
Portable Systems Group

Windows NT Status Code Specification

Author: Darryl E. Havens

Revision 1.0, June 11, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Status Code Specification 1

1. Overview... 1

2. Definition.. 1

3. Use of Status Codes.. 2

4. Programming Interfaces.. 3
4.1 Obtaining Information for Status Codes... 3
4.2 Determining Success or Failure.. 5
4.3 Determining Success Severity... 5
4.4 Determining Information Severity... 5
4.5 Determining WARNING Severity... 5
4.6 Determining ERROR Severity... 5
4.7 Obtaining the Facility from a Status Code... 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Status Code Specification 1

1. Overview

This specification describes the purpose, structure, and use of status codes for the
Windows NT system.

In its simplest form, a status code is a value that is used to indicate whether an operation
was successfully completed. If this were its only purpose, however, then all functions
that returned a status indicator might simply return a boolean value of TRUE or FALSE.
One of the values would indicate that the operation was successful, and the other would
indicate that something went wrong. Which value was assigned which meaning would
probably be arbitrary.

Systems today do not generally take this oversimplified approach when dealing with
success and failure. Most systems are at least concerned with why a function incurred
an error. Hence, systems generally have a "success" code, indicating that everything
worked properly, and multiple failure codes, each indicating that an error occurred as
well as providing some hint or clue as to what went wrong.

Windows NT takes this concept one step further and adds multiple success codes as
well as multiple error codes. This allows the system to provide more information about
what actually happened, rather than simply indicate that the function worked. For
example, rather than just returning "success" with reason information, an information
status code may be used. Likewise, rather than just returning "error" with reason
information associated with it, Windows NT provides the ability to express a warning as
well.

These types of status codes do not adversely affect the efficiency of the system; rather,
they provide robustness. A programmer can still ask the basic question, "Was the
function successful or not?"

Windows NT provides a common architecture for its status codes, which it uses
throughout the native part of the system. That is, all functions that return status return
the same type of status code. This common treatment of status values makes them
easy to use and easy to understand.

Finally, Windows NT provides a mechanism to allow status codes to be local to a given
facility, such as the kernel or the Session Manager. That is, each component has a
separate facility code. In this way, message codes used by one facility will not be
confused with codes used by another facility.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Status Code Specification 2

Having different facility codes also provides more useful information to the caller when
it is important to determine exactly which part of the system encountered an error. For
example, if the C runtime library incurs an error when opening a file, was it the runtime
library itself that incurred the error, a subsystem that the runtime called, the operating
system, the file system, or a disk driver? This information is sometimes important.

2. Definition

A status code in Windows NT contains four fields. The following is the format of a
status code:

 3 3 2 2 1 1
 1 0 9 8 6 5 0
┌───┬─┬───────────────────┬──────────────────────┐

 │ S │C│ Facility │ Code │
 └───┴─┴───────────────────┴──────────────────────┘

where:

S ——Severity field. This field represents the severity of the status code. The following
values are defined:

00 ——Success. This value means that the function was successful.

01 ——Information. This value means that the function was successful and
additional information about what happened is supplied.

10 ——Warning. This value means that the function incurred an error that was
not necessarily fatal.

11 ——Error. This value means that the function incurred an error.

C ——Customer field. This field is reserved to customers of Microsoft Corporation to
allow them to define their own facility codes.

Facility ——Facility field. This field indicates the facility from which the status code
was issued.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Status Code Specification 3

Code ——Code field. This field describes what actually took place.

All system-defined status codes are defined in the file NTSTATUS.H. Each status code has
the format STATUS_xxx, where xxx is a short identifier that describes the meaning of
the code. For example, the status code STATUS_BUFFER_OVERFLOW indicates, as the
name suggests, that an overflow occurred while writing a buffer. Names are chosen to
be as descriptive as possible, making source code easier to read.

3. Use of Status Codes

Status codes in Windows NT are used throughout the system. They are returned by all
system services to indicate whether the service completed successfully. In some cases,
the service returns an alternate success code. That is, rather than return
STATUS_SUCCESS, the normal success status code, another code may be used. An
example of this is an I/O service that returns STATUS_PENDING. This indicates that the
request was successfully made to the system, but it has not yet completed. While this
code indicates that the request was successful, it also provides pertinent information
about exactly what was successful.

All library routines in Windows NT that can return a success indicator also use status
codes. They return status codes in the same format as the rest of the system.

Status codes may also be used in a call to the NtRaiseException service, provided the
status code represents a warning or error. Information and success codes may not be
raised. It should also be noted that if a warning status is raised, and no exception
handler handles the exception, the default action is to continue. The default action for
an unhandled error condition, however, is to terminate the thread. For more
information, see the Windows NT Exception Handling Specification.

The following is an example utilization of the various types of status codes in a common
search utility. For example, the following status codes might be used to indicate various
completion statuses:

o STATUS_SUCCESS ——This code, a SUCCESS code, might be used to indicate that all
matches were successfully located and displayed.

o STATUS_NO_MATCHES ——This code, an INFORMATION code, might be used to
indicate that while no errors occurred, no strings were located that matched the
search pattern string.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Status Code Specification 4

o STATUS_BUFFER_OVERFLOW ——This code, a WARNING code, might be used to indicate
that while a match was found, a buffer overflow occurred and the entire
matching string could not be displayed. Notice that this is certainly a problem
from which the utility can recover and therefore should not terminate the search.

o STATUS_FILE_NOT_FOUND ——This code, an ERROR code, might be used to indicate
that no files were found on which to perform the search. This is not a
recoverable error condition. The program can do nothing but terminate.

4. Programming Interfaces

Windows NT provides the following services and C language macros to use with status
codes:

NtQueryStatusCode ——Return text associated with a specified status code.
SUCCESS ——Return boolean value based on success or failure.
IS_SUCCESS ——Return boolean TRUE if status code severity is success.
IS_INFORMATION ——Return boolean TRUE if status code severity is information.
IS_WARNING ——Return boolean TRUE if status code severity is warning.
IS_ERROR ——Return boolean TRUE if status code severity is error.
FACILITY ——Returns the facility code associated with a status value.

4.1 Obtaining Information for Status Codes

The message text associated with a status code may be obtained using the
NtQueryStatusCode service:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Status Code Specification 5

NTSTATUS
NtQueryStatusCode (

IN NTSTATUS StatusCode,
OUT PVOID MessageBuffer,
IN ULONG MessageLength,
OUT PULONG MessageReturnLength OPTIONAL,
OUT PSEVERITY SeverityLevel,
OUT PVOID FacilityBuffer OPTIONAL,
IN ULONG FacilityLength OPTIONAL,
OUT PULONG FacilityReturnLength OPTIONAL
);

Parameters:

StatusCode ——Supplies the status code value whose associated text should be
returned.

MessageBuffer ——Supplies a buffer into which the text for the status code is stored.

MessageLength ——Supplies the number of bytes in the MessageBuffer.

MessageReturnLength ——Optionally supplies a variable in which to return the length
of the text that was written into MessageBuffer.

SeverityLevel ——Supplies a pointer to a variable that is to receive an enumerated
type code representing the severity of the status code.

SeverityLevel Values

Success ——Indicates that the severity of StatusCode is SUCCESS.

Information ——Indicates that the severity of StatusCode is INFORMATION.

Warning ——Indicates that the severity of StatusCode is WARNING.

Error ——Indicates that the severity of StatusCode is ERROR.

FacilityBuffer ——Optionally supplies a buffer into which the facility name associated
with the status code is written.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Status Code Specification 6

FacilityLength ——Optionally supplies the length of the FacilityBuffer. If the
FacilityBuffer parameter is supplied, then this parameter must also be
supplied.

FacilityReturnLength ——Optionally supplies a variable in which to return the length of
the text that was written into FacilityBuffer.

The NtQueryStatusCode service fetches the text associated with a specified status
code and writes it into the supplied buffer. This allows programs to output explicit
information about what happened during the execution of a function.

If no message text can be found for the specified status code, then the message text
buffer will be set to the string, "NO MESSAGE TEXT", and an information status code of
STATUS_NO_MESSAGE is returned. Likewise, if no text for the facility of the specified status
code can be located, the string, "NOFACILITY", is written to the facility buffer, if one was
supplied. If the country code of the process is non-English, the message text appears in
the designated language.

The message text for all status codes defined for Windows NT can be obtained using
the NtQueryStatusCode service. Text for user-defined status codes can also be
obtained provided that the codes and text have been "added" to the system. For more
information, see the Windows NT Status Code Design Note.

4.2 Determining Success or Failure

Whether a status code represents success or failure can be determined using the C
macro, SUCCESS:

SUCCESS(Status)

This macro returns a BOOLEAN value of TRUE if the status code specified by Status
represents a success or information severity. Otherwise the macro returns a BOOLEAN
value of FALSE.

4.3 Determining Success Severity

Whether a status code represents success can be determined using the C macro,
IS_SUCCESS:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Status Code Specification 7

IS_SUCCESS(Status)

This macro returns a BOOLEAN value of TRUE if the severity of the status code specified
by Status is success. Otherwise the macro returns a BOOLEAN value of FALSE.

4.4 Determining Information Severity

Whether a status code represents information severity can be determined using the C
macro, IS_INFORMATION:

IS_INFORMATION(Status)

This macro returns a BOOLEAN value of TRUE if the severity of the status code specified
by Status is information. Otherwise the macro returns a BOOLEAN value of FALSE.

4.5 Determining WARNING Severity

Whether a status code represents warning severity can be determined using the C
macro, IS_WARNING:

IS_WARNING(Status)

This macro returns a BOOLEAN value of TRUE if the severity of the status code specified
by Status is warning. Otherwise the macro returns a BOOLEAN value of FALSE.

4.6 Determining ERROR Severity

Whether a status code represents error severity can be determined using the C macro
IS_ERROR:

IS_ERROR(Status)

This macro returns a BOOLEAN value of TRUE if the severity of the status code specified
by Status is error. Otherwise the macro returns a BOOLEAN value of FALSE.

4.7 Obtaining the Facility from a Status Code

Obtaining the facility number from a status code may be done using the C macro,
FACILITY:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Status Code Specification 8

FACILITY(Status)

This macro returns a ULONG value which contains the Facility field of the status code
specified by Status.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

Windows NT Status Code Specification 9

Revision History:

Original Draft 1.0, June 11, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

	1. Overview
	2. Definition
	3. Use of Status Codes
	4. Programming Interfaces
	4.1 Obtaining Information for Status Codes
	4.2 Determining Success or Failure
	4.3 Determining Success Severity
	4.4 Determining Information Severity
	4.5 Determining WARNING Severity
	4.6 Determining ERROR Severity
	4.7 Obtaining the Facility from a Status Code

