
Portable Systems Group

NT OS/2 Suspend/Resume Design Note

Author: David N. Cutler

Original Draft 1.0, February 9, 1989
Revision 1.1, March 30, 1989

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

NT OS/2 Suspend/Resume Design Note 2

This design note discusses a proposal to implement suspend
and resume as part of the kernel rather than in the
executive layer.

The suspension of a thread is controlled by a suspend count
and a semaphore object that is built into the thread object.
This semaphore has an initial value of zero and a maximum
count of two (see explanation at end of this document as to
why the maximum count must be two rather than one).

When an attempt is made to suspend a thread, the suspend
count is incremented and a check is made to determine if the
thread is already suspended (indicated by a nonzero initial
suspend count). If the thread is not suspended, then a
normal kernel APC is queued to the thread which will cause
it to wait on its builtin semaphore.

A special case arises when the builtin APC is already queued
to the target thread. This situation occurs when the target
thread has been suspended and then resumed, but has never
actually received the APC and suspended itself. Since the
target thread has never actually suspended itself, the
builtin semaphore count is decremented to indicate that the
thread should suspend rather than resume.

The following pseudo code describes the logic of
SuspendThread;

PROCEDURE SuspendThread (
IN Tcb : POINTER KtThread;
) RETURNS integer;

VARIABLE

OldCount : integer;

BEGIN

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

NT OS/2 Suspend/Resume Design Note 3

Acquire dispatcher database lock;
OldCount = Tcb.SuspendCount;
IF Tcb.SuspendCount == 0 THEN

IF NOT QueueApc(Tcb.SuspendAcb) THEN
Tcb.SuspendSemaphore.Signal =

Tcb.SuspendSemaphore.Signal - 1;
END IF;

END IF;
Tcb.SuspendCount = Tcb.SuspendCount + 1;
Release dispatcher database lock;
RETURN OldCount;

END SuspendThread;

Resuming a thread checks to determine if the thread has been
suspended by examining the suspend count. If the thread has
not been suspended, then no operation is performed.
Otherwise the suspend count is decremented. If the resultant
value is zero, then the target thread's builtin suspend
semaphore is released.

The following pseudo code describes the logic of
ResumeThread;

PROCEDURE ResumeThread (
IN Tcb : POINTER KtThread;
) RETURNS integer;

VARIABLE

OldCount : integer;

BEGIN

Acquire dispatcher database lock;
OldCount = Tcb.SuspendCount;
IF Tcb.SuspendCount <> 0 THEN

Tcb.SuspendCount = Tcb.SuspendCount - 1;

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

NT OS/2 Suspend/Resume Design Note 4

IF Tcb.SuspendCount == 0 THEN
Release Tcb.SuspendSemaphore;

END IF;
END IF;
Release dispatcher database lock;
RETURN OldCount;

END SuspendThread;

The maximum count of the builtin semaphore must be two so
that the following race condition can be avoided.

1. a target thread is suspended by incrementing its
suspend count to one and queuing its builtin
suspend APC

2. before the thread can respond to the suspend APC, it
is resumed which causes the suspend count to be
decremented to zero and the builtin suspend
semaphore to be incremented to one

3. the thread receives the suspend APC, but before it
can wait on the builtin semaphore it is
interrupted to deliver a special kernel APC

4. the special kernel APC code page faults and waits on
the page to be brought into memory

5. the target thread is again suspended which causes
its suspend count to be incremented and its
builtin suspend APC to be queued

6. the thread is resumed before it has finished
processing the special kernel APC which causes the
suspend count to be decremented to zero and the
builtin semaphore to be incremented to two

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

NT OS/2 Suspend/Resume Design Note 5

No additional nesting can occur since further attempts to queue
the APC will fail which cause the semaphore count to be
decremented. Thus the maximum count does not need to be
greater than two.

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

NT OS/2 Suspend/Resume Design Note 6

Revision History:

Original Draft 1.0, February 9, 1989

Revision 1.1, March 30, 1989

1. Minor edits to conform to standard format.

[end of suspend.doc]

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

