
Portable Systems Group

NT Utilities Coding Conventions

Author: David J. Gilman

Revision 1.1, October 29, 1990
Revision 1.0, October 18, 1990

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 1

1. Introduction... 1

2. The Existing Code Rule.. 1

3. Module Headers.. 1

4. Function Headers.. 3
4.1 Modifiers.. 3
4.2 Function Declarations... 4
4.3 Function Definitions.. 5

5. Header Files.. 6
5.1 Header File Inclusion.. 6

5.1.1 Description... 6
5.1.2 Special Header Files.. 7

5.1.2.1 Ulibdef.hxx.. 7
5.1.2.2 Ulib.hxx... 7

6. Naming... 8
6.1 Variable Names.. 8

6.1.1 Initial Caps Format.. 9
6.1.2 Unstructured Format.. 9

6.2 Data Type Names... 9
6.3 Returning or Accepting Pointers.. 11
6.4 Structure Fields, Class Member Data and

Enumeration Constants... 11
6.5 Macro and Constant Names.. 11

7. Indentation and Placement of Braces... 12

8. Language Usage Guidelines... 15
8.1 Known Problems.. 15
8.2 C++ Specific Guidelines... 15
8.3 Debugging Support.. 16

9. Appendix A - Example : Class EXAMPLE.. 16
9.1 Ulib.hxx... 16
9.2 Example.hxx.. 17
9.3 Examplep.hxx... 18
9.4 Example.inl.. 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 2

9.5 Example.cxx.. 20
9.6 Client.cxx.. 23

Microsoft Corporation Company Confidential

NT Utilities Coding Conventions 1

1. Introduction

This document describes the coding conventions that are used by the NT OS/2 Utilities
group. Both the document and the conventions are heavily based on the document,
"NT OS/2 Coding Conventions" written by Helen Custer and Mark Lucovsky.

There are primarily two reasons why the NT OS/2 Utilities group warrants a separate
convention. First, work is done on existing code from many different sources. Second,
all new code will be written in C++. This requires a number of changes and additions
from the convention documented in the above mentioned document.

All code written for NT OS/2 Utilities adheres to a common coding style. This style
gives the utilities a uniform appearance which allows group members to read, modify,
and maintain each other's modules without learning several different coding
conventions.

The following items are standardized:

o Module headers

o Function (member and non-member) headers and declarations

o Header file format

o Names of variables, data types (including classes), structure fields, macros, and
constants

o Control structure indentation and placement of braces

2. The Existing Code Rule

When existing code is being ported to NT OS/2, every effort should be made to
maintain the conventions and style that already exist in that code.

3. Module Headers

The following prototype should appear at the beginning of each module. The source to
the prototype can be found in the file \nt\public\oak\inc\modhdr.c.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 2

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 name-of-module-filename

Abstract:

 abstract-for-module.

Author:

 name-of-author (email-name) creation-date-dd-Mmm-yyyy

[Environment:]

 optional-environment-info (e.g. kernel mode only...)

[Notes:]

 optional-notes

Revision History:

 most-recent-revision-date email-name
 description
 .
 .
 .
 least-recent-revision-date email-name
 description

--*/

/ Note that no Revision History will be maintained until after the product has
been released. /

The following is a sample of a completed module header:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 3

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 object.hxx

Abstract:

 Definition of the root class for the ULIB class hierarchy.

Author:

 David J. Gilman (davegi) 12-Oct-1990

Environment:

 ULIB, User Mode

Notes:

 Note the PURE VIRTUAL functions.

--*/

\ The /*++ <text> --*/ construct is used by a comment extractor program that
will be developed to assist in our documentation efforts.\

4. Function Headers

In C++ member functions are declared within a class definition. These declarations
contain a lot of information and as such will be enhanced by the use of modifiers.
Some of these modifiers are also used by the function definition.

4.1 Modifiers

There are essentially three different types of modifiers; function specifiers, type
specifiers and argument direction. All can be used by function declarations. Those
that can also be used in function definitions are noted.

o All member function declarations are preceded by one of the following
modifiers:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 4

VIRTUAL
Indicates that the implementation of a member function can be overridden
by a derived class

NONVIRTUAL
Indicates that the implementation of a member function can not be
overridden by a derived class

STATIC
Indicates that the member function is static and therefore callable without
an object instance of the class.

o Member function declarations may also be preceded by the following modifier:

CONST (definition)
Indicates that the function returns a constant value (usually a pointer).

o All formal arguments are preceded by one of the following modifiers:

IN (definition)
Indicates that the argument is a non-modifiable input value (i.e., call-by-
value semantics)

OUT (definition)
Indicates that the argument is an address which refers to a variable or
structure that will be modified by the function (i.e., call-by-reference
semantics)

IN OUT (definition)
Indicates that the argument is the address of an input variable or structure
that is both read and written by the function (i.e., call-by-reference
semantics).

o Formal arguments may also be followed by one of the following modifiers:

OPTIONAL
Indicates that an argument can be or NULL (or zero). To determine whether
the actual value supplied is NULL, the programmer must use the macro
ARGUMENT_PRESENT, which takes the argument and returns a value of

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 5

type BOOLEAN. OPTIONAL arguments must be specified by the caller and
can occur at any position in the argument list

DEFAULT
Indicates that the argument is optional and need not be specified by the
caller. DEFAULT arguments may only occur at the end (i.e. right end) of an
argument list and must be initialized in the class definition

o Member function declarations may also be followed by the following modifiers:

CONST (definition)
Indicates that the member function is safe. That is, it does not directly, or
indirectly via a call, modify the object's state

PURE
Indicates that the member function is a pure virtual function. That is, all
derived classes must supply their own implementation

o The order of the arguments in the comment block is the same as the order in
which they appear in the function declaration.

4.2 Function Declarations

When a member function is declared in a class definition, it's declaration contains the
function prototype and appropriate modifiers. For example:

NONVIRTUAL
CONST
POBJECT
GetNext (
 IN POBJECT LastObject,

OUT BOOLEAN WrapAround
) CONST

Note that modifiers, types and argument names should be aligned.

4.3 Function Definitions

Below is a prototype function definition and declaration. The definition form is to
appear with the implementation of the function. The source to the prototype can be
found in the file \nt\public\oak\inc\prochdr.cxx.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 6

Note that a form-feed character should appear one line before the "return-type" line.
This convention is noted in this document with the string "<form-feed>".

The function declaration follows:

<form-feed>
modifier
 .
 .
 .
return-type
procedure-name (
 direction type-name argument-name [modifier],
 direction type-name argument-name [modifier]
 .
 .
 .
) [modifier]

/*++

Routine Description:

 description-of-function.

Arguments:

 argument-name - Supplies (IN) | Returns (OUT) description of argument.
 .
 .

Return Value:

 return-value - Description of conditions needed to return value.
 - or -
 None.

--*/

{
 .
 .
 .
}

/ Note the space between the procedure name and the opening parenthesis for
it's argument list. This is needed so that overloaded operators will be more
readable. /

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 7

The following is a sample of a completed member function declaration:

<form-feed>
NONVIRTUAL
CONST
POBJECT
COLLECTION::GetNext (
 IN POBJECT LastObject OPTIONAL
) CONST

/*++

Routine Description:

 Get the next object from the collection.

Arguments:

 LastObject - Supplies the current object.

Return Value:

 POBJECT - A constant pointer to the next OBJECT in the
 COLLECTION.

--*/

{
 .
 .
 .
}

5. Header Files

The following sections define the requirements for inclusion and format of header
files.

5.1 Header File Inclusion

5.1.1 Description

There are two types of header files used by the NT OS/2 Utilities:

o Header files that are private to a single class:

o Types, constants etc.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 8

o Inline functions

o A public header file that contains the class declaration and associated types,
constants etc.

The naming convention for private header files is <class-name>p.hxx. For example,
the private header file for the object class, would be called objectp.hxx.

The public style of header files are the most important as they define class interfaces.
An example can be found in section 1.

Header files should not be nested. That is, one header file should not include another.

5.1.2 Special Header Files

There are two special header files used by the ULIB class library: ulibdef.hxx and
ulib.hxx. These files are exceptions to the nested include file rule.

5.1.2.1 Ulibdef.hxx

The file \nt\private\os2\programs\ulib\inc\ulibdef.hxx contains global information which
is required by all classes and client's of ULIB. It should not be directly included.
Rather, it will be included by ulib.hxx.

5.1.2.2 Ulib.hxx

The file \nt\private\os2\programs\ulib\inc\ulib.hxx is the master header file for the ULIB
library. It should be included by all classes and clients of ULIB by the statement

#include "ulib.hxx"

In turn ulib.hxx will include, in the correct order, the header files that are needed by a
particular class. This will be controlled by symbols of the form

CLASSNAME

which will be defined by the class client.

Class definitions will support this architecture by conditionally expanding to
themselves, or to nothing if they have already been expanded.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 9

As mentioned, class writers will use ulib.hxx. This will ensure that it is accurate and
usable by any class clients. This means that special care should be taken to ensure that
private header files are not listed within ulib.hxx.

In the example below, if the class definition in collection.hxx was not previously
referenced, then the macro _COLLECTION_ is defined and the header file is expanded.
Otherwise, _COLLECTION_ is already defined and the remainder of the header file is
ignored. This results in the header file being included only once.

The following header file style should be used:

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 object.hxx

Abstract:

 Definition of the abstract container class.

Author:

 David J. Gilman (davegi) 12-Oct-1990

Environment:

 ULIB, User Mode

Notes:

Revision History:

--*/

#if ! defined(_COLLECTION_)
#define _COLLECTION_
 .
 .
 .

//
// body
//

#endif // _COLLECTION_

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 10

6. Naming

The following sections describe the naming conventions for variables, structure fields,
types, constants, and macros.

6.1 Variable Names

Variable names are either in "initial caps" format, or they are unstructured. The
following two sections describe when each is appropriate.

Note that the NT OS/2 system, utilities included, do not use the Hungarian naming
convention used in some of the other Microsoft products.

6.1.1 Initial Caps Format

All global variables and formal argument names must use the initial caps format. The
following rules define this format:

o Words within a name are spelled out; abbreviations are discouraged.

o The first character of each word in a name is capitalized.

o Acronyms are treated as words, that is, only the first character of the acronym is
capitalized.

The following list shows some sample names that conform to these rules:

NumberOfBytes

TcbAddress

BilledProcess

6.1.2 Unstructured Format

Local variables may appear in either the initial caps format, or in a format of the
programmer's preference. The following list shows some possibilities for local
variable names:

loopindex

LoopIndex

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 11

loop_index

6.2 Data Type Names

A set of primitive data types for use in the NT OS/2 Utilities is defined in ulibdef.hxx.
All NT OS/2 Utilities software must declare variables using these defined types rather
than standard C++ types, where appropriate. The following are some examples of NT
OS/2 Utilities types:

ULONG

PULONG

VOID

PVOID

BOOLEAN

PBOOLEAN

All new type names should be created in uppercase using typedef. Words within the
name may either be packed together or separated by underscores. All types should
have a corresponding typedef which defines a pointer and a reference to the type.
The name for the pointer is the type name with a "P" prefix. Similarly the reference is
the type name with a "R" prefix.

The following example illustrates how to use typedef to create a class type:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 12

typedef class COLLECTION : public OBJECT {

 public:

 NONVIRTUAL
 COLLECTION (
 IN ULONG InitialNumberOfElements,
 IN ULONG IncrementNumberOfElements DEFAULT = 10
);

 VIRTUAL
 ~COLLECTION (
);

 NONVIRTUAL
 POBJECT
 QueryNextElement (
 IN POBJECT CurrentElement
) CONST;

 VIRTUAL
 CONST
 POBJECT
 GetNextElement (
 IN POBJECT CurrentElement
) PURE;

 protected:

 POBJECT mCollection;

 private:

 ULONG _InitialNumberOfElements;
 ULONG _IncrementNumberOfElements;
} POINTER_AND_REFERENCE_TYPES(COLLECTION);

Note that there should only be one public:, one protected: and one private: section in
each class definition. In addition constructors and destructors should appear at the
top of the list followed by logical groupings of other member functions.

C++ does not require a typedef for structures, and enumerated types as it considers
them to be types when they are defined. However typedefs should be used so that a
pointer and reference to the type are defined at the same time as the underlying type.
For example,

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 13

typedef struct RANGE {
 ULONG Start
 ULONG Count;
} POINTER_AND_REFERENCE_TYPES(RANGE);

typedef enum COLLECTION_TYPE {
 Array,
 List,
 Table
} POINTER_AND_REFERENCE_TYPES(COLLECTION_TYPE);

6.3 Returning or Accepting Pointers

In order to minimize performance impacts of using objects, the following conventions
are used when pointers to objects, or other dynamic structures, are passed to and from
an object:

o Member function names that have the prefix:

o Query
Return a pointer to an object which will be de-allocated by the client.

o Get
Return a constant pointer which will be de-allocated by the object.

o Set
Take a pointer to an object which will be de-allocated by the object.

o Put
Take a pointer to an object which will be de-allocated by the client.

6.4 Structure Fields, Class Member Data and
Enumeration Constants

Notice from the above examples that structure field names, enumeration constants
and class member data should follow initial caps format. They should not have field
name prefixes tied to a type.

The subtle exception to this rule is for member data. The names used for a class'
member data should be preceded by an '_' so that they can be more easily recognized
in member function implementations.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 14

6.5 Macro and Constant Names

All macros and manifest constants should have uppercase names. Words within a
name may either be packed together, or separated by underscores.

The following statements illustrate some manifest constant and macro names:

#define PAGE_SIZE 4096
#define CONTAINING_RECORD(address, type, field) \
 ((type *)((LONG)(address) - \
 (LONG)(&((type *)0)->field)))

Any macro that is likely to be replaced by a function at a later time should use the
naming conventions for functions.

In C++ it is preferable to use constant variables and inline functions instead of
manifest constants and macros.

7. Indentation and Placement of Braces

Source files should contain real tab characters. Tab stops should be set to four
characters. This can be accomplished for the following tools by adding the following
entry to the tools.ini file:

[pwb]
 entab:1
 filetab:4
 tabstops:4
 realtabs:yes

[list]
 tabamt:4

[ppr]
 flags = -e 4

/ The entries for list and ppr do not work. /

The following skeletal statements illustrate the proper indentation and placement of
braces for C++ control structures.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 15

<form-feed>
INT
FooBar(
 INT ArgumentOne,
 PULONG ArgumentTwo
)

/*++

Routine Description:

 This is the routine description.

Arguments:

 ArgumentOne - Supplies the value for argument 1.

 ArgumentTwo - Supplies the address of argument 2.

Return Value:

 0 - Success

 1 - Failure

--*/

{
 //
 // Local variables are indented one tab (tabs are 4 spaces)
 //

 ULONG LocalVariable1;
 LONG Counter;

 //
 // for loops
 // - all for loops must have braces
 // - closing brace is at same indentation level as
 // for statement
 //

 for (Counter = 0; Counter < 10; Counter++) {

 //
 // Body of loop
 //

 }

 //
 // if statement
 //

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 16

 if (Counter == 0) {

 //
 // Then statements
 //

 }

 //
 // if then else
 //

 if (Counter == 1) {

 //
 // Then statements
 //

 } else {

 //
 // Else statements
 //

 }

 //
 // switch statement
 //

 switch (Counter) {

 case 1 :

 //
 // case 1 statements
 //
 break;

 case 2 :

 //
 // case 2 statements
 //
 break;

 default :

 //
 // default case
 //
 break;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 17

 }
}

8. Language Usage Guidelines

The NT OS/2 Utilities are written in portable C++ as defined by "The Annotated C++
Reference Manual" written by Margaret A. Ellis and Bjarne Stroustrup1. Care should
be taken not to write any code that breaks with this language definition or with the
ANSI C standard. When the two language definitions are at odds, side with the C++
definition.

8.1 Known Problems

There are two known problems that have been encountered by the NT OS/2 group:

o Left Hand Side Typecasts

ULONG i;
(FLOAT) i = 2.0; // PROBLEM!

o Zero Length Arrays in Structures

struct X {
ULONG i;
ULONG arr[]; // PROBLEM!

};

Fortunately, C++ will not allow either of these constructs.

8.2 C++ Specific Guidelines

Following are a number of C++ specific guidelines which will aid in readability,
consistency and debugging:

o File names should have the following extensions:

o hxx
for class definitions and related types and constants

1 This book is also referred to as the "ANSI Base Document".

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 18

o inl
for inline function implementations

o cxx
for non-inline function implementations.

o In order to benefit from C++'s strong type checking:

o Dynamic allocation and de-allocation should be performed with the C++ new
and delete operators.

o Constant, global variables should be used in lieu of pre-processor
definitions.

o Do not declare inline functions within a class definition.

o Declare inline functions in the appropriate .inl file as described above and as
shown in 2.

o Do not use multiple inheritance.

o Avoid using global, static objects.

o Do not use the C++ specific form of casting (i.e. ULONG(x)).

o Do not declare protected member data (use private data and access member
functions).

8.3 Debugging Support

Debug code is enabled by the compiler symbol DBG. Debug code should not be defined
within the body of non-debug code. Instead a macro should be defined which
conditionally compiles to a, possibly inlined, function call. For example (from
ulibdef.hxx),

#if defined(DBG)
#define DebugAssert(b) DbgAssert(b)

#else
#define DbgAssert

#endif // DBG

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 19

Programmers should use the symbol REGISTER instead of the C++ storage specifier,
register. This will disable register storage when DBG is enabled.

The macro, INLINE_INCLUDE, should be used to conditionally (depending on DBG)
include (or compile) inline functions. See 3 for an example. Note that usage of this
macro will cause the DBG symbol to effect the list of source files to be compiled. This
macro will make tracing and stepping of inline functions easier.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 20

9. Appendix A - Example : Class EXAMPLE

9.1 Ulib.hxx

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 ulib.hxx

Abstract:

 Master include file for the ULIB class hierarchy.

Author:

 David J. Gilman (davegi) 19-Oct-1990

Environment:

 ULIB

Notes:

Revision History:

--*/

#include "ulibdef.hxx"
#include "object.hxx"
 .
 .
 .
#if defined(_EXAMPLE_)

//
// include files that the EXAMPLE class definition (not
// implementation) is dependent upon
//

 #include "example.hxx"

#endif // _EXAMPLE_

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 21

9.2 Example.hxx

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 22

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 example.hxx

Abstract:

 Definition for class EXAMPLE.

Author:

 David J. Gilman (davegi) 19-Oct-1990

Environment:

 ULIB

Notes:

Revision History:

--*/

#if ! defined(_EXAMPLE_)
#define _EXAMPLE_

typedef class EXAMPLE : public OBJECT {

 public:

 NONVIRTUAL
 EXAMPLE (
 IN ULONG Value
);

 VIRTUAL
 ~EXAMPLE (
);

 VIRTUAL
 ULONG
 SetValue (
 IN ULONG Value
);

 NONVIRTUAL
 ULONG
 QueryValueDoubled (
) CONST;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 23

 private:

 ULONG mValue;

} POINTER_AND_REFERENCE_TYPES(EXAMPLE);

INLINE_INCLUDE(example.inl);

#endif // _EXAMPLE_

9.3 Examplep.hxx

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 examplep.hxx

Abstract:

 Private header file for class EXAMPLE.

Author:

 David J. Gilman (davegi) 19-Oct-1990

Environment:

 ULIB

Notes:

Revision History:

--*/

#if ! defined(_EXAMPLE_P)
#define _EXAMPLE_P

CONST DOUBLEVALUE = 2;

#endif // _EXAMPLE_P

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 24

9.4 Example.inl

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 25

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 example.inl

Abstract:

 Inline functions for class EXAMPLE.

Author:

 David J. Gilman (davegi) 19-Oct-1990

Environment:

 ULIB

Notes:

Revision History:

--*/

#define _EXAMPLE_
#include "ulib.hxx"

#include "examplep.hxx"

<form-feed>

ULONG
EXAMPLE::QueryValueDoubled (
) CONST

/*++

Routine Description:

 Compute double the value.

Arguments:

 None.

Return Value:

 ULONG - double the value.

--*/

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 26

{
 return(mValue * DOUBLEVALUE);
}

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 27

9.5 Example.cxx

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 28

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 example.cxx

Abstract:

 Implementation for class EXAMPLE.

Author:

 David J. Gilman (davegi) 19-Oct-1990

Environment:

 ULIB

Notes:

Revision History:

--*/

#define _EXAMPLE_
#include "ulib.hxx"

#include "examplep.hxx"

<form-feed>

EXAMPLE::EXAMPLE (
 ULONG Value
)

/*++

Routine Description:

 Construct an EXAMPLE object.

Arguments:

 Value - Initial value for the EXAMPLE object.

Return Value:

 None.

--*/

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 29

{
 mValue = Value;
}

<form-feed>

EXAMPLE::~EXAMPLE (
)

/*++

Routine Description:

 Destroy an EXAMPLE object.

Arguments:

 None.

Return Value:

 None.

--*/

{
 DbgPrint("Example destroying...\n");;
}

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 30

<form-feed>

ULONG
EXAMPLE::SetValue (
 ULONG Value
)

/*++

Routine Description:

 Set an EXAMPLE's value.

Arguments:

 Value - The value to set in EXAMPLE.

Return Value:

 ULONG - The set value.

--*/

{
 return(mValue = Value);
}

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 31

9.6 Client.cxx

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 client.cxx

Abstract:

 Sample usage of class EXAMPLE.

Author:

 David J. Gilman (davegi) 19-Oct-1990

Environment:

 ULIB

Notes:

Revision History:

--*/

extern "C" {
 #include <stdio.h>
};

#define _EXAMPLE_
#include "ulib.hxx"

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 32

<form-feed>

VOID
main (
)

/*++

Routine Description:

 Constructs and demonstrates usage of an EXAMPLE object.

Arguments:

 None.

Return Value:

 None.

--*/

 EXAMPLE example = 4;
 PEXAMPLE pexample;

 pexample = &example;

 printf("Value = %d\n", example.QueryValueDoubled() / 2);
 printf("Value = %d\n", pexample->QueryValueDoubled() / 2);
}

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

NT Utilities Coding Conventions 33

Revision History

Revision 1.1, October 29, 1990 - djg

1. Changed definition of IN argument modifier.

2. Added IN OUT argument modifier.

3. Added POINTER_AND_REFERENCE_TYPES macro.

4. Added STATIC member modifier.

5. Clarified OPTIONAL versus DEFAULT argument modifiers.

6. Changed member data prefix from 'm' to '_'.

7. Added style guidelines for public, private and protected sections.

8. Miscellaneous edits for clarity.

Revision 1.0, October 18, 1990 - djg

1. Incorporated comments from stever and loup.

2. Added reference types.

3. Fixed formatting errors.

Original Draft, October 16, 1990 - djg

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel
License

	1. Introduction
	2. The Existing Code Rule
	3. Module Headers
	4. Function Headers
	4.1 Modifiers
	4.2 Function Declarations
	4.3 Function Definitions

	5. Header Files
	5.1 Header File Inclusion
	5.1.1 Description
	5.1.2 Special Header Files
	5.1.2.1 Ulibdef.hxx
	5.1.2.2 Ulib.hxx

	6. Naming
	6.1 Variable Names
	6.1.1 Initial Caps Format
	6.1.2 Unstructured Format

	6.2 Data Type Names
	6.3 Returning or Accepting Pointers
	6.4 Structure Fields, Class Member Data and Enumeration Constants
	6.5 Macro and Constant Names

	7. Indentation and Placement of Braces
	8. Language Usage Guidelines
	8.1 Known Problems
	8.2 C++ Specific Guidelines
	8.3 Debugging Support

	9. Appendix A ‑ Example : Class EXAMPLE
	9.1 Ulib.hxx
	9.2 Example.hxx
	9.3 Examplep.hxx
	9.4 Example.inl
	9.5 Example.cxx
	9.6 Client.cxx

