
Portable Systems Group

Windows NT Process Structure

Author: Mark Lucovsky

Revision 1.27, January 14, 1992

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 1

1. Overview...1

2. Process Structure Objects...1

3. Process Object APIs...1
3.1 Access Type And Privilege Information...2
3.2 NtCreateProcess..4
3.3 NtTerminateProcess..5
3.4 NtCurrentProcess...6
3.5 NtCurrentPeb..7
3.6 NtOpenProcess..8
3.7 NtQueryInformationProcess...8
3.8 NtSetInformationProcess...12

4. Thread Object APIs...14
4.1 Access Type And Privilege Information...14
4.2 NtCreateThread..16
4.3 NtTerminateThread..19
4.4 NtCurrentThread..20
4.5 NtCurrentTeb..20
4.6 NtSuspendThread..21
4.7 NtResumeThread...22
4.8 NtGetContextThread...22
4.9 NtSetContextThread..23
4.10 NtOpenThread..24
4.11 NtQueryInformationThread...25
4.12 NtSetInformationThread...27
4.13 NtImpersonateThread..28
4.14 NtAlertThread...29
4.15 NtTestAlert...29
4.16 NtAlertResumeThread..30
4.17 NtRegisterThreadTerminationPort...30
4.18 NtImpersonateThread..32

5. System Information API..33
5.1 NtQuerySystemInformation...33

6. Executive APIs...35
6.1 PsCreateSystemProcess..36

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 2

6.2 PsCreateSystemThread...37
6.3 PsLookupProcessThreadByCid...37
6.4 PsChargePoolQuota...38
6.5 PsReturnPoolQuota...38
6.6 PsGetCurrentThread...39
6.7 PsGetCurrentProcess...39
6.8 KeGetPreviousMode..39
6.9 PsRevertToSelf..39
6.10 PsReferencePrimaryToken...40
6.11 PsDereferencePrimaryToken...40
6.12 PsReferenceImpersonationToken...41
6.13 PsDereferenceImpersonationToken...41
6.14 PsOpenTokenOfProcess...42
6.15 PsOpenTokenOfThread..43
6.16 PsImpersonateClient...44

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 1

1. Overview

This specification describes the Windows NT process structure.

The Windows NT system is designed to support both an OS/2 and a POSIX operating
system environment. Rather than packaging all of the capabilities of these operating
system environments into the Windows NT kernel and executive, the system has been
designed so that robust, protected subsystems can be built to provide the necessary
API emulation.

The Windows NT approach is very similar to the approach taken in Carnegie Mellon's
MACH operating system. The MACH system design is based on a simple process
structure, IPC mechanism, and virtual memory system. Using these primitives, MACH
is able to implement both POSIX and Unix 4.3BSD operating system environments as
protected subsystems.

Like MACH, the Windows NT process structure provides a very basic set of services.
The system does not provide a hierarchical process tree structure, global process
names (PIDs), process grouping, job control, complex process or thread termination
semantics, or other more traditional process structures. It does provide a complete set
of services that subsystems can use to provide the set of semantics that are required by
a particular operating system environment.

Using this set of services, vendors and users can develop applications based on either
the OS/2 or POSIX APIs (implemented as protected subsystems by Microsoft). An
alternative to this is to develop applications using the native Windows NT system
services or to develop custom subsystems and have the applications use these
subsystems.

2. Process Structure Objects

The process structure is based on two types of objects. A process object represents an
address space, a set of objects (resources) visible to the process, and a set of threads
that executes in the context of the process. A thread object represents the basic
schedulable entity in the system. It contains its own set of machine registers, its own
kernel stack, a thread environment block (TEB), and user stack in the address space of
its process.

The Windows NT process structure works with the overall Windows NT security
architecture. Each process is assigned an access token, called the primary token of the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 2

process. The primary token is used by default by the process's threads when
referencing a Windows NT object.

In addition to the primary token, each thread may have an impersonation token
associated with it. When this is done, the impersonation token, rather than the
process's primary token, is used for access validation purposes. This is done to allow
efficient impersonation of clients in a client-server model.

3. Process Object APIs

The following programming interfaces support the process object:

NtCreateProcess - Creates a process object.
NtTerminateProcess - Terminates a process object.
NtCurrentProcess - Identifies the currently executing process.
NtCurrentPeb - Returns the address of the current processes Process

Environment Block (PEB).
NtOpenProcess - Creates a handle to a process object.
NtQueryInformationProcess - Returns information about the process.
NtSetInformationProcess - Sets information about the process.

3.1 Access Type And Privilege Information

Object type-specific access types:

The object type-specific access types are defined below.

PROCESS_TERMINATE - Required to terminate a process.

PROCESS_CREATE_THREAD - Required to create a thread in a process.

PROCESS_VM_OPERATION - Required to manipulate the address space of a
process. This does not include reading and writing the memory of a process.

PROCESS_VM_READ - Required to read the virtual memory of a process (through
Windows NT APIs).

PROCESS_VM_WRITE - Required to write the virtual memory of a process
(through Windows NT APIs).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 3

PROCESS_DUP_HANDLE - Required to duplicate an object handle visible to a
process.

PROCESS_CREATE_PROCESS - Required to create a process.

PROCESS_SET_QUOTA - Required to modify the quota limits of a process.

PROCESS_SET_INFORMATION - Required to modify certain attributes of a
process.

PROCESS_QUERY_INFORMATION - Required to read certain attributes of a
process. This access type is also needed to open the primary token of a
process (using NtOpenProcessToken()).

PROCESS_SET_PORT - Required to set the debug or exception port of a process.

Generic Access Masks:

The object type-specific mapping of generic access types to non-generic access
types for this object type are:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 4

GENERIC_READ STANDARD_READ |
PROCESS_VM_READ |
PROCESS_QUERY_INFORMATION

GENERIC_WRITE STANDARD_WRITE |
PROCESS_TERMINATE |
PROCESS_CREATE_THREAD |
PROCESS_VM_OPERATION |
PROCESS_VM_WRITE |
PROCESS_DUP_HANDLE |
PROCESS_CREATE_PROCESS |
PROCESS_SET_QUOTA |
PROCESS_SET_INFORMATION |
PROCESS_SET_PORT

GENERIC_EXECUTE STANDARD_EXECUTE |
SYNCHRONIZE

Standard Access Types:

This object type supports the optional SYNCHRONIZE standard access type. All
required access types are supported by the object manager.

The mask of all supported access types for this object is:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 5

PROCESS_ALL_ACCESS STANDARD_RIGHTS_REQUIRED |
SYNCHRONIZE |
PROCESS_TERMINATE |
PROCESS_CREATE_THREAD |
PROCESS_VM_OPERATION |
PROCESS_VM_READ |
PROCESS_VM_WRITE |
PROCESS_DUP_HANDLE |
PROCESS_CREATE_PROCESS |
PROCESS_SET_QUOTA |
PROCESS_SET_INFORMATION |
PROCESS_QUERY_INFORMATION |
PROCESS_SET_PORT

Privileges Defined Or Used:

This object type defines or uses the following privileges:

SeAssignPrimaryTokenPrivilege - This privilege is needed to assign a new
primary token for a process.

3.2 NtCreateProcess

A process object can be created and a handle opened for access to the process with the
NtCreateProcess function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 6

NTSTATUS
NtCreateProcess(

OUT PHANDLE ProcessHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
IN HANDLE ParentProcess,
IN BOOLEAN InheritObjectTable,
IN HANDLE SectionHandle OPTIONAL,
IN HANDLE DebugPort OPTIONAL,
IN HANDLE ExceptionPort OPTIONAL
);

Parameters:

ProcessHandle - A pointer to a variable that will receive the process object handle
value.

DesiredAccess - The desired types of access to the created process.

ObjectAttributes - An optional pointer to a structure that specifies the object's
attributes. Refer to the Object Management Specification for details. Note that
OBJ_PERMANENT, OBJ_EXCLUSIVE, OBJ_OPEN_IF, and OBJ_OPEN_LINK are
not valid attributes for a process object.

ParentProcess - An open handle to a process object. The new process is created
using some of the attributes of the specified parent process.
PROCESS_CREATE_PROCESS access to this process is required.

InheritObjectTable - A flag which determines whether or not the new process will
be created with an object table whose initial contents come from the
specified parent process. A value of false causes the new process to be
created with an empty object table. A value of true causes the new process to
be created by cloning the parent process's object table. All objects in the
parent process's object table marked with the OBJ_INHERIT attribute appear
in the new process's object table with exactly the same handle values,
attributes, and granted access.

SectionHandle - An optional open handle to a section object. If the value of the
argument is not null, then it specifies a handle to a section object backed by

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 7

an image file the process is being created to run. SECTION_MAP_EXECUTE
access to the section object is required.

DebugPort - An optional open handle to a port object. If specified, the port is
assigned as the process's debugger port; otherwise, the process is created
without a debugger port. PORT_WRITE and PORT_READ access to the port
object are required.

ExceptionPort - An optional open handle to a port object. If specified, the port is
assigned as the process's exception port; otherwise, the process is created
without an exception port. PORT_WRITE and PORT_READ access to the port
object are required.

Creating a process object causes a new process to be created. The new process shares
some of its initial attributes with the specified parent process.

o The new process is created with an object table. The table is either an empty
table, or a clone of the parent process's object table. This is a function of the
InheritObjectTable parameter.

o The access token of the new process is identical to the access token of the parent
process.

o The quota limits of the new process are identical to the quota limits of the
parent process.

o The base priority of the new process is identical to the base priority of the
parent process.

The address space of the new process is defined by the specified section handle or the
address space of the specified parent process. If the section handle is not null, the
section object must be backed by an image file. The address space of the new process is
created by mapping a view of the entire section object. Otherwise, the address space of
the process is created by copying or sharing those pieces of the parent process's
address space marked as PAG_COPY/PAG_SHARE into the address space of the new
process.

The new process is created without any threads.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 8

Each process is created with a Process Environment Block (PEB). The PEB is readable
and writeable by the application, but can only be deleted by the system. The PEB is
partially initialized by the system and is placed in the address space of the. If the
process is created without a section handle, then the new processes PEB is shared
"copy on write" with the parent process PEB.

The PEB contains process global context such as startup parameters, image base
address, a Mutant object handle for process wide synchronization, and loader data
structures.

The function NtCurrentPeb returns the address of the current processes PEB. Access
to PEB locations must be made through this API.

The process object is a waitable object. A wait performed on a process object is
satisfied when the process becomes signaled. A process becomes signaled when its last
thread terminates, or if a process without a thread is terminated with
NtTerminateProcess.

Both the debugger and exception ports are used by the exception handling system
within Windows NT. The role that these ports play in exception handling is described
in another document.

3.3 NtTerminateProcess

A process can be terminated with the NtTerminateProcess function:

NTSTATUS
NtTerminateProcess(

IN HANDLE ProcessHandle OPTIONAL,
IN NTSTATUS ExitStatus
);

Parameters:

ProcessHandle - An optional parameter, that if specified, supplies an open handle
with PROCESS_TERMINATE access to the process to terminate. If this
parameter is not supplied, then PROCESS_TERMINATE access is required to
the current process and the API terminates all threads in the process except
for the calling thread.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 9

ExitStatus - A value that specifies the exit status of the process to be terminated.

Terminating a process causes the specified process and all of its threads to terminate.
Any threads in the process that are suspended are resumed by this service so that they
can begin termination. The handles of the process's threads are not explicitly closed by
this service. The handle to the process being terminated is also not closed by this
service. If any thread in the process was suspended and resumed by this API and
informational status code of STATUS_THREAD_WAS_SUSPENDED is returned.

In order to terminate a process, the calling thread must have PROCESS_TERMINATE
access to the specified process.

After all of the process's threads are terminated (and set to the signaled state), the
process's object table is processed by closing all open handles.

The process object is signaled upon termination, and its exit status is updated to reflect
the value of the exit status argument. Once a process object becomes signaled, no more
threads can be created in the process.

The process's address space remains valid until the process object itself is deleted (the
last handle to the process object is closed).

3.4 NtCurrentProcess

An object handle to the current process can be fabricated with the NtCurrentProcess
function:

HANDLE
NtCurrentProcess();

The NtCurrentProcess function returns a pseudo handle to the currently executing
process. The handle can be used whenever a handle to a process object is required (e.g.
NtTerminateProcess).

When the system is asked to translate an object handle into an object pointer, the
object type is a process object, and the object handle is the pseudo handle returned by
NtCurrentProcess, the following occurs.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 10

o The SECURITY_DESCRIPTOR of the current process is checked against the
desired access specified in the object translation call. If access is denied a failure
status is returned to the caller.

o If access is allowed, the appropriate reference count in the current process
object is adjusted and a pointer to the current process object is returned.

This function is designed mainly for the use of native applications so that they can
refer to their own process in process termination calls, thread creation calls, and
address space modification calls without having to explicitly open their process by
name or otherwise obtain a handle to their own process. A similar function exists to
reference the currently executing thread.

3.5 NtCurrentPeb

The address of the current processes PEB can be located with the NtCurrentPeb
function:

PPEB
NtCurrentPeb()

The NtCurrentPeb function returns the address of the current processes PEB. The PEB
consists of a single page in the address space of the process. The page is allocated and
deallocated by the system at process creation/process termination. Only the system
may delete a processes PEB. The PEB contains the following:

Peb Structure

BOOLEAN InheritedAddressSpace - A flag set by the system to indicate that
the processes initial address space was from inheritance rather than
from a mapping a section.

HANDLE Mutant - Contains a handle to a mutant object. Various portions of
the system use this mutant to synchronize within the process. The
functions RtlAcquirePebLock and RtlReleasePebLock may be used to
access this field.

PCOFF_HEADERS ImageBaseAddress - Contains the address of the image
header of the processes initial image.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 11

PPEB_LDR_DATA Ldr - Contains the address of the loaders per-process data.
The value of this pointer is null until the first thread of a process
initialzes the loader.

PEB_SM_DATA Sm - Contains Session Manager specific information.

PRTL_USER_PROCESS_PARAMETERS ProcessParameters - Contains the
address of the processes startup parameters.

PVOID SubsystemData - Contains the address of subsystem specific data.

PPEB_FREE_BLOCK FreeList - Contains the address of a dynamic area in the
PEB. Calls to RtlAllocateFromPeb and RtlFreeToPeb are satisfied from
this area.

3.6 NtOpenProcess

A handle to a process object can be created with the NtOpenProcess function:

NTSTATUS
NtOpenProcess(

OUT PHANDLE ProcessHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN PCLIENT_ID ClientId OPTIONAL
);

Parameters:

ProcessHandle - A pointer to a variable that will receive the process object handle
value.

DesiredAccess - The desired types of access to the opened process. For a complete
description of desired access flags, refer to the NtCreateProcess API
description.

ObjectAttributes - An pointer to a structure that specifies the object's attributes.
Refer to the Object Management Specification for details. Note that
OBJ_PERMANENT, OBJ_EXCLUSIVE, OBJ_OPEN_IF, and OBJ_OPEN_LINK are
not valid attributes for a process object.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 12

ClientId - An optional parameter that if specified, supplies the client ID of a thread
whose process is to be opened. It is an error to specify this parameter along
with the an ObjectAttributes variable that contains a process name.

Opening a process object causes a new handle to be created. The access that the new
handle has to the process object is a function of the desired access and any
SECURITY_DESCRIPTOR on the process object

3.7 NtQueryInformationProcess

Selected information about a process can be retrieved using the
NtQueryInformationProcess function.

NTSTATUS
NtQueryInformationProcess(

IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass
OUT PVOID ProcessInformation,
IN ULONG ProcessInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters:

ProcessHandle - A variable that specifies the handle to a process from which to
retrieve information.

ProcessInformationClass - A variable that specifies the type of information to
retrieve from the specified process object.

ProcessInformationClass Values

ProcessBasicInformation - Returns the basic information about the specified
process. This information class value requires
PROCESS_QUERY_INFORMATION access to the process.

ProcessQuotaLimits - Returns the quota limits of the specified process. This
information class requires PROCESS_QUERY_INFORMATION access to
the process.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 13

ProcessIoCounters - Returns the input/output counters of the specified
process. This information class requires
PROCESS_QUERY_INFORMATION access to the process.

ProcessVmCounters - Returns the virtual memory counters of the specified
process. This information class requires
PROCESS_QUERY_INFORMATION access to the process.

ProcessTimes - Returns the cpu time usage of the specified process. This
information class requires PROCESS_QUERY_INFORMATION access to
the process.

ProcessLdtInformation - Returns the contents of the Ldt for the process.
Requires PROCESS_VM_READ access to the process. Returns
STATUS_NOT_SUPPORTED on non i386 (and compatible) processors.

ProcessInformation - A pointer to a buffer that will receive information about the
specified process. The format and contents of the buffer depend on the
specified information class being queried.

ProcessInformation Format by Information Class

ProcessBasicInformation - Data type is PPROCESS_BASIC_INFORMATION.

PROCESS_BASIC_INFORMATION Structure

NTSTATUS ExitStatus - Specifies the exit status of the process. This field
only contains meaningful information if the process is in the
signaled state; otherwise, it contains a value of "exit status
pending".

PPEB PebBaseAddress - Specifies the base address of the processes PEB.

KPRIORITY BasePriority - Specifies the base priority of the process.

KAFFINITY AffinityMask - Specifies the default affinity mask assigned
to each thread in the process during thread creation.

ProcessQuotaLimits - Data type is PQUOTA_LIMITS.

QUOTA_LIMITS Structure

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 14

ULONG PagedPoolLimit - Specifies the maximum amount of paged pool
(in bytes) that can be used by the process.

ULONG NonPagedPoolLimit - Specifies the maximum amount of
nonpaged pool (in bytes) that can be used by the process.

ULONG MinimumWorkingSetSize - Specifies the minimum working set
size (in bytes) for the process.

ULONG MaximumWorkingSetSize - Specifies the maximum working set
size (in bytes) for the process.

ULONG PagefileLimit - Specifies the maximum amount of pagefile
space (in bytes) that can be used by the process.

TIME TimeLimit - Specifies the maximum number of 100ns units that
the process can execute for.

ProcessIoCounters - Data type is PIO_COUNTERS.

IO_COUNTERS Structure

ULONG ReadOperationCount - Specifies the number of read I/O
operations performed by the process.

ULONG WriteOperationCount - Specifies the number of write I/O
operations performed by the process.

ULONG OtherOperationCount - Specifies the number of other I/O
operations (not read or write) performed by the process.

LARGE_INTEGER ReadTransferCount - Specifies the number of bytes
transferred through read I/O operations.

LARGE_INTEGER WriteTransferCount - Specifies the number of bytes
transferred through write I/O operations.

LARGE_INTEGER OtherTransferCount - Specifies the number of bytes
transferred through other I/O operations.

ProcessVmCounters - Data type is PVM_COUNTERS.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 15

VM_COUNTERS Structure

ULONG PeakVirtualSize - Specifies the largest virtual address space size
(in bytes) that the process has reached.

ULONG VirtualSize - Specifies the current virtual address space size (in
bytes) of the process.

ULONG PageFaultCount - Specifies the number of pagefaults incurred
by the process.

ULONG PeakWorkingSetSize - Specifies the largest working set size (in
bytes) that the process has reached.

ULONG WorkingSetSize - Specifies the current working set size (in
bytes) of the process.

ULONG QuotaPeakPagedPoolSize - Specifies the largest amount of
paged pool (in bytes) that the process has used and has been
charged quota for.

ULONG QuotaPagedPoolSize - Specifies the current amount of paged
pool (in bytes) in use by the process and being charged to the
process.

ULONG QuotaNonPeakPagedPoolSize - Specifies the largest amount of
nonpaged pool (in bytes) that the process has used and has been
charged quota for.

ULONG QuotaNonPagedPoolSize - Specifies the current amount of
nonpaged pool (in bytes) in use by the process and being charged
to the process.

ULONG PagefileUsage - Specifies the current amount of pagefile space
(in bytes) in use by the process.

ProcessTimes - Data type is PKERNEL_USER_TIMES.

KERNEL_USER_TIMES Structure

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 16

TIME UserTime - Specifies the number of 100ns units that the process
has spent executing in user mode.

TIME KernelTime - Specifies the number of 100ns units that the process
has spent executing in kernel mode.

TIME CreateTime - Specifies the time that the process was created.

TIME ExitTime - Specifies the time that the process terminated.

ProcessLdtInformation - Data type is PPROCESS_LDT_INFORMATION.

PROCESS_LDT_INFORMATION Structure

ULONG Start - Specifies the starting offset in the LDT to return
descriptors from. It must be 0 mod 8. If this value is larger than
the current size of the LDT, no information will be put into the
LdtEntries field.

ULONG Length - Supplies the length of the section of the LDT to return.
Must be 0 mod 8. Returns the length of the Ldt. Will always be
set.

LDT_ENTRY LdtEntries[1] - Variable size array of LDT_ENTRYs, is the
actual Ldt data in hardware format.

ProcessInformationLength - Specifies the length in bytes of the process
information buffer (i.e. size of the information structure).

ReturnLength - An optional parameter that if specified, receives the number of
bytes placed in process information buffer.

3.8 NtSetInformationProcess

Selected information can be set in a process using the NtSetInformationProcess
function.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 17

NTSTATUS
NtSetInformationProcess(

IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,
IN PVOID ProcessInformation,
IN ULONG ProcessInformationLength
);

Parameters:

ProcessHandle - A variable that specifies the handle to a process to set
information into.

ProcessInformationClass - A variable that specifies the type of information to set
into the specified process object.

ProcessInformationClass Values

ProcessBasePriority - Sets the base priority of the specified process. This
information class value requires PROCESS_SET_INFORMATION access
to the process.

ProcessQuotaLimits - Sets the quota limits associated with the process. This
information class value requires PROCESS_SET_QUOTA access to the
process. If an attempt is made to increase quota, a privilege check is
done to ensure that the calling process has TBD privilege.

ProcessAccessToken - Sets the primary access token of the specified process.
This information class requires PROCESS_SET_INFORMATION access to
the process. Furthermore, the caller must have
SeAssignPrimaryTokenPrivilege privilege.

Since the process access token is inherited during process creation, this
operation only needs to be performed when a process is being created
for a new user or for a privileged application.

ProcessDebugPort - Sets the debug port of the specified process. If the
process already has a debug port either through process creation, or a
previous call to NtSetInformationProcess then an error is returned.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 18

This information class requires PROCESS_SET_PORT access to the
process.

ProcessExceptionPort - Sets the exception port of the specified process. If the
process already has an exception port either through process creation,
or a previous call to NtSetInformationProcess then an error is
returned. This information class requires PROCESS_SET_PORT access to
the process.

ProcessLdtInformation - Returns the contents of the Ldt for the process.
Requires PROCESS_VM_WRITE access to the process. Returns
STATUS_NOT_SUPPORTED on non i386 (and compatible) processors.

ProcessLdtSize - Returns the size of the Ldt for the process.
PROCESS_VM_WRITE access required. Returns
STATUS_NOT_SUPPORTED on non i386 (and compatible) processors.

ProcessInformation - A pointer to a buffer that contains the information to set in
the specified process. The format and contents of the buffer depend on the
specified information class being queried.

ProcessInformation Format by Information Class

ProcessBasePriority - Data type is KPRIORITY.

KPRIORITY BasePriority - Specifies the base priority of the process.

ProcessQuotaLimits - Data type is PQUOTA_LIMITS.

QUOTA_LIMITS Structure

ULONG PagedPoolLimit - Specifies the maximum amount of paged pool
(in bytes) that can be used by the process.

ULONG NonPagedPoolLimit - Specifies the maximum amount of
nonpaged pool (in bytes) that can be used by the process.

ULONG MinimumWorkingSetSize - Specifies the minimum working set
size (in bytes) for the process.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 19

ULONG MaximumWorkingSetSize - Specifies the maximum working set
size (in bytes) for the process.

ULONG PagefileLimit - Specifies the maximum amount of pagefile
space (in bytes) that can be used by the process.

TIME TimeLimit - Specifies the maximum number of 100ns units that
the process can execute for.

ProcessAccessToken - Data type is PHANDLE. The handle is expected to be to
a Token object. The handle must have been opened to provide
TOKEN_ASSIGN_PRIMARY access.

ProcessDebugPort - Data type is PHANDLE.

ProcessExceptionPort - Data type is PHANDLE.

ProcessLdtInformation - Data type is PPROCESS_LDT_INFORMATION.

PROCESS_LDT_INFORMATION Structure

ULONG Start - Offset in Ldt of first entry to set. Must be 0 mod 8.

ULONG Length - Length of section of Ldt to set. Must be 0 mod 8.

LDT_ENTRY LdtEntries[1] - Variable size array of LDT_ENTRYs, is the
actual Ldt data in hardware format.

ProcessLdtSize - Data type is PPROCESS_LDT_SIZE.

PROCESS_LDT_SIZE Structure

ULONG Length - Size to set Ldt to. Setting 0 sets a null Ldt. Can be used
to truncate the Ldt. Must be 0 mod 8.

ProcessInformationLength - Specifies the length in bytes of the process
information buffer.

4. Thread Object APIs

The following programming interfaces support the thread object:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 20

NtCreateThread - Creates a thread object.
NtTerminateThread - Terminates a thread object.
NtCurrentThread - Identifies the currently executing thread.
NtCurrentTeb - Returns the address of the current thread's Thread Environment

Block (TEB).
NtSuspendThread - Suspends user-mode execution of a thread.
NtResumeThread - Resumes user-mode execution of a thread.
NtGetContextThread - Returns the user-mode context of a thread.
NtSetContextThread - Sets the user-mode context of a thread.
NtOpenThread - Returns a handle to a thread object.
NtQueryInformationThread - Returns information about the thread.
NtSetInformationThread - Sets information about the thread.
NtImpersonateThread - Set one thread to be impersonating another thread.
NtAlertThread - Alerts the specified thread.
NtTestAlert - Tests for an alert condition.
NtAlertResumeThread - Alerts and resumes the specified thread.
NtRegisterThreadTerminationPort - Adds a port notification descriptor to the

specified thread.

4.1 Access Type And Privilege Information

Object type-specific access types:

The object type-specific access types are defined below.

THREAD_TERMINATE - Required to terminate a thread.

THREAD_SUSPEND_RESUME - Required to suspend or resume a thread.

THREAD_ALERT - Required to alert a thread using either NtAlertThread or
NtAlertResumeThread.

THREAD_GET_CONTEXT - Required to read a thread's context (using
NtGetContextThread).

THREAD_SET_CONTEXT - Required to modify a thread's context (using
NtSetContextThread).

THREAD_SET_INFORMATION - Required to modify certain attributes of a
thread.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 21

THREAD_QUERY_INFORMATION - Required to read certain attributes of a
thread. This access type is also needed to open the impersonation token of a
thread (using NtOpenThreadToken()).

THREAD_SET_THREAD_TOKEN - Required to explicitly assign an impersonation
token to the thread. In some cases, impersonation will happen
automatically (e.g., as a result of a call from a client via LPC). However, to
explicitly assign an impersonation token (via a handle) to a thread (also via
a handle), requires this access to the thread.

THREAD_IMPERSONATE - Required to directly impersonate a thread. In some
instances this access is not required to impersonate a thread. In particular,
when a thread calls a server using an communication session layer that
supports security quality of service(1), then the server does not need to
directly access the thread to impersonate. However, in some cases it is
desireable to allow a server to impersonate a thread without using a
communication session layer to impersonate a client. In that case, the target
client thread may be opened for this access, and then a call made to
NtImpersonateThread().

Generic Access Masks:

The object type-specific mapping of generic access types to non-generic access
types for this object type are:

1 See the Windows NT Local Security Specification for more on security quality of service.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 22

GENERIC_READ STANDARD_READ |
THREAD_GET_CONTEXT |
THREAD_QUERY_INFORMATION

GENERIC_WRITE STANDARD_WRITE |
THREAD_TERMINATE |
THREAD_SUSPEND_RESUME |
THREAD_THREAD_ALERT |
THREAD_SET_CONTEXT |
THREAD_SET_INFORMATION

GENERIC_EXECUTE STANDARD_EXECUTE |
THREAD_SET_THREAD_TOKEN |
SYNCHRONIZE

Standard Access Types:

This object type supports the optional SYNCHRONIZE standard access type. All
required access types are supported by the object manager.

The mask of all supported access types for this object is:

THREAD_ALL_ACCESS STANDARD_RIGHTS_REQUIRED |
SYNCHRONIZE |
THREAD_GET_CONTEXT |
THREAD_QUERY_INFORMATION |
THREAD_TERMINATE |
THREAD_SUSPEND_RESUME |
THREAD_THREAD_ALERT |
THREAD_SET_CONTEXT |
THREAD_SET_INFORMATION |
THREAD_SET_THREAD_TOKEN |
THREAD_IMPERSONATE |
THREAD_DIRECT_IMPERSONATION

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 23

4.2 NtCreateThread

A thread object can be created and a handle opened for access to the thread with the
NtCreateThread function:

NTSTATUS
NtCreateThread(

OUT PHANDLE ThreadHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
IN HANDLE ProcessHandle,
OUT PCLIENT_ID ClientId,
IN PCONTEXT ThreadContext,
IN PINITIAL_TEB InitialTeb,
IN BOOLEAN CreateSuspended
);

Parameters:

ThreadHandle - A pointer to a variable that will receive the thread object handle
value.

DesiredAccess - The desired types of access to the created thread.

ObjectAttributes - An optional pointer to a structure that specifies the object's
attributes. Refer to the Object Management Specification for details. Note that
OBJ_PERMANENT, OBJ_EXCLUSIVE, OBJ_OPEN_IF, and OBJ_OPEN_LINK are
not valid attributes for a thread object.

ProcessHandle - An open handle to the process object that the thread is to run in.
The subject thread must have PROCESS_CREATE_THREAD access to this
process. The value of this argument may be the value returned by
NtCurrentProcess to specify that the new thread is to be created in the
context of the current process.

ClientId - A pointer to a structure that will receive the client identifier of the new
thread. Each thread in the system is assigned a client identifier value. A
client identifier remains valid from the time the thread is created until it is
terminated. The value of the client identifier is unique for each thread in the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 24

system. The client identifier contains two fields. One field is unique for each
process in the system, and one field is unique for each thread in the system.

ClientId Structure

ULONG UniqueProcess - Unique value for each process in the system.

ULONG UniqueThread - Unique value for each thread in the system.

ThreadContext - A pointer to the structure that contains the new thread's initial
user mode context.

InitialTeb - A pointer to a structure that specifies initial values for portions of the
thread's TEB.

InitialTeb Structure

PVOID StackBase - Contains the base address of the thread's stack.

PVOID StackLimit - Contains the stack limit for the thread.

PVOID EnvironmentPointer - Unspecified.

CreateSuspended - A parameter that specifies whether or not the thread is to be
created suspended. If the value of this parameter is TRUE, then the thread is
created in a suspended state. The thread will not begin executing until it is
explicitly resumed using NtResumeThread. If the value of this parameter is
FALSE, then the thread begins execution in user-mode using the specified
context.

Creating a thread object causes a new thread to be created. The new thread is assigned
some of its initial attributes from the process object it is being created to run in.

o The new thread's priority is the same as its process's base priority.

o The new thread's processor affinity mask is the same as its process's default
processor affinity mask.

o The new thread's access token is the same as its process's.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 25

All threads begin execution with a user-mode APC to system code that is part of each
processes address space. This code optionally initializes the loaders data structures
and resolves dynamic link library references. When the APC routine returns, the
thread's context is restored. Normally, this context is the same as that specified during
thread creation.

The thread object is a waitable object. A wait performed on a thread object is satisfied
when the thread becomes signaled. A thread becomes signaled when it terminates.

Each thread is created with a Thread Environment Block (TEB). The TEB is readable
and writeable by the application, but can only be deleted by the system. The TEB is
partially initialized by the system and is placed in the address space of the specified
process.

The TEB contains thread local context such as stack base and bounds, environment
pointer (used by subsystems/dll's), thread local storage descriptors, and the thread's
client id. The thread's creator is responsible for initializing the TEB's stack base and
bounds since it is also responsible for creating the thread's stack.

The function NtCurrentTeb returns the address of the current thread's TEB. Access to
TEB locations must be made through this API. The TEB of each thread is located at a
different address. The system will guarantee that TEB access of the form:

foo = NtCurrentTeb()->StackBase;
NtCurrentTeb()->EnvironmentPointer = &PsxEnvironment;

will cause locations in the current thread's TEB to be referenced.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 26

4.3 NtTerminateThread

A thread can be terminated with the NtTerminateThread function:

NTSTATUS
NtTerminateThread(

IN HANDLE ThreadHandle OPTIONAL,
IN NTSTATUS ExitStatus
);

Parameters:

ThreadHandle - An optional parameter, that if specified, supplies an open handle
with THREAD_TERMINATE access to the thread to terminate. If this
parameter is not supplied, then THREAD_TERMINATE access is required to
the current thread and the API terminates the current thread in the process
except for the case where the current thread is the last thread in the current
process. In this case, a status code of STATUS_CANT_TERMINATE_SELF is
returned.

ExitStatus - A value that specifies the exit status of the thread to be terminated.

Terminating a thread causes the specified thread to terminate its execution. If the
target thread is currently suspended, it will be resumed so that it can begin
termination. Once termination begins, the thread will no longer execute in either user
mode or kernel mode. The handle to the thread being terminated is not closed by this
service. If the thread was suspended and resumed by this API an informational status
code of STATUS_THREAD_WAS_SUSPENDED is returned.

In order to terminate a thread, the calling thread must have THREAD_TERMINATE
access to the specified thread.

Once a thread has become the target thread in a valid call to NtTerminateThread (i.e.
the calling thread has THREAD_TERMINATE access to the target thread), the target
thread will terminate without executing another instruction in user-mode. This is
accomplished by queueing a special kernel-mode APC to the thread which queues a

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 27

user-mode APC to the target thread and user-mode alerts the thread. The kernel
routine associated with the user-mode APC will cause the thread to terminate itself. To
guarantee the delivery of the user-mode APC (i.e. to bypass the alert mechanism), the
user APC pending bit in the target thread is set during the execution of the special
kernel-mode APC.

During thread termination, the terminating thread's port notification list is processed.
For each entry in the list, a thread termination datagram is sent to the port. The system
blindly ignores any errors sending this datagram (e.g. port disconnect...).

After the thread is terminated (and set to the signaled state), the thread's TEB is
deallocated from the address space of the thread's process and its exit status is
updated to reflect the value of the exit status argument. The system does not delete the
thread's user-mode stack.

Once terminated, the thread's client identifier is available for re-use.

If the terminating thread is the last thread in its process, its process is terminated (via
an internal call to NtTerminateProcess(NtCurrentProcess(), ExitStatus);). There is
no mechanism that a subsystem can use to prevent this from happening.

4.4 NtCurrentThread

An object handle to the current thread can be fabricated with the NtCurrentThread
function:

HANDLE
NtCurrentThread();

The NtCurrentThread function returns a pseudo handle to the currently executing
thread. The handle can be used whenever a handle to a thread object is required (e.g.
NtTerminateThread).

When the system is asked to translate an object handle into an object pointer, the
object type is a thread object, and the object handle is the pseudo handle returned by
NtCurrentThread, the following occurs.

o The SECURITY_DESCRIPTOR of the current thread is checked against the
desired access specified in the object translation call. If access is denied, a
failure status is returned to the caller.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 28

o If access is allowed, the appropriate reference count in the current thread object
is adjusted and a pointer to the current thread object is returned.

This function is designed mainly for the use of native applications so that they can
refer to their own thread in thread termination calls, thread creation calls, and thread
control calls without having to explicitly open their thread by name or otherwise
obtain a handle to their own thread.

4.5 NtCurrentTeb

The address of the current thread's TEB can be located with the NtCurrentTeb
function:

PTEB
NtCurrentTeb()

The NtCurrentTeb function returns the address of the current thread's TEB. The TEB
consists of a single page in the address space of the thread's process. The page is
allocated and deallocated by the system at thread creation/thread termination. Only
the system may delete a thread's TEB. The TEB contains the following:

Teb Structure

PEXCEPTION_REGISTRATION_RECORD ExceptionRegistrationRecord -
Contains the base address of the thread's exception handler chain. This
field is only used on implementations that require this sort of exception
handler registration.

PVOID StackBase - Contains the base address of the thread's stack.

PVOID StackLimit - Contains the stack limit for the thread.

PVOID EnvironmentPointer - Unspecified.

ULONG Version - Unspecified.

PVOID ArbitraryUserPointer - Unspecified.

CLIENT_ID ClientId - Contains the client identifier of the thread.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 29

PVOID ActiveRpcHandle - Reserved for use by the Microsoft Remote
Procedure Call Runtime Package.

PVOID ThreadLocalStoragePointer - Reserved for runtime support.

PPEB ProcessEnvironmentBlock - Contains the base address of the thread's
PEB.

PVOID UserReserved[USER_RESERVED_TEB] - TEB locations reserved for
applications.

PVOID SystemReserved[SYSTEM_RESERVED_TEB] - TEB locations reserved
for Microsoft system software.

4.6 NtSuspendThread

A thread can be suspended with the NtSuspendThread function:

NTSTATUS
NtSuspendThread(

IN HANDLE ThreadHandle,
OUT PULONG PreviousSuspendCount OPTIONAL
);

Parameters:

ThreadHandle - A handle to the thread to be suspended.

PreviousSuspendCount - A pointer to the variable that receives the thread's
previous suspend count.

Suspending a thread causes the thread to stop executing in user-mode. If the thread is
resumed without altering its context and its previous suspend count is one, then the
thread resumes execution at the point that it was suspended. If the specified thread is
either terminated or is currently terminating, an error status of
STATUS_THREAD_IS_TERMINATING is returned.

The suspension of a thread is controlled by a suspend count. This count has a
maximum value. If an attempt is made to suspend a thread whose suspend count is at
its maximum, an error is returned When an attempt is made to suspend a thread, the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 30

thread's suspend count is incremented. If the previous value of the suspend count was
zero, then a kernel mode APC is queued to the thread. When the APC executes, it
causes the thread to wait on its built-in suspend semaphore (the wait is not alertable).
The previous value of the thread's suspend count is returned to the caller. A non-zero
value indicates that the thread was previously suspended. The value plus 1 specifies
the number of calls to NtResumeThread that must be made in order to bring the
thread out of the suspend state.

This service requires THREAD_SUSPEND_RESUME access to the specified thread.

4.7 NtResumeThread

A thread can be resumed with the NtResumeThread function:

NTSTATUS
NtResumeThread(

IN HANDLE ThreadHandle,
OUT PULONG PreviousSuspendCount OPTIONAL
);

Parameters:

ThreadHandle - A handle to the thread to be resumed.

PreviousSuspendCount - A pointer to the variable that receives the thread's
previous suspend count.

Resuming a thread reverses the effects of a previous call to NtSuspendThread.

When an attempt is made to resume a thread, the thread's suspend count is examined.
If the count is zero, then the service returns the suspend count. Otherwise, the count is
decremented and if the count reaches zero, the thread resumes. In either case, the
previous value of the thread's suspend count is returned. A non-zero value indicates
that the thread was previously suspended. The value minus 1 specifies the number of
calls to NtResumeThread that must be made in order to bring the thread out of the
suspend state.

This service requires THREAD_SUSPEND_RESUME access to the specified thread.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 31

4.8 NtGetContextThread

A thread's user-mode machine context can be read using the NtGetContextThread
function:

NTSTATUS
NtGetContextThread(

IN HANDLE ThreadHandle,
IN OUT PCONTEXT ThreadContext
);

Parameters:

ThreadHandle - An open handle to the thread object from which to retrieve
context information.

ThreadContext - A pointer to the structure that will receive the user mode context
of the specified thread. The initial value of the context flags field indicates
the type and amount of context returned by this function.

The NtGetContextThread function is designed to facilitate the implementation of
debuggers, and to allow subsystems to control the execution flow of their threads (e.g.;
emulate signal delivery or APC delivery).

The NtGetContextThread function is absolutely NOT PORTABLE! The layout,
contents, and length of the PCONTEXT structure depend on the processor and system
architecture of the system servicing the NtGetContextThread function.

This service requires THREAD_GET_CONTEXT access to the specified thread.

The NtGetContextThread function is implemented by:

o Validating its arguments and translating the thread handle.

o Assuming everything is valid, it allocates a buffer for the thread's user-mode
context. It then queues a special kernel-mode APC to the thread, and waits on an
event located in the allocated buffer.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 32

o When the APC executes, the thread dumps its user-mode context into the buffer
and sets an event (located in the allocated buffer) indicating that the context
dump is complete.

\ The APC is actually a special kernel mode APC, so that it can work
even on a thread that is stuck in a suspend. \

o The target thread returns to whatever it was doing, and the thread calling
NtGetContextThread copies the user-mode context from the allocated buffer
into the thread context buffer passed in the system service. The allocated buffer
is freed and the NtGetContextThread service completes.

The specified thread does not need to be in a suspend state in order to call
NtGetContextThread (subsystems and debuggers must explicitly do this if that is
what is required). There is nothing to prevent a thread from calling
NtGetContextThread on itself.

4.9 NtSetContextThread

A thread's user-mode machine context can be altered using the NtSetContextThread
function:

NTSTATUS
NtSetContextThread(

IN HANDLE ThreadHandle,
IN OUT PCONTEXT ThreadContext
);

Parameters:

ThreadHandle - An open handle to the thread whose context is to be set.

ThreadContext - A pointer to the structure that contains the user-mode context to
be restored into the specified thread. The initial value of the context flags
field indicates the type and amount of context that will be restored by this
function.

The NtSetContextThread function is designed to facilitate the implementation of
debuggers, and to allow subsystems to control the execution flow of their threads (e.g.;
emulate signal delivery).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 33

The NtSetContextThread function is absolutely NOT PORTABLE! The layout, contents,
and length of the PCONTEXT structure depend on the processor and system
architecture of the system servicing the NtSetContextThread function. Some fields of
the PCONTEXT structure contain registers that contain both user-mode and kernel-
mode context. Setting kernel-mode portions of these registers is not an error, but is
ignored.

This service requires THREAD_SET_CONTEXT access to the specified thread.

The NtSetContextThread function is implemented by:

o Validating its arguments and translating the thread handle.

o Any kernel-mode only portions of fields in the PCONTEXT structure are set to a
benign value.

o Assuming everything is valid, it allocates a buffer for the thread's user-mode
context and copies the contents of the ThreadContext parameter into this buffer.
It then queues a kernel-mode APC to the thread, and waits on an event located
in the allocated buffer.

o When the APC executes, it writes the thread's user-mode context using the
contents of the buffer and sets an event (located in the allocated buffer)
indicating it is done with the buffer.

\ The APC is actually a special kernel mode APC, so that it can work
even on a thread that is stuck in a suspend. \

o The target thread returns to whatever it was doing. When the target thread
transitions into user-mode, its user-mode context will be restored using the
context passed in during the call.

o The thread calling NtSetContextThread frees the allocated buffer and
completes the service.

The specified thread does not need to be in a suspend state in order to call
NtSetContextThread (subsystems and debuggers must explicitly do this if that is what
is required). There is also nothing that prevents the thread making the call to
NtSetContextThread from being the target thread in the call.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 34

4.10 NtOpenThread

A handle to a thread object can be created with the NtOpenThread function:

NTSTATUS
NtOpenThread(

OUT PHANDLE ThreadHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN PCLIENT_ID ClientId OPTIONAL
);

Parameters:

ThreadHandle - A pointer to a variable that will receive the thread object handle
value.

DesiredAccess - The desired types of access to the opened thread. For a complete
description of desired access flags, refer to the NtCreateThread API
description.

ObjectAttributes - An pointer to a structure that specifies the object's attributes.
Refer to the Object Management Specification for details. Note that
OBJ_PERMANENT, OBJ_EXCLUSIVE, OBJ_OPEN_IF, and OBJ_OPEN_LINK are
not valid attributes for a thread object.

ClientId - An optional parameter that if specified, supplies the client identifier of
the thread to be opened. It is an error to specify this parameter along with
an ObjectAttributes variable that contains a thread name.

Opening a thread object causes a new handle to be created. The access that the new
handle has to the thread object is a function of the desired access and any
SECURITY_DESCRIPTOR on the thread object.

4.11 NtQueryInformationThread

Selected information about a thread can be retrieved using the
NtQueryInformationThread function.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 35

NTSTATUS
NtQueryInformationThread(

IN HANDLE ThreadHandle,
IN THREADINFOCLASS ThreadInformationClass
OUT PVOID ThreadInformation,
IN ULONG ThreadInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters:

ThreadHandle - An open handle to the thread object from which to retrieve
information.

ThreadInformationClass - A variable that specifies the type of information to
retrieve from the specified thread object.

ThreadInformationClass Values

ThreadBasicInformation - Returns the basic information about the specified
thread. This information class value requires
THREAD_QUERY_INFORMATION access to the thread.

ThreadTimes - Returns the cpu time usage of the specified thread. This
information class requires THREAD_QUERY_INFORMATION access to
the thread.

ThreadDescriptorTableEntry - Returns a descriptor from appropriate
descriptor table for the thread. This information class will return a
descriptor from either the Ldt, or the Gdt for the thread. This
information class is only available on x86 processors, and returns
STATUS_NOT_IMPLEMENTED on other processors. This information
class requires THREAD_QUERY_INFORMATION access to the thread.

ThreadInformation - A pointer to a buffer that will receive information about the
specified thread. The format and contents of the buffer depend on the
specified information class being queried.

ThreadInformation Format by Information Class

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 36

ThreadBasicInformation - Data type is PTHREAD_BASIC_INFORMATION.

THREAD_BASIC_INFORMATION Structure

ULONG ExitStatus - Specifies the exit status of the thread. This field
only contains meaningful information if the thread is in the
signaled state; otherwise, it contains a value of "exit status
pending".

PTEB TebBaseAddress - Specifies the virtual address of the thread's
TEB.

CLIENT_ID ClientId - Specifies the thread's client identifier.

KPRIORITY Priority - Specifies the current priority of the thread.

KAFFINITY AffinityMask - Specifies the current processor affinity mask
of the thread.

ThreadTimes - Data type is PKERNEL_USER_TIMES.

KERNEL_USER_TIMES Structure

TIME UserTime - Specifies the number of 100ns units that the thread
has spent executing in user mode.

TIME KernelTime - Specifies the number of 100ns units that the thread
has spent executing in kernel mode.

TIME CreateTime - Specifies the time that the thread was created.

TIME ExitTime - Specifies the time that the thread terminated.

ThreadDescriptorTableEntry - Data type is PDESCRIPTOR_TABLE_ENTRY

DESCRIPTOR_TABLE_ENTRY Structure

ULONG Selector - Specifies the number of the descriptor to return.

LDT_ENTRY Descriptor - Returns the descriptor contents.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 37

ThreadInformationLength - Specifies the length in bytes of the thread information
buffer (i.e.: the size of the information structure).

ReturnLength - An optional parameter that if specified, receives the number of
bytes placed in thread information buffer.

4.12 NtSetInformationThread

Selected information can be set in a thread using the NtSetInformationThread
function.

NTSTATUS
NtSetInformationThread(

IN HANDLE ThreadHandle,
IN THREADINFOCLASS ThreadInformationClass,
IN PVOID ThreadInformation,
IN ULONG ThreadInformationLength
);

Parameters:

ThreadHandle - A variable that specifies the handle to the thread to set
information into.

ThreadInformationClass - A variable that specifies the type of information to set
into the specified thread object.

ThreadInformationClass Values

ThreadPriority - Sets the priority of the specified thread. This information
class value requires THREAD_SET_INFORMATION access to the thread.

ThreadAffinityMask - Sets the processor affinity mask of the specified thread.
This information class requires THREAD_SET_INFORMATION access to
the thread.

ThreadImpersonationToken - A handle to an impersonation token to be
assigned as the impersonation token of the thread. This requires
THREAD_SET_THREAD_TOKEN to the thread object and

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 38

TOKEN_IMPERSONATE access to the token object. If the handle value
is null, then any impersonation already in progress is discontinued.

ThreadInformation - A pointer to a buffer that contains the information to set in
the specified thread. The format and contents of the buffer depend on the
specified information class being queried.

ThreadInformation Format by Information Class

ThreadPriority - Data type is PKPRIORITY.

KPRIORITY Priority - Specifies the priority of the thread.

ThreadAffinityMask - Data type is PKAFFINITY.

KAFFINITY AffinityMask - Specifies the affinity mask assigned to the
specified thread. The specified mask is anded with the process'
default affinity mask and with the system wide affinity mask
(which specifies the entire set of active processors in the system).
The net effect is to limit a threads allowable affinity mask such
that it is a subset of the maximum affinity mask in the current
configuration, and is also a subset of the affinity allowed to the
process. Attempting to set an affinity that specifies no processors is
an error condition.

ThreadImpersonationToken - Data type is PHANDLE. The handle value is
that of an impersonation token, or may be null to indicate
impersonation is to be discontinued.

ThreadInformationLength - Specifies the length in bytes of the thread information
buffer.

4.13 NtImpersonateThread

Sets a server thread to be impersonating a client thread.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 39

NTSTATUS
NtImpersonateThread(

IN HANDLE ServerThread,
IN HANDLE ClientThread
);

Parameters:

ServerThread - A handle to the thread which is to be set to impersonate the client
thread. This handle must be open for THREAD_SET_THREAD_TOKEN
access.

ClientThread - A handle to the thread to be impersonated. This handle must be
open for THREAD_IMPERSONATE access.

This service causes the thread specified by the ServerThread argument to impersonate
the thread specified by the ClientThread argument. The impersonation will have the
following security quality of service parameters:

o Delegation Level.

o Dynamic Tracking.

o Not EffectiveOnly.

4.14 NtAlertThread

A thread can be alerted with the NtAlertThread function:

NTSTATUS
NtAlertThread(

IN HANDLE ThreadHandle
);

Parameters:

ThreadHandle - A handle to the thread to be alerted.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 40

This function provides a mechanism that can be used to interrupt thread execution in
the caller's previous mode (if this service is called from user mode the alert mode is
user; otherwise, the alert mode is kernel) at well defined points.

Each thread has an alerted flag for each of the processor modes user and kernel. These
flags are set by calling the NtAlertThread function.

If NtAlertThread is called and the target thread is in a wait state, then several
additional tests are performed to determine the correct action to take.

If the mode of the wait is user (e.g. NtWait was called from user mode), and the alert
mode is user, then a thread specific user mode APC is queued to the thread and the
thread's wait will complete with a status of "alerted". When the APC executes it will
raise the "alerted" condition.

If the mode of the wait is user or kernel, and the wait is alertable, then the thread's
wait will complete with a status of "alerted".

If the target thread is not in a wait state, then the appropriate alerted bit in the target
thread is set. Executing an NtTestAlert, or an alertable NtWait will clear the bit,
return a status, and possibly queue a user mode APC.

This service requires THREAD_ALERT access to the specified thread.

4.15 NtTestAlert

A thread can test its alerted flag using the NtTestAlert function.

NTSTATUS
NtTestAlert();

The NtTestAlert function tests the calling thread's alerted flag for the thread's
previous processor mode (i.e. if this function is called from user mode, the user mode
alerted flag is tested; otherwise, the kernel mode alerted flag is tested). If the
appropriate alerted flag is set, then the status value "alerted" is returned and the
alerted flag is cleared; otherwise, a "normal" status value is returned. If the alerted flag
was set and the previous mode is user, then a user APC is queued to the thread. When
the APC executes, it will raise the "alerted" condition.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 41

In addition, NtTestAlert tests whether a user APC should be delivered. If the previous
mode is user and the user APC queue contains an entry, then APC pending is set in the
thread (this will cause an APC to be delivered to the thread on a transition from kernel
mode into user mode).

4.16 NtAlertResumeThread

A thread can be alerted and resumed with the NtAlertResumeThread function:

NTSTATUS
NtAlertResumeThread(

IN HANDLE ThreadHandle,
OUT PULONG PreviousSuspendCount OPTIONAL
);

Parameters:

ThreadHandle - A handle to the thread to be alerted and resumed.

PreviousSuspendCount - A pointer to the variable that receives the thread's
previous suspend count.

Resuming and alerting a thread reverses the effects of a previous call to
NtSuspendThread and causes the thread to be interrupted out of an alertable kernel
mode wait with a status of "alerted". This function is provided to allow a subsystem to
resume a thread and interrupt it out of an interruptible system service.

When an attempt is made to resume and alert a thread, the thread is alerted with a
kernel mode alert, and its suspend count is examined. If the count is zero, then the
service returns the suspend count. Otherwise, the count is decremented and if the
count reaches zero, the thread resumes. In either case, the previous value of the
thread's suspend count is returned. A non-zero value indicates that the thread was
previously suspended. The value minus 1 specifies the number of calls to
NtResumeThread that must be made in order to bring the thread out of the suspend
state.

If the thread was waiting in a kernel mode alertable wait, its wait completes with a
status of alerted.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 42

This service requires THREAD_SUSPEND_RESUME and THREAD_ALERT access to the
specified thread.

4.17 NtRegisterThreadTerminationPort

A thread can arrange for a port to be notified when it terminates using
NtRegisterThreadTerminationPort.

NTSTATUS
NtRegisterThreadTerminationPort(

IN HANDLE PortHandle
);

Parameters:

ULONG PortHandle - A handle to the port object that is to be notified when the subject
thread terminates.

The NtRegisterThreadTerminationPort function is designed to allow a thread to
specify a port object that is to be send a thread termination datagram when the subject
thread terminates. Multiple calls to this service cause multiple ports to be notified
when the thread terminates.

Each thread has a list of ports that are to be notified via a thread termination
datagram when the thread terminates. When a thread terminates, the list is scanned
and for each entry in the list, a thread termination datagram specifying the thread's
client identifier and exit status is sent to the port. If during the send operation any
errors occur (e.g. the port's connection was broken...) the system skips to the next
entry in the list.

\ There is no need to provide this type of service at the process level
since all of the process's port objects are closed during process
termination. When a port object is closed (for the last time) its
connections are broken, and the port that it was connected to is notified.
\

The service is useful for subsystems that maintain per thread state (e.g. The
Presentation Manager (PM) Subsystem). During the subsystem initialization that
occurs in the client thread (e.g. calling WinInitialize), a call can be made to

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 43

NtRegisterThreadTerminationPort specifying the port to the subsystem. When the
thread terminates, the subsystem will receive a thread termination datagram. This
datagram can be used as a signal to the subsystem that allows it to free up any thread
specific resources.

Another use of this service is to allow a process to be notified when one of its own
threads terminates. In order to do this, a multithreaded process creates a port to itself.
A monitor thread monitors this port for thread termination datagrams. Each thread
(in its startup routine) calls NtRegisterThreadTerminationPort specifying the port.
Whenever a thread in the process terminates, the monitor thread is notified via the
termination datagram. The monitor thread can use this event to perform appropriate
actions.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 44

4.18 NtImpersonateThread

NTSTATUS
NtImpersonateThread(
 IN HANDLE ServerThreadHandle,
 IN HANDLE ClientThreadHandle,
 IN PSECURITY_QUALITY_OF_SERVICE SecurityQos
)

Arguments:

ServerThreadHandle - Is a handle to the server thread (the impersonator, or doing
the impersonation). This handle must be open for THREAD_IMPERSONATE
access.

ClientThreadHandle - Is a handle to the Client thread (the impersonatee, or one
being impersonated). This handle must be open for
THREAD_DIRECT_IMPERSONATION access.

SecurityQos - A pointer to security quality of service information indicating what
form of impersonation is to be performed.

Return Value:

STATUS_SUCCESS - Indicates the call completed successfully.

Routine Description:

This routine is used to cause the server thread to impersonate the client thread. The
impersonation is done according to the specified quality of service parameters.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 45

5. System Information API

The following programming interface provide support for querying information about
the system:

NtQuerySystemInformation - Returns information about the system.

5.1 NtQuerySystemInformation

Information about the system can be retreived using the NtQuerySystemInformation
system service.

NTSTATUS
NtQuerySystemInformation(

IN SYSTEM_INFORMATION_CLASS SystemInformationClass,
OUT PVOID SystemInformation,
IN ULONG SystemInformationLength,
OUT PULONG ReturnLength OPTIONAL
)

Parameters:

SystemInformationClass - The system information class about which to retrieve
information.

SystemInformation - A pointer to a buffer which receives the specified
information. The format and content of the buffer depend on the specified
system information class.

SystemInformation Format by Information Class:

SystemBasicInformation - Data type is PSYSTEM_BASIC_INFORMATION

SYSTEM_BASIC_INFORMATION Structure

ULONG OemMachineId - An OEM specific bit pattern that identifies the
machine configuration.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 46

ULONG TimerResolutionInMicroSeconds - The resolution of the
hardware time. All time values in Windows NT are specified as
64-bit LARGE_INTEGER values in units of 100 nanoseconds. This
field allows an application to understand how many of the low
order bits of a system time value are insignificant.

ULONG PageSize - The physical page size for virtual memory objects.
Physical memory is committed in PageSize chunks.

ULONG AllocationGranularity - The logical page size for virtual
memory objects. Allocating 1 byte of virtual memory will actually
allocate AllocationGranularity bytes of virtual memory. Storing
into that byte will commit the first physical page of the virtual
memory.

ULONG MinimumUserModeAddress - The smallest valid user mode
address. The first AllocationGranullarity bytes of the virtual
address space are reserved. This forces access violations for code
the dereferences a zero pointer.

ULONG MaximumUserModeAddress - The largest valid used mode
address. The next AllocationGranullarity bytes of the virtual
address space are reserved. This allows system service routines to
validate user mode pointer parameters quickly.

KAFFINITY ActiveProcessorsAffinityMask - The system wide affinity
mask that specifies the set of processors configured into the
system. This set represents the maximum allowable affinity of any
thread within the system.

CCHAR NumberOfProcessors - The number of processors in the current
hardware configuration.

SystemProcessorInformation - Data type is
SYSTEM_PROCESSOR_INFORMATION

SYSTEM_PROCESSOR_INFORMATION Structure

ULONG ProcessorType - The processor type.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 47

ProcessorType Values:

PROCESSOR_INTEL_386

PROCESSOR_INTEL_486

PROCESSOR_INTEL_860

PROCESSOR_MIPS_R2000

PROCESSOR_MIPS_R3000

PROCESSOR_MIPS_R4000

ULONG ProcessorStepping - The processor stepping. The high order 16
bits specify the stepping letter (0==A, 1==B, etc.) and the low order
16 bits specify the stepping level (e.g. 0, 1, 2, etc.).

ULONG ProcessorOptions - Flags that specify processor options that
may or may not be present. The flags are processor specific.

ProcessOptions flags for PROCESSOR_INTEL_386:

PROCESSOR_OPTION_387 - A 387 co-processor chip is present.

PROCESSOR_OPTION_WEITEK - A Weitek floating pointer co-
processor chip is present.

SystemInformationLength - Specifies the length in bytes of the system
information buffer.

ReturnLength - An optional pointer which, if specified, receives the number
of bytes placed in the system information buffer.

Return Value:

NTSTATUS - STATUS_SUCCESS if the operation is successful and an appropriate
error value otherwise.

The following status values may be returned by the function:

o STATUS_SUCCESS - successful completion.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 48

o STATUS_INVALID_INFO_CLASS - The SystemInformationClass parameter did not
specify a valid value.

o STATUS_INFO_LENGTH_MISMATCH - The value of the SystemInformationLength
parameter did not match the length required for the information class
requested by the SystemInformationClass parameter.

o STATUS_ACCESS_VIOLATION - Either the SystemInformation buffer pointer or
the ReturnLength pointer value specified an invalid address.

6. Executive APIs

The following programming interfaces are available from within the Windows NT
executive:

PsCreateSystemProcess - Creates a system process.
PsCreateSystemThread - Creates a system thread.
PsLookupProcessThreadByCid - Locates the process and thread using the

specified CID.
PsChargePoolQuota - Charges pool quota to the specified process.
PsReturnPoolQuota - Returns pool quota to the specified process.
PsGetCurrentThread - Returns the address of the currently executing thread's

thread object.
PsGetCurrentProcess - Returns the address of the process object that the

currently executing thread is attached to.
ExGetPreviousMode - Returns the processor mode that the thread was executing

in prior to the last trap.
PsRevertToSelf - Reverts the calling thread's access token to its original value.
PsReferencePrimaryToken - This function returns a pointer to the primary

token of a process. The reference count of that primary token is
incremented to protect the pointer returned.

PsDereferencePrimaryToken - This function releases a pointer to a primary
token obtained using PsReferencePrimaryToken().

PsReferenceImpersonationToken - This function returns a pointer to the
impersonation token of a thread. The reference count of that impersonation
token is incremented to protect the pointer returned.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 49

PsDereferenceImpersonationToken - This function releases a pointer to a
primary token obtained using PsReferenceImpersonationToken().

PsOpenTokenOfProcess - This function does the thread specific processing of an
NtOpenThreadToken() service.

PsOpenTokenOfThread - This function does the thread specific processing of an
NtOpenThreadToken() service.

PsImpersonateClient -This routine sets up the specified thread so that it is
impersonating the specified client.

6.1 PsCreateSystemProcess

A system process can be created using PsCreateSystemProcess.

NTSTATUS
PsCreateSystemProcess(

OUT HANDLE ProcessHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
);

Parameters:

ProcessHandle - A pointer to a variable that will receive the process object handle
value.

DesiredAccess - The desired types of access to the created process. For a complete
description of desired access flags, refer to the NtCreateProcess API
description.

ObjectAttributes - An pointer to a structure that specifies the object's attributes.
Refer to the Object Management Specification for details. Note that
OBJ_PERMANENT, OBJ_EXCLUSIVE, OBJ_OPEN_IF, and OBJ_OPEN_LINK are
not valid attributes for a process object.

Creating a system process creates a process object whose address space is initialized so
that the "user" portion of the address space is empty, and the "system" portion of the
address space maps the system. This option is not available from user-mode via
NtCreateProcess. The process inherits its access token and quotas from the initial

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 50

system process. It is created with an empty handle table. The process's debug and
exception ports are NULL.

The system does not treat a process created through this API any differently than any
other process. Any Windows NT API that requires a handle to a process object may
specify a process created through this API.

6.2 PsCreateSystemThread

A system thread that executes in kernel mode can be created and a handle opened for
access to the thread with the PsCreateSystemThread function:

NTSTATUS
PsCreateSystemThread(

OUT PHANDLE ThreadHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
IN HANDLE ProcessHandle OPTIONAL,
OUT PCLIENT_ID ClientId OPTIONAL,
IN PKSTART_ROUTINE StartRoutine,
IN PVOID StartContext
);

Parameters:

ThreadHandle - A pointer to a variable that will receive the thread object handle
value.

DesiredAccess - The desired types of access to the created thread. For a complete
description of desired access flags, refer to the NtCreateThread API
description.

ObjectAttributes - An pointer to a structure that specifies the object's attributes.
Refer to the Object Management Specification for details. Note that
OBJ_PERMANENT, OBJ_EXCLUSIVE, OBJ_OPEN_IF, and OBJ_OPEN_LINK are
not valid attributes for a thread object.

ProcessHandle - An open handle to the process object that the thread is to run in.
The subject thread must have PROCESS_CREATE_THREAD access to this

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 51

process. If this parameter is not supplied, then the thread will be created in
the initial system process.

ClientId - A pointer to a structure that will receive the client identifier of the new
thread.

StartRoutine - Supplies the address of a function in system space that the thread
begins execution at. A return from this function causes the thread to
terminate.

StartContext - Supplies a single argument passed to the thread when it begins
execution.

Creating a system thread begins a separate thread of execution within the system.
System threads may only execute in kernel-mode. A system thread has no TEB, or
user-mode context. It is not possible to terminate a system thread using
NtTerminateThread unless the thread is terminating itself.

6.3 PsLookupProcessThreadByCid

A process and thread can be located by client id using the
PsLookupProcessThreadByCid function:

NTSTATUS
PsLookupProcessThreadByCid(

IN PCID Cid,
OUT PEPROCESS Process OPTIONAL,
OUT PETHREAD Thread
);

Parameters:

Cid - A pointer to the client id whose thread and process are to be located.

Process - An optional parameter that if specified receives a referenced pointer to
the process object associated with the specified client id.

Thread - A parameter that receives a referenced pointer to the thread object
associated with the specified client id.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 52

6.4 PsChargePoolQuota

Pool quota can be charged to the specified process using the PsChargePoolQuota
function:

VOID
PsChargePoolQuota(

IN PEPROCESS Process,
IN POOL_TYPE PoolType,
IN ULONG Amount
);

Parameters:

Process - Supplies the address of a process to charge pool quota to.

PoolType - Supplies the pool type to charge the quota for.

Amount - Supplies the amount of quota to charge to the process.

The PsChargePoolQuota function is designed to charge pool quota to a process subject
to the quota limits of that process. If the quota charge would cause the process to
exceed its quota limit for the specified pool type, then an STATUS_QUOTA_EXCEEDED
exception is raised and the charge is not made. Otherwise, the quota pool usage of the
specified process is adjusted (incremented) to account for the quota being charged to
the process.

6.5 PsReturnPoolQuota

Pool quota can be returned to the specified process using the PsReturnPoolQuota
function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 53

VOID
PsReturnPoolQuota(

IN PEPROCESS Process,
IN POOL_TYPE PoolType,
IN ULONG Amount
);

Parameters:

Process - Supplies the address of a process to return pool quota to.

PoolType - Supplies the pool type to return the quota for.

Amount - Supplies the amount of quota to return to the process.

The PsReturnPoolQuota function is designed to return pool quota to a process to
reverse the effects of a previous call to PsChargePoolQuota. The system will catch
attemps to return more quota to the process than the process has been charged for
and bug check. Otherwise, the quota pool usage of the specified process is adjusted
(decremented) to account for the quota being returned to the process.

6.6 PsGetCurrentThread

The address of the thread object of the currently executing thread is returned using
the GetCurrentThread function:

PETHREAD
PsGetCurrentThread();

6.7 PsGetCurrentProcess

The address of the process object that the currently executing thread is attached to is
returned using the PsGetCurrentProcess function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 54

PEPROCESS
PsGetCurrentProcess();

6.8 KeGetPreviousMode

The processor mode that the current thread was running in prior to the last trap or
interrupt can be determined using the KeGetPreviousMode function:

KPROCESSOR_MODE
KeGetPreviousMode();

The KeGetPreviousMode function is used mainly inside Windows NT system services
to determine the processor mode that the thread was executing in prior to the system
service.

6.9 PsRevertToSelf

The current can switch to its original access token using the PsRevertToSelf function:

VOID
PsRevertToSelf();

The PsRevertToSelf function switches the access token used by the calling thread
back to its original value. This is the same token that would have been in effect if the
thread had never called PsImpersonateThread.

6.10 PsReferencePrimaryToken

PACCESS_TOKEN
PsReferencePrimaryToken(
 IN PEPROCESS Process
)

Arguments:

Process - Supplies the address of the process whose primary token is to be
referenced.

Return Value:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 55

A pointer to the specified process's primary token.

Routine Description:

This function returns a pointer to the primary token of a process. The reference count
of that primary token is incremented to protect the pointer returned.

When the pointer is no longer needed, it should be freed using
PsDereferencePrimaryToken().

6.11 PsDereferencePrimaryToken

VOID
PsDereferencePrimaryToken(
 IN PACCESS_TOKEN PrimaryToken
)

Arguments:

PrimaryToken - Pointer to a token obtained using PsReferencePrimaryToken().

Return Value:

None.

Routine Description:

This function causes the referenced primary token to be dereferenced. This token is
expected to have been referenced using PsReferencePrimaryToken().

6.12 PsReferenceImpersonationToken

PACCESS_TOKEN
PsReferenceImpersonationToken(
 IN PETHREAD Thread,
 OUT PBOOLEAN CopyOnOpen,
 OUT PBOOLEAN EffectiveOnly,
 OUT PSECURITY_IMPERSONATION_LEVEL ImpersonationLevel,
)
Arguments:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 56

Thread - Supplies the address of the thread whose impersonation token is to be
referenced.

CopyOnOpen - The current value of the Thread->CopyOnOpen field.

EffectiveOnly - The current value of the Thread->EffectiveOnly field.

ImpersonationLevel - The current value of the Thread->ImpersonationLevel field.

Return Value:

A pointer to the specified thread's impersonation token.

If the thread is not currently impersonating a client, then NULL is returned.

Routine Description:

This function returns a pointer to the impersonation token of a thread. The reference
count of that impersonation token is incremented to protect the pointer returned.

If the thread is not currently impersonating a client, then a null pointer is returned.

If the thread is impersonating a client, then information about the means of
impersonation are also returned (ImpersonationLevel).

If a non-null value is returned, then PsDereferenceImpersonationToken() must be
called to decrement the token's reference count when the pointer is no longer needed.

6.13 PsDereferenceImpersonationToken

VOID
PsDereferenceImpersonationToken(
 IN PACCESS_TOKEN ImpersonationToken
)

Arguments:

ImpersonationToken - Pointer to a token obtained using
PsReferenceImpersonationToken().

Return Value:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 57

None.

Routine Description:

This function causes the referenced impersonation token to be dereferenced. This
token is expected to have been referenced using PsReferenceImpersonationToken().

6.14 PsOpenTokenOfProcess

NTSTATUS
PsOpenTokenOfProcess(
 IN HANDLE ProcessHandle,
 OUT PACCESS_TOKEN *Token
)

Arguments:

ProcessHandle - Supplies a handle to a process object whose primary token is to
be opened.

Token - If successful, receives a pointer to the process's token object.

Return Value:

STATUS_SUCCESS - Indicates the call completed successfully.

Status may also be any value returned by an attemp the reference the process
object for PROCESS_QUERY_INFORMATION access.

Routine Description:

This function does the process specific processing of an NtOpenProcessToken() service.

The service validates that the handle has appropriate access to referenced process. If
so, it goes on to reference the primary token object to prevent it from going away
while the rest of the NtOpenProcessToken() request is processed.

NOTE: If this call completes successfully, the caller is responsible for
decrementing the reference count of the target token. This must be done using
the PsDereferencePrimaryToken() API.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 58

6.15 PsOpenTokenOfThread

NTSTATUS
PsOpenTokenOfThread(
 IN HANDLE ThreadHandle,
 OUT PACCESS_TOKEN *Token,
 OUT PBOOLEAN CopyOnOpen,
 OUT PBOOLEAN EffectiveOnly,
 OUT PSECURITY_IMPERSONATION_LEVEL ImpersonationLevel
)

Arguments:

ThreadHandle - Supplies a handle to a thread object.

Token - If successful, receives a pointer to the thread's token object.

CopyOnOpen - The current value of the Thread->CopyOnOpen field.

EffectiveOnly - The current value of the Thread->EffectiveOnly field.

ImpersonationLevel - The current value of the Thread->ImpersonationLevel field.

Return Value:

STATUS_SUCCESS - Indicates the call completed successfully.

STATUS_NO_TOKEN - Indicates the referenced thread is not currently
impersonating a client.

STATUS_CANT_OPEN_ANONYMOUS - Indicates the client requested anonymous
impersonation level. An anonymous token can not be openned.

status may also be any value returned by an attemp the reference the thread
object for THREAD_QUERY_INFORMATION access.

Routine Description:

This function does the thread specific processing of an NtOpenThreadToken()
service.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 59

The service validates that the handle has appropriate access to reference the thread. If
so, it goes on to increment the reference count of the token object to prevent it from
going away while the rest of the NtOpenThreadToken() request is processed.

NOTE: If this call completes successfully, the caller is responsible for
decrementing the reference count of the target token. This must be done using
PsDereferenceImpersonationToken().

6.16 PsImpersonateClient

VOID
PsImpersonateClient(
 IN PETHREAD Thread,
 IN BOOLEAN CopyOnOpen,
 IN BOOLEAN EffectiveOnly,
 IN SECURITY_IMPERSONATION_LEVEL ImpersonationLevel
)

Arguments:

Thread - points to the thread which is going to impersonate a client.

CopyOnOpen - If TRUE, indicates the token is considered to be private by the
assigner and should be copied if opened. For example, a session layer may
be using a token to represent a client's context. If the session is trying to
synchronize the context of the client, then user mode code should not be
given direct access to the session layer's token.

This field is ANDed with the DirectAccess field of the ClientContext to
establish the CopyOnOpen value actually assigned to the impersonation.

CopyOnOpen - If TRUE, indicates the token is considered to be private by the
assigner and should be copied if opened. For example, a session layer may
be using a token to represent a client's context. If the session is trying to
synchronize the context of the client, then user mode code should not be
given direct access to the session layer's token.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 60

Basically, session layers should always specify TRUE for this, while tokens
assigned by the server itself (handle based) should specify FALSE.

EffectiveOnly - Is a boolean value to be assigned as the Thread->EffectiveOnly field
value for the impersonation. A value of FALSE indicates the server is
allowed to enable currently disabled groups and privileges.

ImpersonationLevel - Is the impersonation level that the server is allowed to
access the token with.

Return Value:

STATUS_SUCCESS - Indicates the call completed successfully.

Routine Description:

This routine sets up the specified thread so that it is impersonating the specified client.
This will result in the reference count of the token representing the client being
incremented to reflect the new reference.

If the thread is currently impersonating a client, that token will be dereferenced.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 61

Revision History

Revision 1.2

1. Simplify Create Thread.

2. Remove create if, permanent, and other object options that are only there for
orthoganality.

3. Add port notification handlers.

4. Add 32 bit exit status for process and thread termination.

5. Add NtAlertThread/NtAlertResumeThread.

6. Add get thread info.

7. Add debugger port and subsystem port to process creation.

8. Add process get/set info place holders.

Revision 1.3

1. Complicate create thread

2. Reorganize considerations

Revision 1.15, August 20, 1990, Jim Kelly

1. Eliminated previous token query information levels. This is done using
NtOpenProcessToken() and NtOpenThreadToken().

2. Added information level allowing the setting of a primary token.

3. Added PsReferenceImpersonationToken() and
PsDereferenceImpersonationToken().

4. Added PsReferencePrimaryToken() and PsDereferencePrimaryToken().

5. Added PsImpersonateClient().

6. Added PsOpenTokenOfProcess() and PsOpenTokenOfThread().

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 62

7. Eliminated PsLockToken(), PsUnlockToken(), and PsImpersonateThread().

8. Minor grammatical and spelling corrections.

9. Removed TokenLength field from THREAD_BASIC_INFORMATION structure.

Revision 1.22, February 7, 1991, Jim Kelly.

1. Changed THREAD_IMPERSONATE_CLIENT access type to be
THREAD_SET_THREAD_TOKEN.

2. Added the ability to directly impersonate a thread. This resulted in a new API
(NtImpersonateThread()) and a new access type (THREAD_IMPERSONATE).

3. Corrected minor typos.

Revision 1.24, February 28, 1991, Mark Lucovsky.

1) ???

Revision 1.24, April 21, 1991, Jim Kelly (JimK).

1. Added NtImpersonateThread() service.

Revision 1.25, May 2, 1991, Bryan Willman (bryanwi).

1. Added ProcessLdtInformation and ProcessLdtSize to set of data types for
NtQueryInformationProcess and NtSetInformationProcess.

Revision 1.26, May 24, 1991, Dave Hastings (daveh).

1. Added ThreadDescriptorTableEntry to NtQueryInformationThread.

2. Allowed querying of specific regions of the LDT for ProcessLdtInformation.

Revision 1.27, January 14, 1992, Jim Kelly (JimK).

 1. Eliminated PROCESS_SET_ACCESS_TOKEN as an access type. Changing the
primary token of a process will be protected by PROCESS_SET_INFORMATION
followed by a privilege test at the time the change is requested (rather than at
open time).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Process Structure 63

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

	1. Overview
	2. Process Structure Objects
	3. Process Object APIs
	3.1 Access Type And Privilege Information
	3.2 NtCreateProcess
	3.3 NtTerminateProcess
	3.4 NtCurrentProcess
	3.5 NtCurrentPeb
	3.6 NtOpenProcess
	3.7 NtQueryInformationProcess
	3.8 NtSetInformationProcess

	4. Thread Object APIs
	4.1 Access Type And Privilege Information
	4.2 NtCreateThread
	4.3 NtTerminateThread
	4.4 NtCurrentThread
	4.5 NtCurrentTeb
	4.6 NtSuspendThread
	4.7 NtResumeThread
	4.8 NtGetContextThread
	4.9 NtSetContextThread
	4.10 NtOpenThread
	4.11 NtQueryInformationThread
	4.12 NtSetInformationThread
	4.13 NtImpersonateThread
	4.14 NtAlertThread
	4.15 NtTestAlert
	4.16 NtAlertResumeThread
	4.17 NtRegisterThreadTerminationPort
	4.18 NtImpersonateThread

	5. System Information API
	5.1 NtQuerySystemInformation

	6. Executive APIs
	6.1 PsCreateSystemProcess
	6.2 PsCreateSystemThread
	6.3 PsLookupProcessThreadByCid
	6.4 PsChargePoolQuota
	6.5 PsReturnPoolQuota
	6.6 PsGetCurrentThread
	6.7 PsGetCurrentProcess
	6.8 KeGetPreviousMode
	6.9 PsRevertToSelf
	6.10 PsReferencePrimaryToken
	6.11 PsDereferencePrimaryToken
	6.12 PsReferenceImpersonationToken
	6.13 PsDereferenceImpersonationToken
	6.14 PsOpenTokenOfProcess
	6.15 PsOpenTokenOfThread
	6.16 PsImpersonateClient

