delete operations. It is expected to be point into
kernel space, ie, it need not be probed and it will not change.

ObjectsSecurityDescriptor ——This supplies the address of a variable pointing to
the current object's security descriptor. This parameter will be used if the
object's security descriptor is stored as part of the object header (this occurs
as the default method). If this parameter is used then the procedure will
deallocate and reallocate pool as necessary to hold the object's security

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 24

descriptor. Alternate methods (e.g., the file system) will not use this
parameter and instead will have the underlying file system store the
descriptor (this means that system wide file object handles are not allowed).

This parameter is ignored for the assign operation.

PoolType ——Specifies the type of pool to allocate for the object's security
descriptor if needed. This parameter is ignored for the query and delete
operations.

Return Value:

Status code that indicates whether or not the operation was successful.

Before calling this procedure the object manager will have determined that the
requested action is allowed according to the granted access rights and privileges of the
caller.

2.3 Creating An Object

The data structures for an object are created with the ObCreateObject function:

NTSTATUS
ObCreateObject(

IN KPROCESSOR_MODE ProbeMode,
IN POBJECT_TYPE ObjectType,
IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
IN KPROCESSOR_MODE OwnershipMode,
IN OUT PVOID ParseContext OPTIONAL,
IN ULONG ObjectBodySize,
IN ULONG PagedPoolCharge,
IN ULONG NonPagedPoolCharge,
OUT PVOID *Object
)

Parameters:

ProbeMode ——Specifies one of UserMode or KernelMode. This is the mode used
when probing the ObjectAttributes structure.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 25

ObjectType ——An pointer to the object type structure describing the type of object
to create.

ObjectAttributes ——An optional pointer to an Object Attributes structure. Refer to
the Object Attributes discussion for details.

OwnershipMode ——Specifies one of UserMode or KernelMode. For existing
objects, this parameter is ignored.

The OwnershipMode controls the interpretation of the SecurityDescriptor. If
the OwnershipMode is KernelMode and the object does not have a
SecurityDescriptor then no access to the object with an AccessMode of
UserMode is allowed. If the OwnershipMode is KernelMode and the
AccessMode is KernelMode then the SecurityDescriptor is examined to
determine access.

If the OwnershipMode is UserMode and the AccessMode is KernelMode then
the access is always allowed. If the OwnershipMode is UserMode and
the AccessMode is UserMode then the SecurityDescriptor is examined to
determine access.

ParseContext ——An optional pointer that is passed uninterpreted to any
ParseProcedure that is called during the course of performing the name
lookup.

ObjectBodySize ——Size of the object body in bytes.

PagedPoolCharge ——The number of bytes of paged pool to charge to the current
process.

NonPagedPoolCharge ——The number of bytes of nonpaged pool to charge to the
current process.

Object ——A pointer to a variable which receives the address of the newly created
object.

Return Value:

Status code that indicates whether or not the operation was successful.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 26

Creating an object causes a block of storage from pool to be allocated. The size of the
block is the sum of the object header size and the object body size. The object header
is initialized and the PointerCount is set to 1 and the HandleCount is set to zero.

The address of the uninitialized object body is returned via the Object parameter. It is
the responsibility of the object type specific creation routine to initialize the object
body.

The ObjectAttributes parameter is considered unprobed and thus is probed by this
function, using the mode specified in the ProbeMode parameter.

The Attributes field of the ObjectAttributes parameter is validated and stored in the
object header.

The RootDirectory field of the ObjectAttributes parameter is captured into the object
header at this time. The handle is not referenced at this time. It will be referenced
when ObInsertObject is called to insert the object into an object table.

If specified, any string structure specified by the ObjectName field of the
ObjectAttributes parameter is captured into the object header at this time. The actual
buffer pointer to by the string structure is not probed at this time. Instead it is probed
when ObInsertObject is called to insert the object into an object table.

The SecurityDescriptor field of the ObjectAttributes parameter is captured into the
object header at this time. The pointer is not probed until ObInsertObject is called to
insert the object into an object table. If for some reason the attempt to insert the
object fails, ObInsertObject will clear the field in the object header before attempting
to dereference the object.

The SecurityQualityOfService field of the ObjectAttributes parameter is captured into
the object header at this time. The purpose of capturing it into the object header is to
facilitate passing the QOS information to ObInsertObject. Rather than put a pointer
to the QOS information into the Object header, the SecurityQos field is temporarily
used to hold the pointer to the QOS structure. Note that in the case of an error, this
field must be zero'd out before the object is freed, to prevent the pointer from being
interpreted as a quantity of pool memory to be freed.

The ParseContext parameter is also captured into the object header for later use when
ObInsertObject is called.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 27

Memory for the object header and object body is allocated from the pool type specified
in the object type descriptor. The amount of quota to charge is calculated. Quota
includes the memory for the object header and body, plus any additional quota
specified by the PagedPoolCharge and NonPagedPoolCharge parameters. The total
quota to charge is remembered in the object header. This will allow the quota to be
charged each time a handle is created for this object, using the either
ObOpenObjectByName function or the ObInsertObject function.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_INVALID_PARAMETER ——one of the parameters was invalid.

o STATUS_OBJECT_NAME_INVALID ——an object name was specified in the
ObjectAttributes structure, but it has a zero length.

o STATUS_NO_MEMORY ——no memory to allocate the object.

o STATUS_ACCESS_VIOLATION ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer or the ObjectAttributes->ObjectName-
>Buffer pointer were invalid.

o STATUS_DATATYPE_MISALIGNMENT ——Either the ObjectAttributes pointer or
the ObjectAttributes->ObjectName pointer were not aligned on a 4 byte
boundary.

2.4 Creating an Instance of an Object

An instance of an object is created by inserting the new created object into the calling
process's object table and obtaining an object handle. This is accomplished with the
ObInsertObject function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 28

NTSTATUS
ObInsertObject(

IN PVOID Object,
IN PACCESS_STATE PassedAccessState OPTIONAL,
IN ACCESS_MASK DesiredAccess OPTIONAL,
IN ULONG ObjectPointerBias,
OUT PVOID *NewObject OPTIONAL,
OUT PHANDLE Handle
)

Parameters:

Object ——A pointer to the object's body. The object must be one that was returned
by ObCreateObject.

PassedAccessState ——An optional pointer to a structure that contains a record of
desired types of access, already granted access types, and a list of privileges
that may have been used to obtain some of the granted access types. If
privileges are passed, a control flag in the argument indicates whether any
of the privileges or all of the privileges are needed to open the object.

DesiredAccess ——An optional parameter describing the desired types of access to
the object. The interpretation of this field is object type dependent. Simple
access requests (ie, those that intend to compare the desired access to the
Dacl on the object) need only pass a DesiredAccess mask, rather than
constructing an AccessState structure.

ObjectPointerBias ——Value to increment the PointerCount by. This occurs
whether or not the object is successfully inserted into the object table.

NewObject ——An optional pointer to a variable that will will receive the pointer to
the referenced object's body. A pointer to the referenced object's body is
returned only if the ObjectPointerBias field is not zero and the argument is
present. If the argument is supplied and the ObjectPointerBias is zero, then
NULL is returned in the pointer.

Handle ——A pointer to a variable that will receive the object handle value.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 29

Return Value:

Status code that indicates whether or not the operation was successful.

Inserting the object into a table causes an object handle to be allocated from the
appropriate table thereby making the object visible. If the object was given a name,
the name is visible to all threads that have "read" or "execute" access to the directory
path that contains the name.

The ObjectName field of the ObjectAttributes parameter to ObCreateObject is
extracted from the object header and probed for accessiblility. Storage is then
allocated for a copy of the string, so that any parse procedures called can reallocate
the string for reparse operations. The Attributes and ParseContext fields that were
captured into the object header are used along with the captured ObjectName as
additional parameters to the name lookup procedure.

During the creation of a new object's instance, checks are performed to ensure that the
name of the object, if any, is unique within the specified directory. If the name is not
unique, the newly created object is deleted and the OBJ_OPENIF option is used to
determine the appropriate action.

If OBJ_OPENIF was specified, the object instance with the collided name is examined to
see if the desired access can be granted. If so, a handle is created to the collided object.
If OBJ_OPENIF was not specified, an error status is returned to the caller.

In the process of creating or opening a named object, several different security
operations may be performed. For each subdirectory in the object's path, the current
subject must have TRAVERSE access to that subdirectory in order for the name search
to continue. The interface to perform this test is ObCheckTraverseAccess.
ObCheckTraverseAccess will be called by the object manager as appropriate if the
object does not have an object-specific parse routine. For those objects that do specify
parse routines, it is the responsiblity of the parse routine to check traverse access to
each subdirectory. ObCheckTraverseAccess may generate audit messages.

If the object is being created, it is necessary to check to make sure that the subject has
the ability to create an object in the specified directory. Note that this is a different
access type than the ability to traverse the parent directory. The interface that
performs this test is ObCheckCreateObjectAccess. Like ObCheckTraverseAccess,
this routine will be called by the object manager unless there exists an object-specific

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 30

parse routine, in which case it is the responsibility of the parse routine to make the
call.

Finally, a new handle to the object is created, and the count of outstanding handles to
the object is incremented in the object header. Depending on whether the object is
being created or simply opened, the parse routine must call either
ObCheckCreateInstanceAccess or ObpCheckObjectAccess respectively.

The ObInsertObject function automatically dereferences the specified object, even if
the operation fails for any reason. This means that the Object value is no longer usable
when this function returns. This is due to the fact that at the completion of the
ObInsertObject function, the object handle could now be deleted by another thread of
execution causing the storage for the object to be deallocated or the name could have
collided, causing the original object to be deleted.

The ObjectPointerBias parameter provides a mechanism for ensuring a pointer to the
object can be utilized. When the ObjectPointerBias is not zero, the value is added to
the PointerCount in the object header referenced by the handle. This prevents the
object from being deleted. The NewObject parameter receives the pointer to the object
body referred to by the object. This may be a different object then the one which was
inserted due to name collisions.

This is typically the last operation that is performed when an instance of an object is
created, and the handle and status value are returned to the caller.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_OBJECT_NAME_EXISTS ——the object name already existed and
OBJ_OPENIF was specified. This is a warning status code.

o STATUS_OBJECT_TYPE_MISMATCH ——the object name already existed, but was a
different type than specified by the ObjectType parameter.

o STATUS_OBJECT_NAME_COLLISION ——the object name already existed and
OBJ_OPENIF was not specified.

o STATUS_OBJECT_PATH_SYNTAX_BAD ——if the parse failed because of an ill
formed path name.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 31

o STATUS_OBJECT_PATH_NOT_FOUND ——if the parse was terminated because a
path component was not found and there were characters remaining to parse.

o STATUS_OBJECT_NAME_NOT_FOUND ——if the parse was terminated because a
path component was not found and there were no more characters remaining to
parse.

o STATUS_OBJECT_PATH_INVALID ——if the parse succeeded and matched an
object, but there were more characters remaining to be parsed.

o STATUS_ACCESS_DENIED

o STATUS_QUOTA_EXCEEDED

o STATUS_NO_MEMORY

2.5 Open Object by Name

An object can be opened by name with the ObOpenObjectByName function:

NTSTATUS
ObOpenObjectByName(

IN POBJECT_ATTRIBUTES ObjectAttributes,
IN POBJECT_TYPE ObjectType OPTIONAL,
IN KPROCESSOR_MODE AccessMode,
IN OUT PACCESS_STATE PassedAccessState OPTIONAL,
IN ACCESS_MASK DesiredAccess OPTIONAL,
IN OUT PVOID ParseContext OPTIONAL,
OUT PHANDLE Handle
)

Parameters:

ObjectAttributes ——A pointer to a structure that specifies the object's attributes.
Refer to the Object Attributes discussion for details.

ObjectType ——A optional pointer to the object type structure for the object's type.

AccessMode ——Indicates the access mode to use for the access check. One of
UserMode or KernelMode.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 32

ParseContext ——An optional pointer that is passed uninterpreted to any
ParseProcedure that is called during the course of performing the name
lookup.

PassedAccessState ——An optional pointer to a structure that contains a record of
desired types of access, already granted access types, and a list of privileges
that may have been used to obtain some of the granted access types. If
privileges are passed, a control flag in the argument indicates whether any
of the privileges or all of the privileges are needed to open the object.

DesiredAccess ——The desired types of access to the object. The interpretation of
this field is object type dependent. Simple access requests (ie, those that
intend to compare the desired access to the Dacl on the object) need only
pass a DesiredAccess mask, rather than constructing an AccessState
structure.

Handle ——A pointer to a variable that will receive the object handle.

Return Value:

Status code that indicates whether or not the operation was successful.

Opening an object by name causes a name search to be performed. If this function
completes successfully, a pointer to the named object's body is inserted into the
specified object table.

Successful opening of an object by name causes the HandleCount and PointerCount for
the specified object to be incremented.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_OBJECT_TYPE_MISMATCH ——the object name was found, but was a
different type than specified by the ObjectType parameter.

o STATUS_OBJECT_PATH_SYNTAX_BAD ——if the parse failed because of an ill
formed path name.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 33

o STATUS_OBJECT_PATH_NOT_FOUND ——if the parse was terminated because a
path component was not found and there were characters remaining to parse.

o STATUS_OBJECT_NAME_NOT_FOUND ——if the parse was terminated because a
path component was not found and there were no more characters remaining to
parse.

o STATUS_OBJECT_PATH_INVALID ——if the parse succeeded and matched an
object, but there were more characters remaining to be parsed.

o STATUS_ACCESS_DENIED

o STATUS_QUOTA_EXCEEDED

o STATUS_NO_MEMORY

2.6 Open Object by Pointer

A handle to an object can be opened by pointer with the ObOpenObjectByPointer
function:

NTSTATUS
ObOpenObjectByPointer(

IN PVOID Object,
IN ULONG HandleAttributes,
IN PACCESS_STATE PassedAccessState OPTIONAL,
IN ACCESS_MASK DesiredAccess OPTIONAL,
IN POBJECT_TYPE ObjectType OPTIONAL,
IN KPROCESSOR_MODE AccessMode,
OUT PHANDLE Handle
)

Parameters:

Object ——A pointer to the object that is being opened.

HandleAttributes ——The attributes to associated with the handle. Same as the
Attributes field in the ObjectAttributes structure. Refer to the Object
Attributes discussion for details.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 34

PassedAccessState ——An optional pointer to a structure that contains a record of
desired types of access, already granted access types, and a list of privileges
that may have been used to obtain some of the granted access types. If
privileges are passed, a control flag in the argument indicates whether any
of the privileges or all of the privileges are needed to open the object.

DesiredAccess ——The desired types of access to the object. The interpretation of
this field is object type dependent. Simple access requests (ie, those that
intend to compare the desired access to the Dacl on the object) need only
pass a DesiredAccess mask, rather than constructing an AccessState
structure.

ObjectType ——A optional pointer to the object type structure for the object's type.

AccessMode ——Indicates the access mode to use for the access check. One of
UserMode or KernelMode.

Handle ——A pointer to a variable that will receive the object handle.

Return Value:

Status code that indicates whether or not the operation was successful.

Opening an object by pointer the HandleCount and PointerCount for the specified
object to be incremented and a handle to the object created.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_OBJECT_TYPE_MISMATCH

o STATUS_ACCESS_DENIED

o STATUS_QUOTA_EXCEEDED

o STATUS_NO_MEMORY

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 35

2.7 Referencing An Object

A user mode routine refers to an instance of an object through an object handle. In
order for the executive to operate upon the object, access validation must be
performed on the object handle, and the object handle must be converted to a pointer
to the desired object's body. This is accomplished with the
ObReferenceObjectByHandle function:

NTSTATUS
ObReferenceObjectByHandle(

IN HANDLE Handle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_TYPE ObjectType OPTIONAL,
IN KPROCESSOR_MODE AccessMode,
OUT PVOID *Object,
OUT POBJECT_HANDLE_INFORMATION HandleInformation OPTIONAL
)

Parameters:

Handle ——An open handle to an object.

DesiredAccess ——The desired types of access to the object. The interpretation of
this field is object type dependent.

ObjectType ——An optional pointer to the object type structure for the object's type.
If this value is omitted, no type check is performed.

AccessMode ——Indicates the access mode to use for the access check. One of
UserMode or KernelMode.

Object ——A pointer to a variable that will receive a pointer to the object's body.

HandleInformation ——An optional pointer to XXXXXXXXXX

Return Value:

Status code that indicates whether or not the operation was successful.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 36

This function uses the specified object handle as an index into the process object table.
The index is validated against the object table bounds and converted into a pointer to
a specific entry in the object table.

If the AccessMode is KernelMode, the desired access is always allowed.

If the AccessMode is UserMode, the desired access is compared to the granted access
field stored within the table. If all of the bits in the DesiredAccess mask are set in the
granted access mask, then access is granted. Otherwise the STATUS_ACCESS_DENIED
error status code is returned.

If the desired access is allowed, a pointer to the object header is obtained from the
table. If the specified ObjectType is supplied, it is compared to the object type field
within the object header, and if they are equal a pointer to the object body is returned
to the caller as the function value, and the PointerCount field in the object header is
incremented.

Incrementing the PointerCount field prevents the object from being deleted while it is
being operated upon.

A pointer to the object body is retreived from the object table entry and returned to
the caller via the Object parameter.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_OBJECT_TYPE_MISMATCH

o STATUS_ACCESS_DENIED

o STATUS_INVALID_HANDLE

2.8 Reference Object by Name

An object can be referenced by name with the ObReferenceObjectByName function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 37

NTSTATUS
ObReferenceObjectByName(

IN PSTRING ObjectName,
IN ULONG Attributes,
IN PACCESS_STATE PassedAccessState OPTIONAL,
IN ACCESS_MASK DesiredAccess OPTIONAL,
IN POBJECT_TYPE ObjectType,
IN KPROCESSOR_MODE AccessMode,
IN OUT PVOID ParseContext OPTIONAL,
OUT PVOID *Object
)

Parameters:

ObjectName ——A pointer to a string which specifies the name of the object to
open.

Attributes ——A set of flags that control the object attributes.

OBJ_CASE_INSENSITIVE ——Indicates that the name lookup should be
performed in a manner which ignores the case of the ObjectName
rather than performing an exact match search.

PassedAccessState ——An optional pointer to a structure that contains a record of
desired types of access, already granted access types, and a list of privileges
that may have been used to obtain some of the granted access types. If
privileges are passed, a control flag in the argument indicates whether any
of the privileges or all of the privileges are needed to open the object.

DesiredAccess ——The desired types of access to the object. The interpretation of
this field is object type dependent. Simple access requests (ie, those that
intend to compare the desired access to the Dacl on the object) need only
pass a DesiredAccess mask, rather than constructing an AccessState
structure.

ObjectType ——A pointer to the object type structure for the object's type.

AccessMode ——Indicates the access mode to use for the access check. One of
UserMode or KernelMode.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 38

ParseContext ——An optional pointer that is passed uninterpreted to any
ParseProcedure that is called during the course of performing the name
lookup.

Object ——A pointer to a variable that will receive a pointer to the object's body.

Return Value:

Status code that indicates whether or not the operation was successful.

Referencing an object by name causes a name search to be performed. If this function
completes successfully, a pointer to the named object's body is returned as the
function value. The name search is accomplished by acquiring the directory mutex,
and searching in the root directory for the first name in the path. If no matching name
is found, an error status code is returned.

If a matching name is found and there are more tokens left in the name string, the
corresponding object header is examined. If the object is not a directory object, its
corresponding object type structure is examined for a parse routine. If no parse
routine exists, an error status code is returned. Otherwise, the directory mutex is
released, and the parse routine is called.

The parse routine is responsible for either returning a pointer to an object, which can
be referenced as a result of the parse, or returning a unique value, OBJ_REPARSE to
indicate that the name lookup should start over from the beginning of the string.

If the value returned is OBJ_REPARSE, the directory mutex is acquired and name
parsing beings using the complete string as the name. This requires the parse routine
to deallocate the previous string and allocate the new string to parse, or modify the
original string.

Successful referencing of an object by name causes the PointerCount for the specified
object to be incremented.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_OBJECT_TYPE_MISMATCH ——the object name was found, but was a
different type than specified by the ObjectType parameter.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 39

o STATUS_OBJECT_PATH_SYNTAX_BAD ——if the parse failed because of an ill
formed path name.

o STATUS_OBJECT_PATH_NOT_FOUND ——if the parse was terminated because a
path component was not found and there were characters remaining to parse.

o STATUS_OBJECT_NAME_NOT_FOUND ——if the parse was terminated because a
path component was not found and there were no more characters remaining to
parse.

o STATUS_OBJECT_PATH_INVALID ——if the parse succeeded and matched an
object, but there were more characters remaining to be parsed.

o STATUS_ACCESS_DENIED

o STATUS_NO_MEMORY

2.9 Reference Object by Pointer

NTSTATUS
ObReferenceObjectByPointer(

IN PVOID Object,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_TYPE ObjectType,
IN KPROCESSOR_MODE AccessMode
)

Parameters:

Object ——A pointer to the object's body.

DesiredAccess ——A mask representing the desired access to the object.

ObjectType ——A pointer to the object type structure for the object.

AccessMode ——Indicates the access mode to use for the access check. One of
UserMode or KernelMode.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 40

Return Value:

Status code that indicates whether or not the operation was successful.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_OBJECT_TYPE_MISMATCH

2.10 Making an Object Temporary

An object can be made temporary with the ObMakeTemporaryObject function:

VOID
ObMakeTemporaryObject(

IN PVOID Object
)

Parameters:

Object ——A pointer to an object.

This is a generic function and operates on any type of object.

Making an object temporary causes the permanent flag of the associated object to be
cleared. A temporary object has a name as long as its HandleCount is greater than
zero. When the HandleCount becomes zero, the name is deleted and the PointerCount
adjusted appropriately.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 41

2.11 Dereferencing an Object

A referenced object is dereferenced with the ObDereferenceObject function:

VOID
ObDereferenceObject(

IN PVOID Object
)

Parameters:

Object ——A pointer to the object's body.

When an object is dereferenced, its PointerCount is decremented and retention checks
are performed.

2.12 Object Management during Process Creation and Deletion

The Process Structure component uses these function during process creation and
deletion to initialize and cleanup the object table associated with a process.

2.12.1 Process Creation Hook

The Process Structure component calls the Object Management component at process
creation time via the ObInitProcess function.

NTSTATUS
ObInitProcess(

PEPROCESS ParentProcess OPTIONAL,
PEPROCESS NewProcess
)

Parameters:

ParentProcess ——An optional pointer to the process to inherit any handles from.

NewProcess ——A pointer to the process that is being created.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 42

Return Value:

Status code that indicates whether or not the operation was successful.

This functions creates an object table for the NewProcess. It then scans the object table
associated with the ParentProcess, if any, and creates copies of all handles that were
created with the OBJ_INHERIT attribute.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_QUOTA_EXCEEDED

o STATUS_NO_MEMORY

2.12.2 Process Deletion Hook

The Process Structure component calls the Object Management component at process
deletion time via the ObKillProcess function.

VOID
ObKillProcess(

PEPROCESS Process
)

Parameters:

Process ——A pointer to the process that is being destroyed.

This function scans the object table associated with the process being destroyed and
calls NtClose for each valid handle.

2.13 Dump Object Support

Objects are displayed using the ObDumpObjectByHandle, ObDumpObjectByName
and ObDumpObjectByPointer functions. These functions display the contents of an
object or objects to a specified output stream with a specified level of information. The
default output stream is standard output.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 43

NTSTATUS
ObDumpObjectByHandle(

IN HANDLE Handle,
IN POB_DUMP_CONTROL DumpControl OPTIONAL
)

Parameters:

Handle ——An open handle to an object.

DumpControl ——An optional pointer to a dump control structure. This structure
specifies the output stream and the detail level. If not specified then output
should be sent to the standard output stream. Default detail level is 1.

OB_DUMP_CONTROL Structure:

PVOID Stream ——an opaque pointer to an output stream.

ULONG DetailLevel ——level of detail to show, along with some modifiers.

Return Value:

Status code that indicates whether or not the operation was successful.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_ACCESS_DENIED

o STATUS_INVALID_HANDLE

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 44

NTSTATUS
ObDumpObjectByName(

IN PSTRING ObjectName,
IN ULONG Attributes,
IN POB_DUMP_CONTROL DumpControl OPTIONAL
)

Parameters:

ObjectName ——A pointer to a string which specifies the name of the object to
open.

Attributes ——A set of flags that control the object attributes.

OBJ_CASE_INSENSITIVE ——Indicates that the name lookup should be
performed in a manner which ignores the case of the ObjectName
rather than performing an exact match search.

DumpControl ——See ObDumpObjectByHandle description for meaning of this
parameter.

Return Value:

Status code that indicates whether or not the operation was successful.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_ACCESS_DENIED

NTSTATUS
ObDumpObjectByPointer(

IN PVOID Object,
IN POB_DUMP_CONTROL DumpControl OPTIONAL
)

Parameters:

Object ——A pointer to the object's body.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 45

DumpControl ——See ObDumpObjectByHandle description for meaning of this
parameter.

Return Value:

Status code that indicates whether or not the operation was successful.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_ACCESS_DENIED

2.14 Check Traverse Access

A parse routine calls ObCheckTraverseAccess for each section of a pathname to see if
the caller has Traverse access to that directory.

BOOLEAN
ObCheckTraverseAccess(

IN PVOID DirectoryObject,
IN ACCESS_MASK TraverseAccess,
IN PACCESS_STATE AccessState,
IN BOOLEAN TypeMutexLocked,
IN KPROCESSOR_MODE PreviousMode,
OUT PNTSTATUS AccessStatus
)

Parameters:

DirectoryObject ——The object header of the object being examined.

TraverseAccess ——The access mask corresponding to traverse access for this
directory type.

AccessState ——Checks for traverse access will typically be incidental to some
other access attempt. Information on the current state of that access
attempt is required so that the constituent access attempts may be
associated with each other in the audit log.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 46

TypeMutexLocked ——Supplies a boolean indicating whether or not the object's
type mutext is locked.

AccessMode ——The previous processor mode.

AccessStatus ——Pointer to a variable to return the status code of the access
attempt. In the case of failure this status code must be propagated back to
the user.

Return Value:

BOOLEAN ——TRUE if access is allowed and FALSE otherwise. AccessStatus
contains the status code to be passed back to the caller. It is not correct to simply
pass back STATUS_ACCESS_DENIED, since this will have to change with the
advent of mandatory access control.

This routine is to be called by Object parse methods as they parse the component
subdirectories of a path. On each subdirectory, they must call
ObCheckTraverseAccess, which will examine the security descriptors on the object to
determine if it is legal to traverse that directory. If it returns failure, the value
returned in AccessStatus must be propogated back to the user.

This routine will generate audit records as appropriate.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 47

2.15 Check Create Instance access

A parse routine calls ObCheckCreateInstance to determine if the caller is allowed to
create an instance of an object.

BOOLEAN
ObCheckCreateInstanceAccess(

IN PVOID Object,
IN ACCESS_MASK CreateInstanceAccess,
IN PACCESS_STATE AccessState OPTIONAL,
IN BOOLEAN TypeMutexLocked,
IN KPROCESSOR_MODE PreviousMode,
OUT PNTSTATUS AccessStatus
)

Parameters:

Object ——The object header of the object being examined.

CreateInstanceAccess ——The access mask corresponding to create access for this
object type.

AccessState ——Checks for create access will typically be incidental to some other
access attempt. Information on the current state of that access attempt is
required so that the constituent access attempts may be associated with each
other in the audit log.

TypeMutexLocked ——Indicates whether the type mutex for this object's type is
locked. The type mutex is used to protect the object's security descriptor
from being modified while it is being accessed.

AccessMode ——The previous processor mode.

AccessStatus ——Pointer to a variable to return the status code of the access
attempt. In the case of failure this status code must be propagated back to
the user.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 48

Return Value:

BOOLEAN ——TRUE if access is allowed and FALSE otherwise. AccessStatus
contains the status code to be passed back to the caller.

Routine Description:

Parse routines must call this routine to check for Create Instance access to the object.
If the attempt fails, the caller must propagate the result returned in AccessStatus back
to the user, rather than simply returning STATUS_ACCESS_DENIED.

Note that checking for the ability to create an object of a given type is different from
creating the object itself. This attempt may be audited, even if the attempt to create
the object ultimately fails.

2.16 Check Create Object Access

A parse routine calls ObCheckCreateObjectAccess to see if it may create an object in
the passed directory.

BOOLEAN
ObCheckCreateObjectAccess(

IN PVOID DirectoryObject,
IN ACCESS_MASK CreateAccess,
IN PACCESS_STATE AccessState OPTIONAL,
IN BOOLEAN TypeMutexLocked,
IN KPROCESSOR_MODE PreviousMode,
OUT PNTSTATUS AccessStatus
)

Parameters:

DirectoryObject ——The object header of the object being examined.

CreateAccess ——The access mask corresponding to create access for this directory
type.

AccessState ——Checks for traverse access will typically be incidental to some
other access attempt. Information on the current state of that access

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 49

attempt is required so that the constituent access attempts may be
associated with each other in the audit log.

TypeMutexLocked ——Indicates whether the type mutex for this object's type is
locked. The type mutex is used to protect the object's security descriptor
from being modified while it is being accessed.

AccessMode ——The previous processor mode.

AccessStatus ——Pointer to a variable to return the status code of the access
attempt. In the case of failure this status code must be propagated back to
the user.

Return Value:

BOOLEAN ——TRUE if access is allowed and FALSE otherwise. AccessStatus
contains the status code to be passed back to the caller.

Routine Description:

This routine checks to see if we are allowed to create an object in the given directory.
If the attempt fails, the caller must propagate the result returned in AccessStatus back
to the user, rather than simply returning STATUS_ACCESS_DENIED.

This routine may generate audit messages as appropriate.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 50

2.17 Check Implicit Object Access

Check object access when there will be no handle allocated.

BOOLEAN
ObCheckImplicitObjectAccess(

IN PVOID Object,
IN OUT PACCESS_STATE AccessState,
IN BOOLEAN TypeMutexLocked,
IN KPROCESSOR_MODE AccessMode,
OUT PNTSTATUS AccessStatus
)

Parameters:

ObjectHeader ——The object header of the object being examined.

AccessState ——The ACCESS_STATE structure containing accumulated information
about the current access attempt.

TypeMutexLocked ——Indicates whether the type mutex for this object's type is
locked. The type mutex is used to protect the object's security descriptor
from being modified while it is being accessed.

AccessMode ——The previous processor mode.

AccessStatus ——Pointer to a variable to return the status code of the access
attempt. In the case of failure this status code must be propagated back to
the user.

Return Value:

BOOLEAN ——TRUE if access is allowed and FALSE otherwise

Routine Description:

This routine is used to perform access validation for reasons other than opening or
creating an object. For example, a file system may want to determine of a subject has
FILE_LIST_DIRECTORY access to a directory as part of some other access validation.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 51

For access operations on objects that are being opened or created, use
ObpCheckObjectAccess.

The routine performs access validation on the passed object. The remaining desired
access mask is extracted from the AccessState parameter and passed to the
appropriate security routine to perform the access check.

Note that the RemainingDesiredAccess field in the AccessState parameter is not
modified.

2.18 Checking Access for Object Reference

This routine is to be used to determine if a reference by name should be permitted.

BOOLEAN
ObCheckObjectReference(

IN PVOID Object,
IN OUT PACCESS_STATE AccessState,
IN BOOLEAN TypeMutexLocked,
IN KPROCESSOR_MODE AccessMode,
OUT PNTSTATUS AccessStatus
)

Parameters:

ObjectHeader ——The object header of the object being examined.

AccessState ——The ACCESS_STATE structure containing accumulated information
about the current attempt to gain access to the object.

TypeMutexLocked ——Indicates whether the type mutex for this object's type is
locked. The type mutex is used to protect the object's security descriptor
from being modified while it is being accessed.

AccessMode ——The previous processor mode.

AccessStatus ——Pointer to a variable to return the status code of the access
attempt. In the case of failure this status code must be propagated back to
the user.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 52

Return Value:

BOOLEAN ——TRUE if access is allowed and FALSE otherwise

Routine Description:

The routine performs access validation on the passed object. The remaining desired
access mask is extracted from the AccessState parameter and passes to the appropriate
security routine to perform the access check.

If the access attempt is successful, SeAccessCheck returns a mask containing the
granted accesses. The bits in this mask are turned on in the PreviouslyGrantedAccess
field of the AccessState, and are turned off in the RemainingDesiredAccess field.

This routine differs from ObpCheckObjectAccess in that it calls a different audit
routine.

2.19 Locking a security descriptor

Call ObLockSecurityDescriptor before reading or writing an object's security
descriptor.

VOID
ObLockSecurityDescriptor(

IN PVOID Object
)

Parameters:

Object ——supplies a pointer to the object whose security descriptor is being
examined.

Return Value: None.

Routine Description:

This function acquires the object type mutex for the passed object, which will protect
the object's security descriptor from modification by another thread.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 53

2.20 Unlocking a security descriptor

Call ObLockSecurityDescriptor before reading or writing an object's security
descriptor.

VOID
ObUnlockSecurityDescriptor(

IN PVOID Object
)

Parameters:

Object ——supplies a pointer to the object whose security descriptor is being
examined.

Return Value: None.

Routine Description:

This function releases the object type mutex for the passed object, which has been
protecting the object's security descriptor from modification by another thread.

2.21 Query an object's Security Descriptor field

This routine allows components outside of OB to retrieve the Security Descriptor
pointer in an object's header. The contents of this pointer does not necessarily reflect
the actual security descriptor attached to an object.

VOID
ObQueryObjectSecurityDescriptor(

IN PVOID Object,
OUT PSECURITY_DESCRIPTOR *SecurityDescriptor
)

Parameters:

Object ——Supplies a pointer to the object

SecurityDescriptor ——Returns the contents of the object header's
SecurityDescriptor field, which may be NULL.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 54

Routine Description:

Takes a pointer to an object and returns a pointer to the security descriptor contained
in the header.

2.22 Set an object's Security Descriptor field

This routine permits components outside of OB to set the security descriptor field in an
object's header.

VOID
ObAssignObjectSecurityDescriptor(

IN PVOID Object,
IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN POOL_TYPE PoolType
)

Parameters:

Object ——Supplies a pointer to the object

SecurityDescriptor ——Supplies a pointer to the security descriptor to be assigned
to the object.

PoolType ——Supplies the type of pool memory used to allocate the security
descriptor.

Routine Description:

Takes a pointer to an object and sets the SecurityDescriptor field in the object's header.
Performs security quota calculations and places the security quota for this object into
the object's header.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 55

2.23 Query an object's Security information

This routine will return a copy of the passed object's security descriptor, regardless of
where the security descriptor is stored.

NTSTATUS
ObGetObjectSecurity(

IN PVOID Object,
OUT PSECURITY_DESCRIPTOR *SecurityDescriptor,
OUT PBOOLEAN MemoryAllocated
)

Parameters:

Object ——Supplies the object being queried.

SecurityDescriptor ——Returns a pointer to the object's security descriptor.

MemoryAllocated ——indicates whether we had to allocate pool memory to hold
the security descriptor or not. This should be passed back into
ObReleaseObjectSecurity.

Return Value:

STATUS_SUCCESS ——The operation was successful. Note that the operation may
be successful and still return a NULL security descriptor.

STATUS_INSUFFICIENT_RESOURCES ——Insufficient memory was available to
satisfy the request.

Routine Description:

Given an object, this routine will find its security descriptor. It will do this by calling
the object's security method.

It is possible for an object not to have a security descriptor at all. Unnamed objects
such as events that can only be referenced by a handle are an example of an object
that does not have a security descriptor.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 56

2.24 Release an object's Security information

This routine frees the memory allocated by a previous call to ObGetObjectSecurity.

VOID
ObReleaseObjectSecurity(

IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN BOOLEAN MemoryAllocated
)

Parameters:

SecurityDescriptor ——Supplies a pointer to the security descriptor to be freed.

MemoryAllocated ——Supplies whether or not we should free the memory pointed
to by SecurityDescriptor.

Routine Description:

This function will free up any memory associated with a queried security descriptor.

2.25 Set Security Quota Charged for object

Each object, when it is created, is alloted a certain amount of pool memory for security
information. The amount is a function of the size of the Group and Dacl information
in the object's security descriptor. The sum of the sizes of these items is passed to this
routine, which will calculate the amount of pool memory to charge based on that sum,
and place the resultant quantity into the object's header.

VOID
ObSetSecurityQuotaCharged(

IN PVOID Object,
IN OUT PULONG SecurityQuotaCharged,
IN POOL_TYPE PoolType
)

Parameters:

Object ——Supplies the object to be updated.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 57

SecurityQuotaCharged ——Supplies the proposed amount of quota to be charged
for security information for each handle to this object. Will return the
actual amount charged.

PoolType ——The type of pool memory that will be allocated to hold the security
information for this object.

Routine Description:

Sets the SecurityQuotaCharged field for the passed object. Updates the
PagedPoolCharge or NonPagedPoolCharge with the new amount, depending on the
value of PoolType.

2.26 Validate security information against quota

Any attempt to grow the security information on an object must have the resulting size
checked against the maximum amount of pool memory that may be used for the
object's security information.

NTSTATUS
ObValidateSecurityQuota(

IN PVOID Object,
IN ULONG NewSize
)

Parameters:

Object ——Supplies a pointer to the object whose information is to be modified.

NewSize ——Supplies the size of the proposed new security information.

Return Value:

STATUS_SUCCESS ——New size is within alloted quota.

STATUS_QUOTA_EXCEEDED ——The desired adjustment would have exceeded the
permitted security quota for this object.

Routine Description:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 58

This routine will check to see if the new security information is larger than is allowed
by the object's pre-allocated quota.

3. Object System Services

The following routines provide an interface for user mode applications to manipulate
and query objects.

3.1 Create Directory Object

Directory objects are created with the NtCreateDirectoryObject function:

NTSTATUS
NtCreateDirectoryObject(

OUT PHANDLE DirectoryHandle,
IN ULONG DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
)

Parameters:

DirectoryHandle ——A pointer to a variable that will receive the directory object
handle.

DesiredAccess ——The desired types of access to the directory. The following object
type specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Attributes
section.

DesiredAccess Flags:

DIRECTORY_QUERY ——Query access to the directory is desired.

DIRECTORY_TRAVERSE ——Name lookup access to the directory is desired.

DIRECTORY_CREATE_OBJECT ——Name creation access to the directory is
desired.

DIRECTORY_CREATE_SUBDIRECTORY ——Subdirectory creation access to the
directory is desired.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 59

ObjectAttributes ——A pointer to a structure that specifies the object's attributes.
Refer to the Object Attributes discussion for details.

Return Value:

Status code that indicates whether or not the operation was successful.

Directory objects are an integral part of the object management functions and as such
are manipulated indirectly as a result of other operations. For example, when an
object is created, its name, if any, is "inserted" in a directory object and the
PointerCount fields of both the directory object and the named object are incremented.
The named object's header contains a pointer to the directory object which contains
the name.

A single mutex is utilized to guard the directory structure. It must be acquired any
time a directory is accessed for examination or manipulation.

The directory object's body contains the information necessary to translate an object
name to a pointer to the object. Incrementing the PointerCount field in the directory
object's header for each name in the directory prevents the directory object from
being "deallocated" with outstanding names.

If a directory object is temporary and the HandleCount becomes zero, then an attempt
is made to delete the directory object's name by conditionally removing its directory
entry. Conditional deletion means that the necessary mutexes are released, the
directory mutex is acquired, the directory entry which contains the directory object is
located and the HandleCount is checked again. If the count is still zero, the directory
object's name is deleted. This is done because the directory object was declared as
temporary and the last handle to the object has been closed.

If the directory's name is deleted, the PointerCount has not yet been decremented to
account for the lack of a name. Any names which still reside within the directory
object are deleted. This is accomplished by acquiring the directory mutex and finding
a valid name within the directory. From the valid name, the corresponding object is
located and its name field and backpointer are removed, its PointerCount is
decremented, and the permanent flag is set false. If the resulting PointerCount of the
named object is now zero, the directory mutex is released and the object type specific
delete routine is invoked.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 60

This procedure is repeated until all valid names within the directory have been
deleted, at which time the directory mutex is released, and the PointerCount for the
directory is decremented.

Even though a directory object's name has been removed, the directory object remains
until all names contained within it have been removed. This means that certain
objects which had names will no longer have names once the directory object's name
has been removed. This condition is detected by a NULL backpointer in the path of
directory objects.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_ACCESS_DENIED

o STATUS_ACCESS_VIOLATION ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer or the ObjectAttributes->ObjectName-
>Buffer pointer were invalid. Or the DirectoryHandle pointer was invalid.

o STATUS_DATATYPE_MISALIGNMENT ——Either the ObjectAttributes pointer or
the ObjectAttributes->ObjectName pointer were not aligned on a 4 byte
boundary. Or the DirectoryHandle pointer was not aligned on a 4 byte
boundary.

3.2 Open Object Directory

NTSTATUS
NtOpenDirectoryObject(

OUT PHANDLE DirectoryHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
)

Parameters:

DirectoryHandle ——A pointer to a variable that will receive the directory object
handle.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 61

DesiredAccess ——The desired types of access to the directory. The following object
type specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Attributes
section.

DesiredAccess Flags:

DIRECTORY_QUERY ——Query access to the directory is desired.

DIRECTORY_TRAVERSE ——Name lookup access to the directory is desired.

DIRECTORY_CREATE_OBJECT ——Name creation access to the directory is
desired.

DIRECTORY_CREATE_SUBDIRECTORY ——Subdirectory creation access to the
directory is desired.

ObjectAttributes ——A pointer to a structure that specifies the object's attributes.
Refer to the Object Attributes discussion for details.

Return Value:

Status code that indicates whether or not the operation was successful.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_ACCESS_DENIED

o STATUS_ACCESS_VIOLATION ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer or the ObjectAttributes->ObjectName-
>Buffer pointer were invalid. Or the DirectoryHandle pointer was invalid.

o STATUS_DATATYPE_MISALIGNMENT ——Either the ObjectAttributes pointer or
the ObjectAttributes->ObjectName pointer were not aligned on a 4 byte
boundary. Or the DirectoryHandle pointer was not aligned on a 4 byte
boundary.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 62

3.3 Query Object Directory

The names in a directory object can be queried using the NtQueryDirectoryObject
function:

NTSTATUS
NtQueryDirectoryObject(

IN HANDLE DirectoryHandle,
OUT PVOID Buffer,
IN ULONG Length,
IN BOOLEAN ReturnSingleEntry,
IN BOOLEAN RestartScan,
IN OUT PULONG Context,
OUT PULONG ReturnLength OPTIONAL
)

Parameters:

DirectoryHandle ——handle of directory object being queried.

Buffer ——pointer to where directory entries are to be returned. The format is
array of structures containing the following fields:

OBJECT_DIRECTORY_INFORMATION Structure:

STRING Name ——Name of an object in the directory

STRING TypeName ——Type name of the object

The Buffer fields of each name string point to memory allocated at the end of
the storage pointed to by the Buffer parameter. This the array of
Directory Entries grows down and the actual characters for each string
grow up and if they meet in the middle, then the operation stops and
this function returns to the caller.

Length ——maximum number of bytes that can be stored in the location pointed to
by the Buffer parameter.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 63

ReturnSingleEntry ——TRUE forces the query to stop after a single entry has been
returned. Otherwise the query will return as many entries as there is room
for in the output buffer.

RestartScan ——TRUE forces the query to start with the first name in the directory.
Otherwise the query picks up with the next name after the last name
returned by the previous call to NtQueryDirectoryObject for this directory
object.

Context ——A pointer to a context value. This value is used by this system service
to remember its position within a directory object. The input value is
ignored if the RestartScan parameter is TRUE.

ReturnLength ——optional pointer to a variable that will receive the actual number
of bytes stored in the location pointed to by the Buffer parameter.

Return Value:

Status code that indicates whether or not the operation was successful.

This function returns one or more entries from the directory object specified by the
DirectoryHandle parameter.

This function remembers its current position across calls by storing a 32-bit number
into the location pointed to by the Context parameter. This number is a logical index
into the directory. It is not a pointer. This will prevent deletions that happen between
calls from turning a Context value into a garbage quantity. It may become inaccurate
due to insertions and deletions, but it will not bug check the system.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_ACCESS_DENIED

o STATUS_INVALID_HANDLE

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 64

3.4 Create Symbolic Link

NTSTATUS
NtCreateSymbolicLinkObject(

OUT PHANDLE LinkHandle,
IN ULONG DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN PSTRING LinkTarget
)

Parameters:

LinkHandle ——Supplies a pointer to a variable that will receive the symbolic link
object handle.

DesiredAccess ——The desired types of access to the symbolic link object. The
following object type specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Attributes
section.

DesiredAccess Flags:

SYMBOLIC_LINK_QUERY ——Query access to the symbolic link is desired.

ObjectAttributes ——A pointer to a structure that specifies the object's attributes.
Refer to the Object Attributes discussion for details.

LinkTarget ——Supplies the target name for the symbolic link object.

Return Value:

Status code that indicates whether or not the operation was successful.

This function creates a symbolic link object, sets its initial value to value specified in
the LinkTarget parameter, and opens a handle to the object with the specified desired
access.

The symbolic link object type has a parse procedure that implements the symbolic link
semantics. Basically if the parse procedure is called and if the remaining string is not
null, then the remaining string value is concatenated with the target name string

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 65

stored in the symbolic link object, separated by a path separator character. The result
replaces the complete string and the OBJ_REPARSE is returned to trigger the reparse.

If the remaining string is null, then it assumes the caller is trying to open the symbolic
link and returns a pointer to the symbolic link object body. This will fail with
STATUS_OBJECT_TYPE_MISMATCH if the caller did not specify the symbolic link object
type.

Otherwise the symbolic link parse procedure returns NULL to indicate an error.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_ACCESS_DENIED

o STATUS_ACCESS_VIOLATION ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer or the ObjectAttributes->ObjectName-
>Buffer pointer were invalid. Or the LinkTarget, LinkTarget->Buffer or the
LinkHandle pointer were invalid.

o STATUS_DATATYPE_MISALIGNMENT ——Either the ObjectAttributes pointer or
the ObjectAttributes->ObjectName pointer were not aligned on a 4 byte
boundary. Or the LinkTarget or LinkHandle pointer were not aligned on a 4 byte
boundary.

3.5 Open Symbolic Link

NTSTATUS
NtOpenSymbolicLinkObject(

OUT PHANDLE LinkHandle,
IN ULONG DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
)

Parameters:

LinkHandle ——Supplies a pointer to a variable that will receive the symbolic link
object handle.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 66

DesiredAccess ——The desired types of access to the symbolic link object. The
following object type specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Attributes
section.

DesiredAccess Flags:

SYMBOLIC_LINK_QUERY ——Query access to the symbolic link is desired.

ObjectAttributes ——A pointer to a structure that specifies the object's attributes.
Refer to the Object Attributes discussion for details.

Return Value:

Status code that indicates whether or not the operation was successful.

This function opens a handle to a symbolic link object with the specified desired
access.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_ACCESS_DENIED

o STATUS_ACCESS_VIOLATION ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer or the ObjectAttributes->ObjectName-
>Buffer pointer were invalid. Or the LinkHandle pointer was invalid.

o STATUS_DATATYPE_MISALIGNMENT ——Either the ObjectAttributes pointer or
the ObjectAttributes->ObjectName pointer were not aligned on a 4 byte
boundary. Or the LinkHandle pointer was not aligned on a 4 byte boundary.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 67

3.6 Query Symbolic Link

NTSTATUS
NtQuerySymbolicLinkObject(

IN HANDLE LinkHandle,
OUT PSTRING LinkTarget
)

Parameters:

LinkHandle ——Supplies a handle to a symbolic link object.

LinkTarget ——Supplies a pointer to a record that is to receive the target name of
the symbolic link object.

Return Value:

Status code that indicates whether or not the operation was successful.

This function queries the state of an symbolic link object and returns the requested
information in the string pointed to by the LinkTarget parameter.

3.7 Wait For Single Object

A wait operation on a waitable object is accomplished with the
NtWaitForSingleObject function:

NTSTATUS
NtWaitForSingleObject(

IN HANDLE Handle,
IN BOOLEAN Alertable,
IN PTIME TimeOut OPTIONAL
)

Parameters:

Handle ——An open handle to a waitable object.

Alertable ——A boolean value that specifies whether the wait is alertable.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 68

TimeOut ——An optional pointer to a time-out value that specifies the absolute or
relative time over which the wait is to be completed.

Return Value:

Status code that indicates whether or not the operation was successful.

Waiting on an object checks the current state of the object. If the current state of the
object allows continued execution, any adjustments to the object state are made (for
example, decrementing the semaphore count for a semaphore object) and the thread
continues execution. If the current state of the object does not allow continued
execution, the thread is placed into the wait state pending the change of the object's
state or time-out.

This function requires SYNCHRONIZE access to the passed handle.

This function may return one of the following success status codes that indicates how
the wait was satisfied:

o A value of STATUS_TIME_OUT indicates that the wait was terminated due to the
TimeOut conditions.

o A value of STATUS_SUCCESS indicates the specified object attained a Signaled
state thus completing the wait.

o A value of STATUS_ABANDONED indicates the specified object attained a
Signaled state but was abandoned.

This function may return one of the following error status codes if the wait was not
satisfied:

o STATUS_ALERTED

o STATUS_USER_APC

o STATUS_HANDLE_NOT_WAITABLE

o STATUS_ACCESS_DENIED

o STATUS_INVALID_HANDLE

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 69

o STATUS_ACCESS_VIOLATION ——The Timeout pointer was invalid.

o STATUS_DATATYPE_MISALIGNMENT ——The Timeout pointer was not aligned on
a 4 byte boundary.

3.8 Wait for Multiple Objects

A wait operation on multiple waitable objects (up to MAXIMUM_WAIT_OBJECTS) is
accomplished with the NtWaitForMultipleObjects function:

NTSTATUS
NtWaitForMultipleObjects(

IN ULONG Count,
IN HANDLE Handles[],
IN WAIT_TYPE WaitType,
IN BOOLEAN Alertable,
IN PTIME TimeOut OPTIONAL
)

Parameters:

Count ——A count of the number of objects that are to be waited on.

Handles ——An array of object handles. An error status is returned if more than
one of the handles refers to the same object. This can occur even if two
handle values are different but both refer to the same object.

WaitType ——The type of operation that is to be performed (WaitAny or WaitAll).

Alertable ——A boolean value that specifies whether the wait is alertable.

TimeOut ——An optional pointer to a time-out value that specifies the absolute or
relative time over which the wait is to be completed.

Return Value:

Status code that indicates whether or not the operation was successful.

This function requires SYNCHRONIZE access to the passed handle.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 70

This function may return one of the following success status codes that indicates how
the wait was satisfied:

o A value of STATUS_TIME_OUT indicates that the wait was terminated due to the
TimeOut conditions.

o A value from 0 to MAXIMUM_WAIT_OBJECTS - 1, indicates, in the case of wait
for any object, the object number which satisfied the wait. In the case of wait
for all objects, the value only indicates that the wait was completed successfully.

o A value from STATUS_ABANDONED to STATUS_ABANDONED +
(MAXIMUM_WAIT_OBJECTS - 1), indicates, in the case of wait for any object, the
object number which satisfied the event, and that the object which satisfied the
event was abandoned. In the case of wait for all objects, the value indicates that
the wait was completed successfully and at least one of the objects was
abandoned.

This function may return one of the following error status codes if the wait was not
satisfied:

o STATUS_ALERTED

o STATUS_USER_APC

o STATUS_INVALID_PARAMETER

o STATUS_HANDLE_NOT_WAITABLE

o STATUS_ACCESS_DENIED

o STATUS_INVALID_HANDLE

o STATUS_QUOTA_EXCEEDED

o STATUS_NO_MEMORY

o STATUS_INVALID_PARAMETER_MIX ——One or more of the handle values in the
Handles array referenced the same object.

o STATUS_ACCESS_VIOLATION ——The Handles or Timeout pointer was invalid.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 71

o STATUS_DATATYPE_MISALIGNMENT ——The Handles or Timeout pointer was
not aligned on a 4 byte boundary.

3.9 Duplicate Handle

A duplicate handle can be created with the NtDuplicateObject function:

NTSTATUS
NtDuplicateObject(

IN HANDLE SourceProcessHandle,
IN HANDLE SourceHandle,
IN HANDLE TargetProcessHandle,
OUT PHANDLE TargetHandle,
IN ACCESS_MASK DesiredAccess,
IN ULONG HandleAttributes,
IN ULONG Options
)

Parameters:

SourceProcessHandle ——An open handle to a process object or NtCurrentProcess().

SourceHandle ——An open handle valid in the context of the source process.

TargetProcessHandle ——An open handle to a process object or NtCurrentProcess().

TargetHandle ——A pointer to a variable which receives the new handle that points
to the same object as SourceHandle does.

DesiredAccess ——The access requested to for the new handle. This access must be
equal to or a proper subset of the granted access associated with the
SourceHandle. This parameter is ignored if the DUPLICATE_SAME_ACCESS
option is specified.

HandleAttributes ——The attributes to associated with the new handles. Only
OBJ_INHERIT is relevant.

Options ——Specifies optional behaviors for the caller.

Options Flags:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 72

DUPLICATE_CLOSE_SOURCE ——The SourceHandle will be closed by this
server prior to returning to the caller. This occurs regardless of any
error status returned.

DUPLICATE_SAME_ACCESS ——The DesiredAccess parameter is ignored and
instead the GrantedAccess associated with SourceHandle is used as the
DesiredAccess when creating the TargetHandle.

Return Value:

Status code that indicates whether or not the operation was successful.

This is a generic function and operates on any type of object.

This function requires PROCESS_DUP_ACCESS to both the SourceProcessHandle and
the TargetProcessHandle.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_ACCESS_DENIED

o STATUS_INVALID_HANDLE

o STATUS_QUOTA_EXCEEDED

o STATUS_NO_MEMORY

o STATUS_ACCESS_VIOLATION ——The TargetHandle pointer was invalid.

o STATUS_DATATYPE_MISALIGNMENT ——The TargetHandle pointer was not
aligned on a 4 byte boundary.

3.10 Close Handle

An open handle to any object can be closed with the NtClose function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 73

NTSTATUS
NtClose(

IN HANDLE Handle
)

Parameters:

Handle ——An open handle to an object.

Return Value:

Status code that indicates whether or not the operation was successful.

This is a generic function and operates on any type of object.

Closing an open handle to an object causes the handle to become invalid and the
HandleCount of the associated object to be decremented and object retention checks to
be performed.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_INVALID_HANDLE

3.11 Making an Object Temporary

An object can be made temporary with the NtMakeTemporaryObject function:

NTSTATUS
NtMakeTemporaryObject(

IN HANDLE Handle
)

Parameters:

Handle ——An open handle to an object.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 74

Return Value:

Status code that indicates whether or not the operation was successful.

This is a generic function and operates on any type of object.

Making an object temporary causes the permanent flag of the associated object to be
cleared. A temporary object has a name as long as its HandleCount is greater than
zero. When the HandleCount becomes zero, the name is deleted and the PointerCount
adjusted appropriately.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_ACCESS_DENIED

o STATUS_INVALID_HANDLE

3.12 Query Object

Information about an opened object can be obtained with the NtQueryObject
function:

NTSTATUS
NtQueryObject(

IN HANDLE Handle,
IN OBJECT_INFORMATION_CLASS ObjectInformationClass,
OUT PVOID ObjectInformation,
IN ULONG Length,
OUT ULONG *ReturnLength OPTIONAL
)

Parameters:

Handle ——Specifies the object that information is being requested from.

ObjectInformationClass ——Specifies the type of information to retrieve from the
specified object.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 75

ObjectInformationClass Values:

ObjectBasicInformation ——Returns the basic information about the specified
object.

ObjectNameInformation ——Returns the complete path name of the object
referred to by the Object.

ObjectTypeInformation ——Returns the name of the object type associated
with the object.

ObjectInformation ——A pointer to a buffer which receives the specified
information. The format and content of the buffer depend on the specified
object information class.

ObjectInformation Format by Information Class:

ObjectBasicInformation ——Data type is POBJECT_BASIC_INFORMATION

OBJECT_BASIC_INFORMATION Structure:

ULONG Attributes ——The attributes associated with this object. Only
OBJ_INHERIT, OBJ_PERMANENT and OBJ_EXCLUSIVE are relevant
after an object handle has been created.

ACCESS_MASK GrantedAccess ——The access mask bits that were
granted to the current process with the passed handle.

ULONG PagedPoolCharge ——How much PagedPool is charged against a
process when it creates a handle to this object.

ULONG NonPagedPoolCharge ——How much NonPagedPool is charged
against a process when it creates a handle to this object.

ULONG NameInfoSize ——The size needed to store a copy of the name
associated with this object. Zero if no name.

ULONG TypeInfoSize ——The size needed to store a copy of the type
name associated with this object.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 76

ULONG SecurityDescriptorSize ——The size needed to store a copy of the
SecurityDescriptor associated with this object. See the
NtQuerySecurityObject for a description of how to get the actual
copy of the security descriptor.

ObjectNameInformation ——Data type is POBJECT_NAME_INFORMATION

OBJECT_NAME_INFORMATION Structure:

STRING Name ——The name associated with this object, if any.

ObjectTypeInformation ——Data type is POBJECT_TYPE_INFORMATION

OBJECT_TYPE_INFORMATION Structure:

STRING TypeName ——The name of the object type associated with this
object.

Length ——Specifies the length in bytes of the ObjectInformation buffer.

ReturnLength ——An optional parameter that receives the number of bytes placed
in the ObjectInformation buffer.

Return Value:

Status code that indicates whether or not the operation was successful.

This function requires READ_CONTROL access to the passed handle.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_INVALID_INFO_CLASS ——The ObjectInformationClass parameter did not
specify a valid value.

o STATUS_INFO_LENGTH_MISMATCH ——The value of the
ObjectInformationLength parameter did not match the length required for the
information class requested by the ObjectInformationClass parameter.

o STATUS_ACCESS_DENIED

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 77

o STATUS_INVALID_HANDLE

3.13 Set Security Descriptor for an Object

The function NtSetSecurityObject takes a well formed Security Descriptor provided
by the caller and assigns specified portions of it to an object. Based on the flags set in
the Security Information parameter and the caller's access rights, this procedure will
replace any or all of the security information associated with an object.

This is the only function available to users and applications for changing security
information, including the owner ID, group ID, and the discretionary and system ACLs
of an object. The caller must have WRITE_OWNER access to the object to change the
owner or primary group of the object. The caller must have WRITE_DAC access to the
object to change the discretionary ACL. The caller must have the "SeSecurityPrivilege"
privilege to assign a system ACL to an object.

NTSTATUS
NtSetSecurityObject(

IN HANDLE Handle,
IN SECURITY_INFORMATION SecurityInformation,
IN PSECURITY_DESCRIPTOR SecurityDescriptor
)

Parameters:

Handle ——A handle to an existing object.

SecurityInformation ——Indicates which security information is to be applied to the
object. The value(s) to be assigned are passed in the SecurityDescriptor
parameter.

The security information is specified using the following boolean flag fields:

SecurityInformation.Owner (Object's Owner SID)
SecurityInformation.Group (Object's Group SID)
SecurityInformation.Dacl (Object's Discretionary ACL)
SecurityInformation.Sacl (Object's System ACL)

SecurityDescriptor ——A pointer to a well formed Security Descriptor.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 78

Return Value:

Status code that indicates whether or not the operation was successful.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_ACCESS_DENIED

o STATUS_PRIVILEGE_NOT_HELD

o STATUS_INVALID_HANDLE

3.14 Query Security Descriptor for an Object

The function NtQuerySecurityObject returns to the caller requested security
information currently assigned to an object.

Based on the caller's access rights and privileges this procedure will return a security
descriptor containing any or all of the object's owner ID, group ID, discretionary ACL
or system ACL. To read the owner ID, group ID, or the discretionary ACL the caller
must be granted READ_CONTROL access to the object. To read the system ACL the
caller must have "SeSecurityPrivilege" privilege.

NTSTATUS
NtQuerySecurityObject(

IN HANDLE Handle,
IN SECURITY_INFORMATION SecurityInformation,
OUT PSECURITY_DESCRIPTOR SecurityDescriptor,
IN ULONG Length,
OUT PULONG LengthNeeded
)

Parameters:

Handle ——A handle to an existing object.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT OS/2 Object Management Specification 79

SecurityInformation ——Supplies a value describing which pieces of security
information are being queried. The values that may be specified are the
same as those defined in the NtSetSecurityObject API section.

SecurityDescriptor ——A pointer to the buffer to receive a copy of the requested
security information. This information is returned in the form of a security
descriptor.

Length ——The size, in bytes, of the Security Descriptor buffer.

LengthNeeded ——A pointer to the variable to receive the number of bytes needed
to store the complete security descriptor. If LengthNeeded is less than or
equal to Length then the entire security descriptor is returned in the output
buffer, otherwise none of the descriptor is returned.

Return Value:

Status code that indicates whether or not the operation was successful.

This function may return one of the following status codes:

o STATUS_SUCCESS ——normal, successful completion.

o STATUS_BUFFER_TOO_SMALL ——The value of the Length parameter did not
specify enough memory for the requested information. The LengthNeeded
variable will be filled in with the amount of memory needed.

o STATUS_ACCESS_DENIED

o STATUS_PRIVILEGE_NOT_HELD

o STATUS_INVALID_HANDLE

x

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

	1. Overview
	1.1 What is an Object?
	1.2 Object Management Goals
	1.3 Object Data Structures
	1.4 Object Header
	1.5 Object Types
	1.6 Object Handles
	1.7 Object Attributes Structure
	1.8 Resource Quotas and Objects
	1.9 Object Retention
	1.10 Exclusive Object Handles
	1.11 Object Name Space
	1.12 Preventing Deadlock

	2. Object Executive APIs
	2.1 Creating Object Types
	2.2 Object Type Procedure Templates
	2.2.1 Object Dump Procedure
	2.2.2 Object Open Procedure
	2.2.3 Object Close Procedure
	2.2.4 Object Delete Procedure
	2.2.5 Object Parse Procedure
	2.2.6 Object Security Procedure

	2.3 Creating An Object
	2.4 Creating an Instance of an Object
	2.5 Open Object by Name
	2.6 Open Object by Pointer
	2.7 Referencing An Object
	2.8 Reference Object by Name
	2.9 Reference Object by Pointer
	2.10 Making an Object Temporary
	2.11 Dereferencing an Object
	2.12 Object Management during Process Creation and Deletion
	2.12.1 Process Creation Hook
	2.12.2 Process Deletion Hook

	2.13 Dump Object Support
	2.14 Check Traverse Access
	2.15 Check Create Instance access
	2.16 Check Create Object Access
	2.17 Check Implicit Object Access
	2.18 Checking Access for Object Reference
	2.19 Locking a security descriptor
	2.20 Unlocking a security descriptor
	2.21 Query an object's Security Descriptor field
	2.22 Set an object's Security Descriptor field
	2.23 Query an object's Security information
	2.24 Release an object's Security information
	2.25 Set Security Quota Charged for object
	2.26 Validate security information against quota

	3. Object System Services
	3.1 Create Directory Object
	3.2 Open Object Directory
	3.3 Query Object Directory
	3.4 Create Symbolic Link
	3.5 Open Symbolic Link
	3.6 Query Symbolic Link
	3.7 Wait For Single Object
	3.8 Wait for Multiple Objects
	3.9 Duplicate Handle
	3.10 Close Handle
	3.11 Making an Object Temporary
	3.12 Query Object
	3.13 Set Security Descriptor for an Object
	3.14 Query Security Descriptor for an Object

