
Portable Systems Group

Windows NT Session Management and Control

Author: Mark Lucovsky

Revision 1.9, January 7, 1990

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

1. Introduction...2
1.1 NT Sessions..2
1.3 Windows NT System Structure..4

2. General Sm Services..8
2.1 SmConnectToSm...8
2.2 SmGetLogonObjectDirectory..8

3. Logon Process Support...9
3.1 Logon Process Philosophy...9
3.2 SmRegisterLogonProcess..12
3.3 SmExecLogonShell..13

4. System Subsystems Support..15
4.1 Session Control Services..15

4.1.1 SmCreateForeignSession...15
4.1.2 SmSessionComplete...16
4.1.3 SmTerminateForeignSession...17

4.2 Piper..18
4.2.1 PiperCreatePipe...18
4.2.2 PiperJoinPipe..19
4.2.3 PiperLeavePipe..20
4.2.4 PiperReadPipe...20
4.2.5 PiperWritePipe...20

5. Emulation Subsystems..22
5.1 PSX++..22
5.2 OS/2++..22
5.3 NT++..23
5.4 Emulation Subsystem APIs..23

5.4.1 SbCreateSession..24
5.4.2 SbTerminateSession...25
5.4.3 SbForeignSessionComplete...26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

1

1. Introduction

The Windows NT operating system is designed to support multiple
concurrent application execution environments. The initial application
execution environments that will be supported under Windows NT include
POSIX (IEEE Std 1003.1-1988), and 32-Bit Cruiser OS/2.

Users will see Windows NT as a system that lets them execute both POSIX
and OS/2 applications concurrently. There is no need to reboot the system
to gain access to a particular execution environment.

Multiple concurrent application execution environments are made possible
by implementing these environments as Emulation Subsystems. An Emulation
Subsystem implements the APIs of a given operating system as a protected
subsystem. Each application program image file header contains a
description of the operating system environment that it has been designed
to run in (e.g., cmd.exe is marked as an OS/2 application and ed is marked
as a POSIX application). During the process initialization of an application,
an LPC connection is made between the application and the Emulation
Subsystem that it has been designed to run with. Each system service API call
that the application makes is translated into a Local Procedure Call (LPC) to the
Emulation Subsystem. The subsystem implements the respective APIs using
native Windows NT services.

The structure of an application program with respect to an Emulation
Subsystem and the Native Windows NT System Services is depicted below.

 Ö-------Ì Ö-------Ì
 °Port ° °Port °
 °Memory ° °Memory °
 ÛÚ-----Úì ÛÚ-----Úì
 ° ° ° °
 ° ° ° °
Ö-------------À û-----------À û---------Ì
°Emulation ° °Application° °User32 °
°Subsystem °<- - ûÌ ÖÀ - ->°Subsystem°
°OS/2 or POSIX° °° °° ° °
Û---Ú---------ì Ûé---------éì Û------Ú--ì
 ° ° ° °

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

2

 V ° ° ° ° V
Ö------é-------------é---------é-----------é-----Ì
° Û---IPC Port--ì Û-IPC Port--ì °
° °
° Windows NT Executive °

1.1 NT Sessions

Windows NT provides a mechanism that allows an application in one
environment to execute an application designed to run in another
environment. For example, the OS/2 command line interpreter cmd.exe can
start the POSIX editor ed as follows.

- cmd.exe, an OS/2 application calls DosExecPgm passing it the
program name ed.- The OS/2 subsystem creates a process ready
to execute the ed program.

- After creating the process, the image type is examined.

- Since the image type indicates that it is not an OS/2 application,
the OS/2 subsystem issues an LPC to Sm asking it to forward the
process off to an appropriate Emulation Subsystem. Sm exports an
API named SmCreateForeignSession that performs this function.

- Sm examines the image type passed as part of the
SmCreateForeignSession call. The image type indicates that ed is
a POSIX application.

- Sm issues an LPC to the POSIX subsystem passing it the process
(originally created by the OS/2 subsystem). Each Emulation
Subsystem exports an API named SbCreateSession that performs
this function.

- When the ed application terminates, the POSIX subsystem issues
an LPC to Sm indicating that the process has completed with the
specified termination status. Sm exports an API named
SmSessionComplete that performs this function.

- Upon receipt of the call, Sm issues an LPC to the OS/2 subsystem
indicating that ed has terminated with the specified termination

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

3

status. Each Emulation Subsystem exports an API named
SbForeignSessionComplete that performs this function.

In addition to starting an application in a different environment, Windows
NT allows an application in one environment to pass information through a
pipe stream to a process in another environment. The Pipe Stream Subsystem
(Piper) exports a set of APIs used by Emulation Subsystems that make this
possible.

1.2 NT Logon Sessions

To tie all related NT sessions together, a logon session is used. A logon
session serves as a parent to all sessions related to a single logon.

Associated with a logon session, and all the sessions related to it, is an
object directory refered to as the Logon Object Directory. This object directory
may be used to house objects related to processes related to all sessions of
the logon session. The name of the logon object directory may be obtained
using the SmGetLogonObjectDirectory() service.

Throughout this document, the term session typically referes to an NT
session. When a higher level logon session is being refered to, it will explicitly
be called out as a logon session.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

4

Windows NT Session Manager and Control

1.3 Windows NT System Structure

Before going any further, the following diagram is presented to show the
overall structure of the subsystems and system processes that implement
the session management and control portion of the Windows NT operating
system.

Windows NT System Structure

 Ö-------Ì Ö-------Ì Ö-------Ì
 °Logon ° °Logon ° °Logon °
 °Process° °Process° °Process°
 Û---Ú---ì Û---Ú---ì Û---Ú---ì
 Û-------Ì ° Ö-------ì
 v v v
 Ö---------Ì
 °Sm °
 °Subsystem°
 Û--Ú--Ú---ì
 ^ ° ° ^
 ° ° ° °
 Ö---ì ° ° °
 ° Ö---ì ° °
 ° v v °
Ö-----Ì Ö------Ù--Ì Ö--Ù------Ì Ö----Ì
°Posixû>°Posix ° °OS/2 °<-ÀOS/2°
°App ° °SubsystemûÌ ÖÀSubsystem°<Ì°App °
Û-----ì Û-Ú-------ì° °Û-------Ú-ì °Û----ì
 ° ^ v v ^ ° ° .
 ° ° Ö---------Ì ° ° °Ö----Ì
 ° ° °Piper ° ° ° ÛÀOS/2°
 ° ° °Subsystem° ° ° °App °
 ° ° Û---------ì ° ° Û----ì
 ° Û------Ì Ö-----ì °
 Û------Ì ° ° Ö-----ì
 v ° ° v
 Ö--Ù---Ù--Ì Ö--------------Ì

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

5

Windows NT Session Manager and Control

 °Dbg °<---ÀDebug °
 °Subsystem°<-Ì °User Interface°
 Û---------ì ° Û--------------ì
 ° .
Client ------> Server ° Ö--------------Ì
End End Û-ÀDebug °
 °User Interface°
 Û--------------ì

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

6

Windows NT Session Manager and Control

The above diagram shows the structure of a Windows NT system. Most of
the structure is static and is created at system boot time. The purpose of
each component is described below.

Logon Processes - A logon process is created for each class of devices
that can accept and process logon requests. Each logon process
exists as a client process served by Sm. The LPC connection
between a logon process and Sm is trusted and relatively static
(created when each logon process initializes). A logon process is
responsible for detecting logon requests from the devices it
manages, authenticating the user (using the Local Security
Authority), and calling Sm to activate the logon shell for the newly
logged on user.

Sm Subsystem - The Sm subsystem is created during system initialization
as the initial user mode process. It is responsible for building the
structure presented in the above diagram. After the structure is
built, Sm acts as the system session manager. In this role it is
responsible for activating new logon shell programs and for
fielding process creation requests from the various Emulation
Subsystem and forwarding them on to the appropriate Emulation
Subsystem.

This occurs when a subsystem is instructed to execute a program
image, and the image file header describes an image designed to
run in a different environment. Sm acts as a server to both logon
processes and Emulation Subsystems.

As a server, Sm exports the following APIs over a trusted LPC
connection between an Emulation Subsystem and itself:

o - SmConnectToSm - Called by an Emulation Subsystem to
create an LPC connection to Sm.

o - SmCreateForeignSession - Called by an Emulation
Subsystem when it detects an image file designed to
execute in a different environment.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

7

Windows NT Session Manager and Control

o - SmTerminateForeignSession - Called by an Emulation
Subsystem when it wants to terminate a session that it has
asked Sm to create.

o - SmSessionComplete - Called by an Emulation Subsystem
when a session it has been asked to create completes.

o - SmGetLogonObjectDirectory - Called by an Emulation
Subsystem to determine the logon object directory
associated with a session.

As a server, Sm exports the following APIs over a trusted LPC
connection between a Logon Process and itself:

o - SmConnectToSm - Called by an Logon Process to create an
LPC connection to Sm.

o - SmRegisterLogonProcess - Called by a Logon Process to
identify itself as a logon process. This is called after
connecting to Sm using SmConnectToSm.

o - SmExecLogonShell - Called by a Logon Process to activate a
user interface shell program for a new interactive logon
session. This is used after the user has been
authenticated, and a token obtained from the Local
Security Authority.

Sm acts as a client of the Emulation Subsystems. As a client, Sm
makes the following API calls over trusted LPC connections
between an Emulation Subsystem and itself:

o - SbCreateSession - Sm calls this API to implement a
portion of SmCreateForeignSession. After examining the
image type, Sm directs this call to the appropriate
Emulation Subsystem.

o - SbTerminateSession - Sm calls this API to implement a
portion of SmTerminateForeignSession. After locating
the Emulation Subsystem responsible for the specified
session ID, Sm makes this call to the Emulation Subsystem.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

8

Windows NT Session Manager and Control

o - SbForeignSessionComplete - Sm calls this API to
implement a portion of SmSessionComplete. After
locating the Emulation Subsystem responsible for the
specified session ID, Sm makes this call to the Emulation
Subsystem.

Emulation Subsystems - Emulation Subsystems implement the operating
system service APIs for a given operating system environment. In
this role, Emulation Subsystems act as "system service servers"
exporting system service APIs between themselves and the
applications that run in a particular environment. The LPC
connections between an application and its Emulation Subsystem
are not trusted. When an Emulation Subsystem is called it can
determine if it created the calling thread and can fail the call if
appropriate.

Emulation Subsystems maintain connections to other subsystems as
well. These connections are static connections created at system
initialization time and are trusted. Each Emulation Subsystem
maintains the following static connections:

o - A pair of connections is maintained between each
Emulation Subsystem and Sm. One connection is used when
the Emulation Subsystem is acting as a server to export the
Sb... APIs to Sm. The other connection is used when the
Emulation Subsystem is acting as a client calling the Sm...
APIs.

o - A single connection is maintained between each Emulation
Subsystem and Piper. This connection allows the subsystem
to pass pipe stream input and output between itself and
another Emulation Subsystem. The Emulation Subsystem is
responsible for determining when I/O needs to be
serviced using APIs available over this connection. The
Windows NT I/O system is not involved in this decision.

o - A pair of connections is maintained between each
Emulation Subsystem and the Debugger Subsystem (Dbg). One
connection is used when the Emulation Subsystem is acting
as a server to export the SbDebugSupport API to Dbg.
This API lets Dbg read and write the memory and context

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

9

Windows NT Session Manager and Control

associated with the specified thread, and to control the
execution (start, stop, terminate) of the specified thread.
The other connection is used by the Emulation Subsystem to
notify Dbg of significant events occuring in a "debugged"
thread or process (e.g., encountering an exception,
process or thread creation, process or thread
termination).

o - A pair of implicit connections are maintained between
each Emulation Subsystem and the Windows NT executive.
These connections can act as the "DebugPort and
ExceptionPort" values specified in a call to
NtCreateProcess. Upon receipt of an exception, the
Windows NT executive examines the process of the
thread in which the exception occured. If the process was
created with either a DebugPort or an ExceptionPort, then
the Emulation Subsystem is notified of the exception over
this connection.

Piper Subsystem - Piper is implemented as a server subsystem that views
Emulation Subsystems as its clients. Piper only maintains trusted LPC
connections between itself and the Emulation Subsystems. Piper is
responsible for maintaining read/write data streams. Piper exports
the following APIs:

o - PiperCreatePipe - This API causes the Piper to create a
pipe stream accessible to processes in the specified
sessions. The data in the stream is only available by having
the process' Emulation Subsystem call Piper.

o - PiperJoinPipe - This API causes the Piper to bind to a pipe
stream so that data can flow over the pipe.

o - PiperLeavePipe - This API causes the Piper to close one
end of a pipe stream. Once both ends of a pipe stream are
closed, the pipe and any remaining data become
inaccesible.

o - PiperReadPipe - This API causes the Piper to return data
stored in the pipe stream making room for new data.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

10

Windows NT Session Manager and Control

o - PiperWritePipe - This API causes the Piper to store data in
the specified pipe stream.

Dbg Subsystem - The Dbg Subsystem implements the machine dependent
facilities needed to debug an application thread. For more
information on the Dbg Subsystem, refer to the Windows NT
Debug Architecture document.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

11

Windows NT Session Manager and Control

2. General Sm Services

The Sm has several classes of client, and provides services tailored to each
class. The services that are used by more than one class of client are:

SmConnectToSm
SmGetLogonObjectDirectory

These services are described in the following subsections.

2.1 SmConnectToSm

NTSTATUS
SmConnectToSm(

IN PSTRING SbApiPortName OPTIONAL,
IN HANDLE SbApiPort OPTIONAL,
OUT PHANDLE SmApiPort
);

Parameters:

SbApiPortName - An optional string that if supplied specifies the name of
a connection port that Sm will use to connect back to the Emulation
Subsystem. This parameter is only used by Emulation Subsystems
that are known to Sm.

SbApiPort - A optional handle that if supplied specifies a handle to a port
named by the SbApiPortName parameter. This parameter is only
used by Emulation Subsystems that are known to Sm.

SmApiPort - An output variable that returns a handle to a
communication port connected to Sm, and over which the Sm...
APIs may be made.

The SmConnectToSm API is provided so that Emulation Subsystem's and
Logon Processes can connect to Sm. For Emulation Subsystem's, the
SbApiPortName, and SbApiPort parameters must be supplied. This is because
in addition to creating a connection to Sm (over which the Sm... APIs are
exported), a connection is made to the Emulation Subsystem over which the
Sb... APIs are exported.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

12

Windows NT Session Manager and Control

2.2 SmGetLogonObjectDirectory

NTSTATUS
SmGetLogonObjectDirectory(

IN ULONG SessionId OPTIONAL,
OUT PSTRING LogonObjectDirectoryName
);

Parameters:

SessionId - An optioanl variable that supplies the session id whose
associated logon object directory name is to be found. If this
optional parameter is not provided, then the caller's logon object
directory name is returned.

LogonObjectDirectoryName - A variable that returns the name of the
session's associated logon object directory.

The name of the logon object directory associated with a session can be
determined using the SmGetLogonObjectDirectory function.

3. Logon Process Support

Before a user can make use of the Windows NT system, that user must first
"logon" to the system. Device-specific logon processes are responsible for
collecting information about the user and authenticating the user. The
authentication is performed using services of the Local Security Authority.
Following authentication, a logon process may decide to activate a user
interface shell program to interact with the user.(1) This is done using Sm
services.

The Sm services provided to support logon processes are:

SmRegisterLogonProcess
SmExecLogonShell

1 Note that this is not always the case. The LAN Manager logon process, for instance, authenticates
users as part of session setup, but no shell process is activated.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

13

Windows NT Session Manager and Control

These services are described in following subsections. Before these API
descriptions, some background/philosophy informtion is provided on logon
processes.

3.1 Logon Process Philosophy

The general philosophy and logic of logon processes, from the perspective
of the Sm is:

o Some set of logon process are activated by configuration control or
other means. For the standard Windows NT devices (windows,
terminals, LAN Manager), the logon processes will be started as part
of device/network initialization. Other logon processes, such as
automated teller device, or cash-register device logon processes may
be started either via configuration control, or other mechanisms, such
as operator actions.

Note that there is nothing special about a logon process except that it
has the SeTcbPrivilege privilege. Note also that a logon process does
not have to be an independent process running nothing but logon
process code. For example, the windows server (User32 server) could
include logon processing code within it.

o Each logon process connects to the session manager using
SmConnectToSm(). The SbApiPortName is left null in this call to
indicate that something other than an emulation subsystem is
connecting. At this time, the session manager doesn't yet know that
the connected client is a logon process.

o The logon process then identifies itself as a logon process. This is
done using the SmRegisterLogonProcess() API. This allows the
session manager to authenticate the caller as having the
SeTcbPrivilege.

As part of SmRegisterLogonProcess() processing, the session
manager opens the client process for PROCESS_DUP_HANDLE access.
Note that all calls from this logon process must originate from this
same process. That is, the port object handles used to communicate
with the session manager can not be shared with a third process who
will also act as a logon process.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

14

Windows NT Session Manager and Control

o When a user attempts to log on, the logon process collects
identification and authentication information and calls the Local
Security Authority (LSA) directly to authenticate the user. If the
authentication is successful, the logon process will be given a handle
to a primary token representing the new logon session.

o Once a user has been successfully authenticated, the logon process
may activate a root process for the user by calling
SmExecLogonShell(). This call takes as parameters:

- The name of the shell (image) to activate,

- A handle to the primary token to assign to the new
process,

- Memory quota information for the new process,

- A GUID representing the new logon session (which the
session manager will use to create a logon object
directory),

- (optional) environment variables that are to be passed to
the new logon shell process.

o The session manager attempts to create a new process running the
logon shell image. The session manager sets the process's primary
token to be that supplied by the logon process. The initial thread of
this process is created, but left in a suspended state. It is the logon
process's responsibility to resume the thread when desired.

If the process creation is successful, then handles to the newly
created shell process and thread are returned to the logon process.
The process handle will be open for SYNCHRONIZE access. The
thread handle will be open for THREAD_SUSPEND_RESUME access.
Logon processes are expected to close these handles when no longer
needed.

This allows logon processes to:

1) Specify UI shell initialization parameters (via environment variables).
For example, the User32 logon process will specify the name of the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

15

Windows NT Session Manager and Control

window station the user has logged on from using environment
variables.

2) Wait on the newly logged on process to exit unexpectedly. For
example, a windows32 logon shell is expected to open a desktop
object in the window station the user logged on from. If the shell
process exits before openning a desktop, then the User32 logon
process assumes something has gone wrong and treats the condition
as a logoff, making the window station available for another logon.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

16

Windows NT Session Manager and Control

3.2 SmRegisterLogonProcess

NTSTATUS
SmRegisterLogonProcess(

IN HANDLE SmApiPort,
IN PSTRING LogonProcessName
);

Parameters:

SmApiPort - A variable that supplies an handle to a communcation port
connected to Sm.

LogonProcessName - A name string that identifies the logon process.
This should be a printable name suitable for display to
administrators. For example, "User32LogonProcess" might be
used for the windows logon process name. No check is made to
determine whether the name is already in use.

Return Value:

STATUS_SUCCESS - The call completed successfully.

STATUS_PRIVILEGE_NOT_HELD - Indicates the caller does not have the
privilege necessary to act as a logon process. SeTcbPrivilege is
needed.

Before being able to use the SmExecLogonShell() service, a logon process
must identify itself as a logon process. This is done using the
SmRegisterLogonProcess() service.

This service verifies that the caller is a legitimate logon process. This is done
by ensuring the caller has SeTcbPrivilege. It also opens the caller's process
for PROCESS_DUP_HANDLE. This information is cached for future use.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

17

Windows NT Session Manager and Control

3.3 SmExecLogonShell

NTSTATUS
SmExecLogonShell(

IN HANDLE SmApiPort,
IN GUID LogonGuid,
IN PSTRING ShellImageName,
IN HANDLE PrimaryToken,
IN QUOTA_LIMITS Quotas,
IN RTL_USER_PROCESS_PARAMETERS ProcessParameters,
OUT PHANDLE Process,
OUT PHANDLE Thread
);

Parameters:(2)

SmApiPort - A variable that supplies an handle to a communcation port
connected to Sm.

LogonGuid - A GUID uniquelly assigned to represent this logon session.

ShellImageName - Provides the path name of the shell program to
execute.

PrimaryToken - Provides a handle to the primary token to assign to the
new process. This handle must be open for
TOKEN_ASSIGN_PRIMARY access.

Quotas - Provides quota values to be assigned to the new process.

ProcessParameters - Provides parameters to be passed to the new
process.

Process - Receives a handle to the new process. The handle will be open
for SYNCHRONIZE access.

2 Loup, DaveC, DarrylH: Do we need a CaptiveAccount parameter too?

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

18

Windows NT Session Manager and Control

Thread - Receives a handle to the initial thread of the process. The
handle will be open for THREAD_SUSPEND_RESUME access. The
thread will not yet have been activated.

Return Value:

STATUS_SUCCESS - The call completed successfully.

STATUS_NOT_LOGON_PROCESS - The caller has not registered as a
logon process.

STATUS_LOGON_SESSION_EXISTS - Indicates the GUID assigned to this
logon session is already in use.

In addition to these, the following general classes of errors may be
returned:

o Errors related to creation of a process or thread, including
attempts to access the image file.

o Attempts to duplicate and assign the primary token.

This service is used by logon processes to activate a user interface shell
program for a newly logged on interactive user. The logon process may
pass information to the new shell program via environment variables.

The session manager:

1) Creates a new logon session to run the logon shell program in,

2) Creates a logon object directory for the new logon session,

3) creates the logon program and the initial thread in that program
(but leaves the thread in a suspended state).

Handles to the new process and its initial thread are passed back to the
requesting logon process. The process handle will be open for
SYNCHRONIZE access. The thread handle will be open for
THREAD_SUSPEND_RESUME access. The logon process is expected to close
these handles when no longer needed.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

19

Windows NT Session Manager and Control

4. System Subsystems Support

System subsystems are logical extensions of the operating system. They
provide privileged and protected operating system support, but are
implemented as separated processes that execute in user mode.

4.1 Session Control Services

The Sm subsystem is responsible for coordinating the creation and
management of sessions. It is responsible for coordinating the creation of
sessions when Emulation Subsystems encounter an image file designed to
operate in a different API environment.

Sm tends to act as an intermediary between Emulation Subsystems. It is
responsible for allocating session ID's, and for associating a session ID with
its controlling Emulation Subsystem.

Sm is also responsible for associating an image file with the Emulation
Subsystem it is designed to run with.

Sm exports the following APIs to support Emulation subsystem operations:

SmCreateForeignSession
SmSessionComplete
SmTerminateForeignSession

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

20

Windows NT Session Manager and Control

4.1.1 SmCreateForeignSession

A request to create a foreign session can be made using the
SmCreateForeignSession function.

NTSTATUS
SmCreateForeignSession(

IN HANDLE SmApiPort,
OUT PULONG ForeignSessionId,
IN ULONG SourceSessionId,
IN PRTL_USER_PROCESS_INFORMATION ProcessInformation,
IN PCID DebugUiClientId OPTIONAL,
IN HANDLE StandardInput OPTIONAL,
IN HANDLE StandardOutput OPTIONAL,
IN HANDLE StandardError OPTIONAL
);

Parameters:

SmApiPort - A variable that supplies an handle to a communcation port
connected to Sm.

ForeignSessionId - A variable whose return value specifies the session ID
of the created session. The session ID is assigned by the session
manager. The session ID is used in the session control APIs to
identify the target foreign session.

SourceSessionId - A variable that specifies the session ID of the
application that is creating (through its Emulation Subsystem) the
foreign session. This session ID is used by Sm to determine a user
profile for the new session.

ProcessInformation - A structure that describes the process to be run as
a foreign session. This data structure contains a complete
description of the process including handles to the process and its
initial thread. Using NtDupObject, Sm makes these handles

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

21

Windows NT Session Manager and Control

available to the Emulation Subsystem responsible for the process.
Regardless of the outcome of this call, the calling process looses
its handles to the process and thread.

DebugUiClientId - An optional parameter that specifies the client ID of
the debugger user interface that is debugging the session. If this
parameter is specified, then the session is a "debug session".

StandardInput - An optional handle that specifies the standard input
stream associated with the session. Using NtDupObject, Sm
makes this handle available to the Emulation Subsystem responsible
for the process. Regardless of the outcome of this call, the calling
process' version of this handle is closed.

StandardOutput - An optional handle that specifies the standard output
stream associated with the session. Using NtDupObject, Sm
makes this handle available to the Emulation Subsystem responsible
for the process. Regardless of the outcome of this call, the calling
process' version of this handle is closed.

StandardError - An optional handle that specifies the standard error
output stream associated with the session. Using NtDupObject,
Sm makes this handle available to the Emulation Subsystem
responsible for the process. Regardless of the outcome of this call,
the calling process' version of this handle is closed.

Emulation Subsystems use this service whenever they are instructed to
execute an image whose type is not supported by the subsystem (e.g. an
OS/2 application executes a DosExecPgm specifying an image file that is a
POSIX application).

Sm implements this API by associating the image file type with an
appropriate Emulation Subsystem, allocating a new session ID, transfering the
handles (Thread, Process, StandardInput, StandardOutput, and StandardError)
into the appropriate Emulation Subsystem's handle table, and calling the
Emulation Subsystem at its SbCreateSession entry point. Assuming that the
call to SbCreateSession succeeds, the session ID of the new session is
returned to the caller.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

22

Windows NT Session Manager and Control

4.1.2 SmSessionComplete

Sm is notified that a session has completed through the
SmSessionComplete function.

NTSTATUS
SmSessionComplete(

IN HANDLE SmApiPort,
IN ULONG SessionId,
IN NTSTATUS CompletionStatus
);

Parameters:

SmApiPort - A variable that supplies an handle to a communcation port
connected to Sm.

SessionId - A parameter that specifies the session ID of the foreign
session that has completed.

CompletionStatus - A parameter that specifies the completion status of
the session.

The SmSessionComplete API is provided so that an Emulation Subsystem can
notify Sm that one of its sessions has completed.

Once Sm receives this call, it locates the Emulation Subsystem that created the
foreign session using the specified session ID, and calls the subsystem at its
SbForeignSessionComplete entry point.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

23

Windows NT Session Manager and Control

4.1.3 SmTerminateForeignSession

A request that a foreign session be terminated can be made through the
SmTerminateForeignSession function.

NTSTATUS
SmTerminateForeignSession(

IN HANDLE SmApiPort,
IN ULONG ForeignSessionId,
IN NTSTATUS TerminationStatus
);

Parameters:

SmApiPort - A variable that supplies an handle to a communcation port
connected to Sm.

ForeignSessionId - A parameter that specifies the session ID of the
foreign session being terminated.

TerminationStatus - A parameter that specifies the reason that the
foreign session should be terminated.

The SmTerminateForeignSession API is provided so that an Emulation
Subsystem can request the termination of a foreign session that it created.

Sm implements this call by locating the appropriate Emulation Subsystem
using the specified foreign session ID, and then calling the subsystem at its
SbTerminateSession entry point.

The SmTerminateForeignSession call returns before the session is actually
terminated. When the session terminates Sm will be notified.

4.2 Piper

The Piper subsystem is responsible for providing pipe stream input and
output between threads in different sessions (under the supervision of
Emulation Subsystems).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

24

Windows NT Session Manager and Control

This capability is provided to support transfering information between
applications that are of a different class (e.g foo | bar where foo is a POSIX
application and bar is and OS/2 application).

Piper requires coordination between the Emulation Subsystem involved in the
data piping, and the application runtime libraries that provide stream input
and output through the STDIN, STDOUT, and STDERR I/O streams. All
application input and output through these streams must be handled by the
application's Emulation Subsystem. Only the subsystem knows the session that
the application is part of, and the "file names" of its input, output, and error
streams.

Piper exports the following APIs:

PiperCreatePipe
PiperJoinPipe
PiperLeavePipe
PiperReadPipe
PiperWritePipe

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

25

Windows NT Session Manager and Control

4.2.1 PiperCreatePipe

An Emulation Subsystem creates the potential for pipe stream communication
between the application threads in one of its sessions, and application
threads in a "foreign" session that it asked Sm to create using the
PiperCreatePipe function.

NTSTATUS

PiperCreatePipe(

IN ULONG ForeignSessionId,
IN ULONG SourceSessionId
);

Parameters:

ForeignSessionId - Specifies the session ID of the foreign session that
makes up the other end of the pipe.

SourceSessionId - Specifies the session ID of the local session that is
creating the pipe.

Creating a pipe causes the potential for pipe stream communication to
occur between the two specified sessions. Pipes provide a full duplex byte
stream communication path between application threads in the specified
sessions.

Data written by application threads within the local session is made
available (to satisfy pipe reads) to threads within the foreign session. Reads
to the pipe by application threads within the local session are satisfied by
corresponding pipe writes made by threads within the foreign session.

After this call completes, application threads within the local session may
attempt to read data from the pipe, and write data to the pipe. Until the
foreign session joins the pipe using the PiperJoinPipe API, data that they
write will remain in the pipe, and their pipe reads will block.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

26

Windows NT Session Manager and Control

There is no need to synchronize this call with a corresponding PiperJoinPipe
call specifying the foreign session. These calls may be issued in either order.

4.2.2 PiperJoinPipe

An Emulation Subsystem joins a pipe so that it can participate in pipe stream
communication between the application threads in one of its sessions, and
application threads in the session that created it using the PiperJoinPipe
function.

NTSTATUS
PiperJoinPipe(

IN ULONG SessionId
);

Parameters:

SessionId - Specifies the session ID of the local session that is joining a
pipe.

Joining a pipe allows the threads within the specified local session to begin
pipe stream communication over a pipe created in a corresponding call to
PiperCreatePipe.

After this call completes, application threads within the local session may
read data from the pipe, and write data to the pipe.

This call completes when a corresponding call to PiperCreatePipe is issued
specifying the local session in its ForeignSessionId parameter.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

27

Windows NT Session Manager and Control

4.2.3 PiperLeavePipe

An Emulation Subsystem leaves a pipe which informs Piper that it no longer
wants to participate in pipe stream communication using the
PiperLeavePipe function.

NTSTATUS

PiperLeavePipe(

IN ULONG SessionId
);

Parameters:

SessionId - Specifies the session ID of the local session that is leaving the
pipe.

Leaving a pipe causes application threads within the local session to
disassociate themselves with the pipe. All data destined for the local session
is flushed, and further pipe writes to the local session fail.

When both sessions that make up a pipe leave the pipe, the pipe is deleted.
All data within or destined for the pipe is deleted.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

28

Windows NT Session Manager and Control

4.2.4 PiperReadPipe

An Emulation Subsystem can read data from a pipe stream that it has either
joined or created using the PiperReadPipe function.

NTSTATUS

PiperReadPipe(

IN ULONG SessionId,
OUT PUCHAR DataReadBuffer,
IN ULONG DataReadLength,
OUT PULONG DataActuallyReadLength
);

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

29

Windows NT Session Manager and Control

4.2.5 PiperWritePipe

An Emulation Subsystem can write data to a pipe stream that it has either
joined or created using the PiperWritePipe function.

NTSTATUS

PiperWritePipe(

IN ULONG SessionId,
IN PUCHAR DataWriteBuffer,
IN ULONG DataWriteLength,
OUT PULONG DataActuallyWrittenLength
);

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

30

Windows NT Session Manager and Control

5. Emulation Subsystems

The primary role of an Emulation Subsystem is to emulate a set of system
services using native Windows NT system services. Applications written to a
particular API use the appropriate Emulation Subsystem to implement that
particular system API.

Each application contains in its image file header, a description of the
Emulation Subsystem that the application requires (e.g. OS/2 applications like
cmd.exe describe the OS/2++ subsystem). In addition to providing operating
system API emulation, the subsystem is responsible for managing the
session to which the application belongs. The subsystem also acts as an
intermediary between the Dbg protected subsystem and the application
when the application is being "debugged".

Each Emulation Subsystem exports three Windows NT connection ports. An
LPC connection to an Emulation Subsystem is established by specifying one of
these ports in a call to NtConnectPort. Each connection port is associated
with a class of services implemented by the Emulation Subsystem. The three
classes of services are:

- Sm to Emulation Subsystem APIs. The connection port associated with
this class of services is protected such that only the Sm subsystem
can access the port. Once a connection has been established, the
Emulation Subsystem does not respond to connection requests
arriving on this port. The connection between Sm and each
Emulation Subsystem is a trusted connection.

- Dbg to Emulation Subsystem APIs. The connection port associated with
this class of services is protected such that only the Dbg
subsystem can access the port. Once a connection has been
established, the Emulation Subsystem does not respond to
connection requests arriving on this port. The connection
between Dbg and each Emulation Subsystem is a trusted connection.

- Operating System APIs emulated by the subsystem. The connection
port associated with this class of services does not have to be
protected. Each application that is using the APIs exported over
this connection establishes a connection during its process
initialization sequence (crt0 equivalent). Emulation Subsystem must

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

31

Windows NT Session Manager and Control

authenticate each call (associate the caller's CID with a CID
created by the subsystem) to ensure that the thread making the
call is one of its threads. The connection between and application
and its Emulation Subsystem is not a trusted connection.

5.1 PSX++

The PSX++ protected subsystem implements the APIs described in the IEEE
P1003.1/Draft 13 August 22, 1988 specification. It is responsible for managing
all applications written to this API.

5.2 OS/2++

The OS/2++ protected subsystem implements the Cruiser OS/2 V2.0 APIs. It is
responsible for managing all applications written to this API.

5.3 NT++

The NT++ protected subsystem implements a very small set of APIs. Its
primary purpose is to implement the set of APIs needed to manage and
control sessions, and to provide a DosExecPgm like API that a native
debugger user interface or application can use to create and manage a
session or to execute an image designed to run with one of the other
Emulation Subsystems.

5.4 Emulation Subsystem APIs

Each Emulation Subsystem exports a set of APIs designed to manage and
control sessions. These APIs are called by the Sm, Dbg, or by the Windows
NT executive.

Emulation Subsystems export the following APIs:

SbCreateSession
SbTerminateSession
SbForeignSessionComplete

Emulation Subsystems see the APIs in their raw form. The subsystems must
provide their own "API Loops" that receive and reply using LPC messages.
The subsystem APIs are all called (by their own API loops) with a pointer to a
subsystem API message (SBAPIMSG) the format of the message is given
below:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

32

Windows NT Session Manager and Control

SbApiMsg Structure

PORTMSG h - This field contains a standard LPC port message. The
ClientId of the sender, message type, and length information are
all placed in this area by the system.

SBAPINUMBER ApiNumber - This field specifies the API number of the
call. Values are:

ApiNumber Enumeration

SbCreateSessionApi - The message specifies the SbCreateSession
API.

SbTerminateSessionApi - The message specifies the
SbTerminateSession API.

SbForeignSessionCompleteApi - The message specifies the
SbForeignSessionComplete API.

NTSTATUS ReturnedStatus - This field is used to pass the return status of
the Sb... API back to the caller of the API. This field is designed to
be modified by the "API loop".

union u - This union contains one field for each of the API types.

u Union

SBCREATESESSION CreateSession - This field contains
information specific to the SbCreateSession API.

SBTERMINATESESSION TerminateSession - This field contains
information specific to the SbTerminateSession API.

SBFOREIGNSESSIONCOMPLETE ForeignSessionComplete - This
field contains information specific to the
SbForeignSessionComplete API.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

33

Windows NT Session Manager and Control

5.4.1 SbCreateSession

A session is created and placed under the control of an Emulation Subsystem
through the SbCreateSession function.

NTSTATUS
SbCreateSession(

IN OUT PSBAPIMSG SbApiMsg
);

Parameters:

SbApiMsg - A variable that supplies an LPC message that contains
information necessary to allow the subsystem to create a session
capable of running the process described in the message.

The ApiNumber associated with this call is SbCreateSessionApi. The
CreateSession field of the API message contains the following:

CreateSession Structure

ULONG SessionId - A variable that specifies the session ID to be
associated with the session being created. The session ID is
assigned by the session manager. The session ID is used in the
session control APIs to identify the target session.

RTL_USER_PROCESS_INFORMATION ProcessInformation - A structure
that describes the process to be run as a new session. This data
structure contains a complete description of the process including
handles to the process and its initial thread. The subsystem is
responsible for the process and thread even if it fails the create
session request. It must terminate and close the process and
thread at the appropriate time (even if it fails the session
creation).

CID DebugUiClientId - An optional parameter that specifies the client ID
of the debugger user interface that is debugging the session. If
this parameter is specified, then the session is created as a

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

34

Windows NT Session Manager and Control

"debug session". Debug sessions are created in a suspended state
(i.e., the initial thread of the process is left suspended). In
addition, the subsystem servicing this call must call into the Dbg
subsystem to report the new debug session and the CID of the
debugger user interface that is debugging the session.

// All Windows NT threads are created in a suspended state. Most
Emulation Subsystems create an application thread by creating
a Windows NT thread and then resuming the thread. This
parameter instructs the Emulation Subsystem to not resume
the application thread. The Emulation Subsystem will be
instructed to resume the thread through a DebugUi -> Dbg ->
Emulation Subsystem transaction. //

The value of this parameter originates in the system. When a
DebugUi issues a call to an API that creates a "debug process" the
CID of the DebugUi is captured by the DebugUi's Emulation Subsystem
from the message header of the message associated with the
process creation call. If the process is foreign to the DebugUi's
subsystem, the CID passes from the DebugUi's Emulation Subsystem
to Sm, and then from Sm to the Emulation Subsystem that should
run the process.

HANDLE StandardInput - An optional handle that specifies the standard
input stream associated with the session. Regardless of the
outcome of this call, the subsystem is responsible for closing the
handle at the appropriate time (even if it fails the session
creation).

HANDLE StandardOutput - An optional handle that specifies the
standard output stream associated with the session. Regardless of
the outcome of this call, the subsystem is responsible for closing
the handle at the appropriate time (even if it fails the session
creation).

HANDLE StandardError - An optional handle that specifies the standard
error output stream associated with the session. Regardless of the
outcome of this call, the subsystem is responsible for closing the
handle at the appropriate time (even if it fails the session
creation).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

35

Windows NT Session Manager and Control

The Sm subsystem uses the SbCreateSession API to create a session to run
the specified process. This call is made as part of the logon sequence (part
of SmLogonUser), or when Sm is asked (by another subsystem, termed the
"source subsystem") to create a session to run an image whose format is not
understood by the source subsystem.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

36

Windows NT Session Manager and Control

5.4.2 SbTerminateSession

A session can be terminated through the SbTerminateSession function.

NTSTATUS
SbTerminateSession(

IN OUT PSBAPIMSG SbApiMsg
);

Parameters:

SbApiMsg - A variable that supplies an LPC message that contains
information necessary to allow the subsystem to terminate the
specified session.

The ApiNumber associated with this call is SbTerminateSessionApi. The
TerminateSession field of the API message contains the following:

TerminateSession Structure

ULONG SessionId - A value that specifies the session ID of the session
being terminated.

NTSTATUS TerminationStatus - A that specifies the reason that the
session should be terminated.

The SbTerminateSession API is provided so that a session can be
terminated. This call is made by the Sm subsystem in response to a request
by the Emulation Subsystem that indirectly created the session.

The SbTerminateSession call returns before the session is actually
terminated. When the session terminates, the Sm subsystem will be notified
through an RPC from the session's controlling Emulation Subsystem to Sm at
its SmSessionComplete entry point.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

37

Windows NT Session Manager and Control

5.4.3 SbForeignSessionComplete

An Emulation Subsystem is notified that a foreign session has completed
through the SbForeignSessionComplete function.

NTSTATUS
SbForeignSessionComplete(

IN OUT PSBAPIMSG SbApiMsg
);

Parameters:

SbApiMsg - A variable that supplies an LPC message that contains
information which notifies the subsystem that a foreign session
that it started has completed.

The ApiNumber associated with this call is SbForeignSessionCompleteApi. The
ForeignSessionComplete field of the API message contains the following:

ForeignSessionComplete Structure

ULONG SessionId - A value that specifies the session ID of the session
that has completed.

NTSTATUS CompletionStatus - A value that specifies the completion
status of the session.

The SbForeignSessionComplete API is provided so that a subsystem can be
notified that a foreign session that it created has completed. The subsystem
that services this call is the subsystem that originally requested that the
foreign session be created.

Once this call returns, the session ID is available for re-use.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

38

Windows NT Session Manager and Control

Revision History

Revision 1.9, January 7, 1990. Jim Kelly (JimK)

1) Eliminated all references to Presentation Manager.

2) Changed logon so that logon processes authenticate directly with the
Local Security authority (LSA) and then interact with the NT Session
Manager to activate the logon shell process. This obsoleted the
SmLogonUser() API and caused the introduction of the
SmRegisterLogonProcess() and SmExecLogonShell() APIs.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research
Kernel License

39

	1. Introduction
	1.1 NT Sessions
	1.2 NT Logon Sessions
	1.3 Windows NT System Structure

	2. General Sm Services
	2.1 SmConnectToSm
	2.2 SmGetLogonObjectDirectory

	3. Logon Process Support
	3.1 Logon Process Philosophy
	3.2 SmRegisterLogonProcess
	3.3 SmExecLogonShell

	4. System Subsystems Support
	4.1 Session Control Services
	4.1.1 SmCreateForeignSession
	4.1.2 SmSessionComplete
	4.1.3 SmTerminateForeignSession

	4.2 Piper
	4.2.1 PiperCreatePipe
	4.2.2 PiperJoinPipe
	4.2.3 PiperLeavePipe
	4.2.4 PiperReadPipe
	4.2.5 PiperWritePipe

	5. Emulation Subsystems
	5.1 PSX++
	5.2 OS/2++
	5.3 NT++
	5.4 Emulation Subsystem APIs
	5.4.1 SbCreateSession
	5.4.2 SbTerminateSession
	5.4.3 SbForeignSessionComplete

