
Portable Systems Group

Windows NT Event - Semaphore Specification

Author: Lou Perazzoli

Original Draft 1.0, January 5, 1989
Revision 1.3, May 11, 1989
Revision 1.4, August 8, 1989
Revision 1.5, October 23, 1989
Revision 1.6, December 1, 1989
Revision 1.7, January 3, 1990
Revision 1.8, January 23, 1990

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Event/Semaphore Specification 1

1. Introduction... 1

2. Event Objects... 1
2.1 Create Event Object.. 1
2.2 Open Event Object.. 2
2.3 Set Event.. 3
2.4 Reset Event.. 4
2.5 Pulse Event... 4
2.6 Query Event... 4

3. Semaphore Objects... 5
3.1 Create Semaphore Object... 5
3.2 Open Semaphore Object... 6
3.3 Release Semaphore Object... 7
3.4 Query Semaphore... 8

4.0 Delay Execution... 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Event/Semaphore Specification 1

1. Introduction

This specification describes the Windows NT event and semaphore objects and the wait
services. A definition and an explanation of operation is given for each API. No attempt
has been made, however, to fully explain all error conditions and their consequences.

The APIs described include:

NtCreateEvent - create event and open handle
NtOpenEvent - open handle to existing event
NtSetEvent - set event to Signal state
NtResetEvent - set event to Not-Signaled state
NtPulseEvent - set / reset event state atomically
NtQueryEvent - get information about event
NtCreateSemaphore - create semaphore and open handle
NtOpenSemaphore - open handle to existing semaphore
NtReleaseSemaphore - release semaphore
NtQuerySemaphore - get information about semaphore
tDelayExecution - delay execution for the specified time
NtClose - close an object handle

2. Event Objects

There are two types of event objects, notification events and synchronization events.
Notification event objects provide a mechanism for notification. Notification events are
either Signaled (TRUE) or Not-Signaled (FALSE). An event may be set multiple times, yet
the state remains Signaled. Notification events provides no ownership capability. If
multiple threads are waiting on a notification event, then when the event becomes
Signaled, all threads waiting for the event are made "runnable". A notification event
becomes Not-Signaled only when explicitly reset.

Synchronization event objects have the property that when the event is set, the event
attains a state of Signaled, which releases a single thread currently waiting on the
event, and then the event immediately attains a state of Not-Signaled. If there are no
threads waiting on the event, the state of the event remains Signaled. This allows
threads to "synchronize" on the signaling of the event. Like notification events,
synchronization events provide no ownership capability.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Event/Semaphore Specification 2

A synchronization event attains a state of Not-Signaled when explicitly reset or when
the first wait operation is satisfied on the event. Note that any time an event attains a
state of Not-Signaled, the event count for the state of the event is set to zero.

2.1 Create Event Object

An event object is created and a handle opened for access to the object with the
NtCreateEvent function:

NTSTATUS
NtCreateEvent (

OUT PHANDLE EventHandle,
IN ULONG DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
IN EVENT_TYPE EventType,
IN BOOLEAN InitialState
);

Parameters:

EventHandle - A pointer to a variable that receives the event object handle value.

DesiredAccess - The desired types of access for the event. The following object type
specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Management
Specification.

DesiredAccess Flags

EVENT_QUERY_STATE - Query access to the event is desired.

EVENT_MODIFY_STATE - Modify state access (set and reset) to the event is
desired.

SYNCHRONIZE - Synchronization access (wait) to the event is desired.

ObjectAttributes - An optional pointer to a structure that specifies the object's
attributes. Refer to the Object Management Specification for details.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Event/Semaphore Specification 3

EventType - The type of event object to be created. One of NotificationEvent or
SynchronizationEvent.

InitialState - The initial state of the event object, one of TRUE or FALSE. If the
InitialState is specified as TRUE, the event's current state value is set to one,
otherwise it is set to zero.

The NtCreateEvent function creates an event object with the specified initial state. If
an event is in the Signaled state (TRUE), a wait operation on the event does not block. If
the event is in the Not-Signaled state (FALSE), a wait operation on the event blocks until
the specified event attains a state of Signaled, the timeout value is exceeded, or an alert
is delivered.

2.2 Open Event Object

A handle can be opened to an existing event object with the NtOpenEvent function:

NTSTATUS
NtOpenEvent (

OUT PHANDLE EventHandle,
IN ULONG DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
);

Parameters:

EventHandle - A pointer to a variable that receives the value of the event object
handle value.

DesiredAccess - The desired types of access to the event. The following object type
specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Management
Specification.

DesiredAccess Flags

EVENT_QUERY_STATE - Query access to the event is desired.

EVENT_MODIFY_STATE - Modify state access (set and reset) to the event is
desired.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Event/Semaphore Specification 4

SYNCHRONIZE - Synchronization access (wait) to the event is desired.

ObjectAttributes - A pointer to a structure that specifies the object's attributes. Refer
to the Object Management Specification for details.

2.3 Set Event

An event can be set to the signaled state (TRUE) with the NtSetEvent function:

NTSTATUS
NtSetEvent (

IN HANDLE EventHandle,
OUT PLONG PreviousState OPTIONAL
);

Parameters:

EventHandle - An open handle to an event object.

PreviousState - An optional pointer to a variable that receives the previous state of
the event. Zero is Not-Signaled, non-zero is Signaled. The value indicates the
number of times the event has been set since the last reset.

Setting the event causes the event to attain a state of Signaled, which releases all
threads currently waiting on the event. Any threads which issue a wait operation on the
event do not block and continue to execute. It also increments the event count for the
state of the event.

2.4 Reset Event

The state of an event is set to the Not-Signaled state (FALSE) using the NtResetEvent
function:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Event/Semaphore Specification 5

NTSTATUS
NtResetEvent (

IN HANDLE EventHandle,
OUT PLONG PreviousState OPTIONAL
);

Parameters:

EventHandle - An open handle to an event object.

PreviousState - An optional pointer to a variable that receives the previous state of
the event. Zero is Not-Signaled, non-zero is Signaled. The value indicates the
number of times the event has been set since the last reset.

Once the event attains a state of Not-Signaled, any threads which wait on the event
block, awaiting the event to become Signaled. The reset event service sets the event
count to zero for the state of the event.

2.5 Pulse Event

An event can be set to the Signaled state and reset to the Not-Signaled state atomically
with the NtPulseEvent function:

NTSTATUS
NtPulseEvent (

IN HANDLE EventHandle,
OUT PLONG PreviousState OPTIONAL
);

Parameters:

EventHandle - An open handle to an event object.

PreviousState - An optional pointer to a variable that receives the previous state of
the event. Zero is Not-Signaled, non-zero is Signaled. The value indicates the
number of times the event has been set since the last reset.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Event/Semaphore Specification 6

Pulsing the event causes the event to attain a state of Signaled, which releases all
threads currently waiting on the event, and then attain a state of Not-Signaled. The
pulse event service sets the event count to zero for the state of the event.

2.6 Query Event

The state of an event can be queried with the NtQueryEvent function:

NTSTATUS
NtQueryEvent (

IN HANDLE EventHandle,
IN EVENT_INFORMATION_CLASS EventInformationClass,
OUT PVOID EventInformation,
IN ULONG EventInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters:

EventHandle - An open handle to an event object.

EventInformationClass - The event information class about which to retrieve
information.

EventInformation - A pointer to a buffer that receives the specified information. The
format and content of the buffer depend on the specified event class.

EventInformation Format by Information Class:

EventBasicInformation - Data type is EVENT_BASIC_INFORMATION.

EVENT_BASIC_INFORMATION Structure

EVENT_TYPE EventType - The type of the event.

LONG EventState - The current state of the event.

EventInformationLength - Specifies the length in bytes of the event information
buffer.

ReturnLength - An optional pointer which, if specified, receives the number of bytes
placed in the event information buffer.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Event/Semaphore Specification 7

This function provides the capability to determine the state and granted access of an
event object.

3. Semaphore Objects

Semaphore objects provide a mechanism for resource gates. When a semaphore is
created, it is provided an initial count and maximum count. When a thread waits on a
semaphore, if the current count is greater than zero, then the current count is
decremented and the thread continues to execute. If the current count is zero, the
thread blocks until the count becomes greater than zero. When a thread releases a
semaphore, the current count is augmented. Semaphores do not provide ownership;
multiple threads can be waiting and releasing the same semaphore.

3.1 Create Semaphore Object

A semaphore object is created and a handle opened for access to the object with the
NtCreateSemaphore function:

NTSTATUS
NtCreateSemaphore (

OUT PHANDLE SemaphoreHandle,
IN ULONG DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
IN LONG InitialCount,
IN LONG MaximumCount
);

Parameters:

SemaphoreHandle - A pointer to a variable that receives the value of the semaphore
object handle.

DesiredAccess - The desired types of access for the semaphore. The following object
type specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Management
Specification.

DesiredAccess Flags

SEMAPHORE_QUERY_STATE - Query access to the semaphore is desired.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Event/Semaphore Specification 8

SEMAPHORE_MODIFY_STATE - Modify state access (release) to the semaphore is
desired.

SYNCHRONIZE - Synchronization access (wait) to the semaphore is desired.

ObjectAttributes - An optional pointer to a structure that specifies the object's
attributes. Refer to the Object Management Specification for details.

InitialCount - The initial count for the semaphore, this value must be positive and
less than or equal to the maximum count.

MaximumCount - The maximum count for the semaphore, this value must be
greater than zero..

The NtCreateSemaphore function causes a semaphore object to be created which
contains the specified initial and maximum counts.

3.2 Open Semaphore Object

A handle can be opened to an existing semaphore object with the NtOpenSemaphore
function:

NTSTATUS
NtOpenSemaphore (

OUT PHANDLE SemaphoreHandle,
IN ULONG DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters:

SemaphoreHandle - A pointer to a variable that receives the semaphore object
handle value.

DesiredAccess - The desired types of access to the semaphore. The following object
type specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Management
Specification.

DesiredAccess Flags

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Event/Semaphore Specification 9

SEMAPHORE_QUERY_STATE - Query access to the semaphore is desired.

SEMAPHORE_MODIFY_STATE - Modify state access (release) to the semaphore is
desired.

SYNCHRONIZE - Synchronization access (wait) to the semaphore is desired.

ObjectAttributes - A pointer to a structure that specifies the object's attributes. Refer
to the Object Management Specification for details.

3.3 Release Semaphore Object

A semaphore object can be released with the NtReleaseSemaphore function:

NTSTATUS
NtReleaseSemaphore (

IN HANDLE SemaphoreHandle,
IN LONG ReleaseCount,
OUT PLONG PreviousCount OPTIONAL
);

Parameters:

SemaphoreHandle - An open handle to a semaphore object.

ReleaseCount - The release count for the semaphore. The count must be greater
than zero and less than the maximum value specified for the semaphore.

PreviousCount - An optional pointer to a variable that receives the previous count
for the semaphore.

When the semaphore is released, the current count of the semaphore is incremented
by the ReleaseCount. Any threads that are waiting for the semaphore are examined to
see if the current semaphore value is sufficient to satisfy their wait.

If the value specified by ReleaseCount would cause the maximum count for the
semaphore to be exceeded, then the count for the semaphore is not affected and an
error status is returned.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Event/Semaphore Specification 10

3.4 Query Semaphore

The state of a semaphore can be queried with the NtQuerySemaphore function:

NTSTATUS
NtQuerySemaphore (

IN HANDLE SemaphoreHandle,
IN SEMAPHORE_INFORMATION_CLASS SemaphoreInformationClass,
OUT PVOID SemaphoreInformation,
IN ULONG SemaphoreInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters:

SemaphoreHandle - An open handle to a semaphore object.

SemaphoreInformationClass - The semaphore information class about which to
retrieve information.

SemaphoreInformation - A pointer to a buffer which receives the specified
information. The format and content of the buffer depend on the specified
semaphore class.

SemaphoreInformation Format by Information Class:

SemaphoreBasicInformation - Data type is SEMAPHORE_BASIC_INFORMATION.

SEMAPHORE_BASIC_INFORMATION Structure

LONG CurrentCount - The current count of the semaphore.

LONG MaximumCount - The maximum count that may be obtained by the
semaphore.

SemaphoreInformationLength - Specifies the length in bytes of the semaphore
information buffer.

ReturnLength - An optional pointer which, if specified, receives the number of bytes
placed in the semaphore information buffer.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Event/Semaphore Specification 11

This function provides the capability to determine the state and granted access of a
semaphore object

4.0 Delay Execution

The execution of the current thread can be delayed for a specified interval of time with
the NtDelayExecution function:

NTSTATUS
NtDelayExecution (

IN BOOLEAN Alertable,
IN PTIME DelayInterval
);

Parameters:

Alertable - A boolean value that specifies whether the wait is alertable.

DelayInterval - The absolute or relative time over which the wait is to occur.

The NtDelayExecution function causes the current thread to enter a waiting state until
the specified interval of time has passed. If Alertable is specified as TRUE, the wait service
completes and a condition of STATUS_ALERTED is raised. If an APC is delivered while the
thread is waiting alertable, the APC is invoked and the wait operation re-executed.

Revision History:

Original Draft 1.0, January 5, 1989

Revision 1.2, March 12, 1989

1. Removed Muxwait object and Mutex object.

Revision 1.3, May 11, 1989

1. Added wait for multiple objects.

2. Added NtDelayExecution

Revision 1.4, August 8, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Event/Semaphore Specification 12

1. Make return parameters for PreviousState and CurrentState optional.

Revision 1.5, October 23, 1989

1. Changed EventName/SemaphoreName in OBJA structure to ObjectName.

2. Added description of notification and synchronization events.

3. Changed PreviousState to return a count that indicates the number of times
the event was set since the last reset.

4. Added the EventType to the query event call.

5. Changed wait services to describe the abandoned state.

Revision 1.6, December 1, 1989

1. Changed desciption of NtCreateSemaphore, NtCreateEvent,
NtOpenSemaphore and NtOpenEvent to use OBJECT_ATTRIBUTES and
reference Object Management Specification for detials.

2. Changed PULONG to PLONG for PreviousState argument in NtSetEvent,
NtResetEvent, and NtPulseEvent.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Event/Semaphore Specification 13

Revision 1.7, January 3, 1990

1. Clarified the behavior of sychronzation events and the state of the event
count.

2. Changed desired access flags for NtCreateEvent, NtOpenEvent,
NtCreateSemaphore, and NtOpenSemaphore.

3. Removed NtWait description. This is now in the Object Management
Specification.

Revision 1.8, January 23, 1990

1. Changed NtReleaseSemaphore to return a failure if the ReleaseCount is
greater than the maximum count.

2. Changed NtReleaseSemaphore to require the ReleaseCount to be greater
than 0.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

	1. Introduction
	2. Event Objects
	2.1 Create Event Object
	2.2 Open Event Object
	2.3 Set Event
	2.4 Reset Event
	2.5 Pulse Event
	2.6 Query Event

	3. Semaphore Objects
	3.1 Create Semaphore Object
	3.2 Open Semaphore Object
	3.3 Release Semaphore Object
	3.4 Query Semaphore

	4.0 Delay Execution

