M851 WristApp Design Guide

< RO ﬂ
f wieuezs
o Nz ciey |

3 = . i -F'F
% - = \ 3
\ [) |} (e
i o T - —

Timex Corporation
July 2003

M851 WristApp Design Guide Rev 1.2

DOCUMENT REVISION HISTORY

| REVISION: 1.0 | DATE: 07/25/2002 | AUTHOR: NINO ALDRIN L. SARMIENTO
AFFECTED PAGES DESCRIPTION
All Created document.

| REVISION: 1.1 | DATE: 04/09/2003 | AUTHOR: NINO ALDRIN L. SARMIENTO
AFFECTED PAGES DESCRIPTION
121 Added software reset sequence.
122,123 Added HTML support for description file.

| REVISION: 1.2 | DATE: 07/09/2003 | AUTHOR: NINO ALDRIN L. SARMIENTO
AFFECTED PAGES DESCRIPTION
11 Corrected icons for alarm and stopwatch.

Timex Corporation i

M851 WristApp Design Guide Rev 1.2

TABLE OF CONTENTS

1 INTRODUGCTION ..iiciiiiieieitesiee et e s e et s te st e ste e e stesassestesessesbe e esesseseasestesensessessasessensasessessssessenens 1
1.1 APPLICABLE DOCUMENTS ...coiutiitteittett ettt ettestee st e ste et st s st esaeesbeebeeasesaeesaeesbeesaeesseseesanesneasneenseennenns 1
12 DEFINITION OF TERMS. ..ccuttetteuteeutesteesteestesssesasesueasseasseassesssesasasssssssssseassesasesasssasasseassesnsesnsesssssssssses 1

2 MBELHARDWARE ..ottt sttt sttt sttt s b e b st b e b e se bt s be st ebesbeneebesbeneebesteneenen 2
2.1 MICROCONTROLLERtttutstiteuestestesestessesessessesessessensasessenessessansssessensesessensesessensesessensenessensenessessenens 2
122 I 1 PSSP 2
P2 B S VL 0] PSSP 2
O I V1TSS 3
P2 = 10 = = ST TRSPS 3
2.6 USB DATALINK ettt ettt sttt sbe s ste e e s e e s aeesbeabeeabeeaeeeheesheeebeeaseeeeeanesaeeebeabeenbeenbesneesaeenbeas 3
A 1 o SRS 4

3 MBELPLATFORM ..ottt ettt sttt st st e et be e esesbeseesesbesaese st e seesesbeseesesbeseesesbesensestesensens 5
I R @1V = Y1 = USSP 5
3.2 KERNEL ARCHITECTURE ...cuttiutteuttateesteastessseaasesueasueasseassessseaasassssssessseassesasesasssaessseassesnsesnsesnsssssssses 6

4 WRISTAPP DESIGN GUIDEciiiiiietirieiet ettt sttt ese et esessenennas 7
A1 NAMING CONVENTIONS.cettiteeetesteseetesteseesesteseesesseseesesseseesesseseesessessesessessesessessesessessesessessesessessesens 8
4.2 FILESAND DIRECTORIES.....c.tittitettstereetesteseetesteseesesteseesesseseesesseseesessessesessessesessessesessessesessessesessessesens 9

421 (=T (= g =SSP 9
422 SOUFCE FIIES .ttt ettt sttt e s 9
423 2 TU] ol T = v (oY S 9
4.3 APPLICATION SETUP PARAMETERS.....cettttttiuterueasteasteeteestesseesseessesssesasessesaeesseassesssessesnsessssssessses 10
431 APPLiCation OFffSEL MASK........eiueeeieiee ettt b 10
432 Timer RESOUrCE REQUITEIMENTScoiiiiiieiieiie ettt sttt s sb e s s ne e e see e 10
4.3.3 [CON RESDUICE ...ttt ettt st b ettt ea b e s be e s be e sbeeabeebesaeesaeesbeanbeanbenas 11
434 MEMOIY REQUITEIMENLSeiieiteeeeeteeeeeere ettt sie e se e e eesbesbesaeese e e eeeseesbeseesaeeseeneanseneens 11
435 Application Configuration Datacccooereiereieeeeee e e 12
4.3.6 Y o] o [Tor=1 o 0 T 1 0 S 12
4.3.7 Address CONrol BIOCK.........coiieiiieiree e e 13
438 Sample Application Parameter TEMPIALEcccvvvreeeeierere e 13
439 AppPlication INItIAlIZAtIONceceeecee et era e s 14
4.4 APPLICATION STATE HANDLERSoitittiteieteste st ste et ste et st se st sttt et st et sttt e sbesaeneees 15
441 ApPPliCation FrameWOTKccveieeceerc st sr e sre e ena e e s 15
442 Sate TranSition DIAQrAMcoiiiierieeeee ettt e e b bbb et e e e e eneas 15
4421 A State TranSition DIGQramcocceeiiirere ettt s see e e 15
4.4.2.2 Application State Transition DIagramcoeieeeeriereniese e 15
4.4.2.3 Implementing The Application State Transition Diagram..........cccccceeverenenencnieeeeneenen. 16
443 S = L 1 0 [QSRS 18
444 SYSIEIM EVENES. ...ttt bttt ettt st b e ettt a b e e aeesbe e s be e sbe e nbeeneeane e 19
445 REQUESING SYSLEM EVENLS........cciiiecieeeceieeee sttt e et eeaesaestesresneene e e enaeneens 22
4451 SWItCh DEPIESSIONS.....ccviiieiteieeetiseeieseestese st ste st eseesseaeseestesaesseesee e esesaesseseesaessesseeseessnnees 22
4452 SWITCH REIBASES ...ttt ettt sttt sttt ettt be e 23
4.45.3 POPUP CanCEl EVENL.......cciieieiceieeeeses ettt sttt st snesne e e e neeneas 23
4454 RING EAGES AN PUISES.........cciiiiieeiesese sttt ee ettt sresne e enaenaeneas 23
N SR oo o I (= 1 = o PSS 24
N ST = o o) RS o 1T oo SRS 24
AA5.7 RESOUICE UPUELESeoieiiiieitietieeeie ettt re ettt sae e e e seesae bt saesne e e eneeneaneas 24
R T 11 1= o 1 J PSS 24
4.4.6 S = LY T = o USSR 25

Timex Corporation ii

M851 WristApp Design Guide Rev 1.2

4.4.6.1 Display Clearing On State ChanQEcccvvvvueriereeiereeiesese e e sreeseeseeseesee e sre e seeseenesnes 25
4.4.7 V[0l (SR 2T Ta (TSI =1 <l i F= 1010 | < 25
4.4.8 (DS =1 LS = L o =0 [< 28
449 St BanNNer At HANAIE!coeeeiie ettt et e e te e e s e e ee s s saanee e 28
i R (OIS < S = | (<Y i F= 00 (<t TR 29
4411 POPUP SAt@ HANAIENottt e e e e 30

44111 Special Time Zone Check POPUP PrOCESSING......cccieiiriererieiie e 30
4412 Password Entry State@ HandIeroov ot 30

4.5 BUILT-IN STATE HANDLERScoittttiiiee ittt e e s e e satbe e s e e s s s e sabbaseeessessabbaseeassssssbbaseeasssssssbbaseeesss 30
46 TIMERRESOURCE USAGEccioiiitieitieistiestessitessstessstesssaessatessaessstesssbessssesssessnsesssessnsessnsesssenan 33
46.1 Display Update EVENES.........cccviiiieieeeiereese st ese e e et sseaesaessessesneeseensenseseens 33
4.6.2 Popup and EVENt GENEratioN...........ccveeerierieriisteseseeeeseese e te e sseesee s eeeseessessesseesessenseseens 33
4.6.3 TIME Of DAY RESOUICE......uiiveeiieieeeeeieeieste st steseete e e eaesae s e stesresre s e eseeeesaessessesaesneeseeseeneessenees 34
46.4 BACKUD RESOUICEveeeeieeeeiesie sttt st eeee e et ste st sseesa e e etessestestesneeseessensessessessesneesennsensesenns 35
4.6.5 TimE ZONE CHECK RESOUICE........ccueiiiteeietei ettt cette st ee et e e see s sbae s st e s saee s sareesbteesbeessreessaeeesaeas 36
4.6.6 B EL RS QR SS 0 10 | < TR 37
46.7 SOPWALCH RESOUICE.......eeeeeeeeiie sttt sttt ettt se et be b e et e se e e e eesaesaesseeneeneeeaneas 39
46.8 SYNCIIO RESOUICE ...ttt ettt sttt s b e bt e e e e et e seesbeeseeneenee e eneas 40
4.7 APPLICATION SYSTEM DATA .ttt e e e e e e b e e e s s e et b e e e e e s s e e sasbbeeeeassessabbaneeaeas 41
4.8 APPLICATION DATABASE DATA ..ottt e e e s s e et b e e e e s s e e saabbsae e e s e e s sabbaneeaeas 42
4.9 SYSTEM VARIABLES.tttiiieiiiiittttitee e e eesitte et e s s s e e s bbb aeeas s e s s bba b e eaeesssabbabeeseesssassabbesesesssassabbseeeasseaas 42
4,10 COMMON VARIABLES......utiitieiteecteeiiteestessstessstesssbesssaesssaessatessbesssbessbessssessbesssbessnsessnsessnsesssesan 44
O J A To = [o 10 o 0 £SO 45
4.10.2 Background HandIEr USEccccieierieieiese e st eeiesae e ste e e seesae e st snesneeneeneensenenns 45
411 BACKGROUND HANDLER......0cciitiiitieiiteeittesitessstesstessstessaessasesssessssesssbessssesssessssessnsessnsessnsesssesan 45
O N (= 407 I £ VA = o= 48
4,12 DISPLAY SERVICES.....ututiiiieiiiiiitttiiteeessassstetessssssasseessssssasabsestsasssasabbesssesssasabbasssasseasssrbsseeasssasss 48
A R O 0 T= = (01 (= G < £ TR RRTR 49
4122 Displaying NUMDEL'Soouiiiieeeieeeie ettt se e e e e e tesaesbesaesaeese e e eneeneens 55
4.12.3 Displaying AIphanumeric CharaCtersSccoeeeeiereeiieriere et seens 56
4124 DiSPlayinNg MESSAGESccueiueiueruerueeiereeriesiesteste et eteeeaeesseseeseeasessesaeeseeasensessessessesaeeseesesessens 56
4125 Clearing Display REJIONS..... ..ottt sae e sae e e eneeneen 57
0 TV KT = = 7N N V1= = 3T 58
35 A o - 0T (1 o RS 58
4.13.2 Banner MeSSAgE FOMMAL.........ciieieeieieieieeseese e e eteesae e sree e e stesneesseesseesseenseenseessenneessnessens 58
S Y Ko = @ N L] =S 59
ST Y 7 = O 7 =S 59
T [/ N 60
4.17 GENERIC BLINK SERVICES......cccttttiiiieiiiiiittiiie e e s eesiatteeesesssessaabesesssssasssbbssssessssssasbssssassesssbbssssasseanas 62
4,18 SCROLL SERVICESutttiiiiiiiiiiittietseessasitssessssssasasssessssssasabssstsesssassabbssssesssasasbasesassessssbbrseeasseases 62
4.19 PASSWORD PROTECTION ..ciiiiiiitttiiiiieeiiiiittiiie e e s sesibbseeessessessasbsstsssssassabbssssesssassssbssssassesssbrssesasseaes 63
3 O TS =] T PSSR 64
4.20.1 CW/CCW EVENE SVAPPING. -+ terverueemeeeeiesieatestesueeseeeesessessessessessesneensessansessessessessessesssensessens 64
4.20.2 RING/Crown ACCEIEratiONcceeeeeieeeiesestese st etee e eteste e esresresseeseese e tesaesresresneenaeneenseneens 65
R I 1= T S = YA) = 66
A = o = | = 66
4,23 APPLICATION PEEK SERVICEScciuviiivieiieeiitesstesssteesstessstessstessaessssessnbessstesssessnsesssessnsessnsessnsenan 67
4,24 BACKGROUND TASKS....cctiiitieiitieitisiiteesstessstesstessssessstessssessssesssessssessssessssessssessssessnsesssessnsessssesn 67
4.25 APPLICATION REQUESTS ...utiiitie ittt sttt s stes st s st esate s s raessate s satessabessabessabesssbessabessnbessnbessnbessnrenan 68
4.26 USING DATABASE FILESLOCATED IN EEPROMcoviiiiiiiiiiiiiiee ettt ivrr e e 71
4.26.1 Database SITUCIUrES ANO ACCESS........uveieieteieeieeeiesseeessstseessessesessssesessssbessssssssssssssssssssnessas 71

4.26.1.1 Sequential Database SITUCLUIEcoueiuiiieieee et 71

4.26.1.2 Fixed-Sized Random Database SITUCKUNE.eeeeieueiei i eeeie e eeiee e st eee e eaeee e 72

4.26.1.3 Variable-Sized Random Database SITUCKUNE.evieeieeeie et s e e 74

4.26.1.4 Link-LiSt Datahase SITUCLUTE.........cooecueiee ettt eeee e e s se e e s s st e e s sesaae e s saaeesssnreeeeas 76
4.26.2 Database USAgE IMACIOS........eceieeeerieriesestesteseeseeeessessestessessessesseessessessessessessessessenssensessens 78

Timex Corporation i

M851 WristApp Design Guide Rev 1.2

4.26.3 Opening and Closing @ Database.........cccvvvvreriieeeeerese s eee s e ste s e e neens 79
4.26.4 Upload and Download of Database..........cccceverererreerereresesieseeseeeesesseeseeseeseessessesssesesenns 79
4.26.5 PC Synchronization of WatCh Data..........ccccvieverieeeierese s eeeseesie s eneeneens 79
427 MELODY SERVICES.....utittettauttsueasteestesaseassseasueasseaaseasseaasesasesaesssesssesasssasssasssseassesnsessesnsesssssseesses 80
4271 Melody Table SITUCIUIE ...ttt e e e 81

5 COUNTER WRISTAPP: PUTTING IT ALL TOGETHER.......ccooeiieteeeseeecee e 83
Lo RS ol = 107 1 (@ N [P RUPURURTR 83
L . = TP OPURURTR 85
521 Sate TranSition DIAQrAMooeie et sttt seeeesaesbesaeeneeneeneaneas 85
522 BANNES SALE......ceiieeee i bbbt r e b he b e e e 86
523 (D 10 LR = L= USSR 87
524 S BANNET SLALE......ee vt r e e e 87
525 S R =1 TS T PO PRTSOSPP 87
LT T S - = 1N ST STRS 88
54 USING THE WRISTAPP WIZARD TO CREATE TEMPLATES ..c.vetiiriiieresieneeesieseeesiesee e sseseeseseesaeneees 88
54.1 S =1 o J0 0 TSRS 88
5.4.2 S =1 010220 TSP 89
5.4.3 S =1 o TR 1o TP 20
544 File Template GENEIratiON........ccoiiieeieee ettt se et b e saeeae e e aneeseens 91
Lo S . = T PP OPURURTR 92
5.6 BACKGROUND HANDLER.tittitteitesiiesteesteesteeste sttt esbeasbeeabeeabesaeesbeesbeesbeesesaeesaeesaeasneanseansenas 92
5.7 PARAMETER FILE ..ottt ettt sttt sttt b et sttt st e 93
5.8 MISCELLANEOUS FILES ...ttt sttt sttt sttt sttt sttt sttt sttt ae e 94
5.9 DIRECTORY STRUCTURE.......cttttrttuestestenestestesessestansssessensesessessesessessesessensesessensesessessenessensenessessenens 95
5.10 CODING THE WRISTAPPotiuiitirieiietesienestesteestestenessesteneesesbessesesaesesesbese st ssetesesbeseenesbensenessessenenes 96
Lo 0 R o 1= (= g i TSP PSTRSN 96
B5.10.2 VariahlE Fil. . ittt sttt s sttt sa et e sbe e ene st neene s 97
5.10.3 Banner SAtE HANAIEScooiiieieieeeee ettt e ae e neen 98
5104 Default Sate HANAIE ...ttt nen 99
5105 SatBanner Sate HANIEr ..o 102

SN ORI = S = 1= o =1 o | RS 103
L300 O A = 7= Tor (o | o0 To = =T o | = RS 105
5.10.8 DiSplay ROULINES.....cceiueieieeeiesiesie e sttt e seeseste e s et a e testestesresseesee e esaesaestessesneeneensenseses 106
L300 (O T U 1 1)Y (o111 = 108
511 CREATING THE WRISTAPP.....cittiieteitirteteetesteiestesaese st see e sbestes s bt see st ebesee e be st eneese st eneesesaenessessenennas 111
5111 PCInterface Parameter LiS.... ..ot 112
L3 s o U o= T 1=/ o 112
511.3 Saving the CUrrent WOTKSPACEcceeeeieerese et eee sttt st ene e e e s 116
5114 Creating the BUild SCIIPLS.......coioiiiieeeeeee ettt 116
5115 Executing the BUild SCripS......oooeieieeeeieeie ettt 117
511.6 Creating the WristApp Downloadable Files............ccoiiiiiiiieeeeee e 118
5117 WriStApp Memory USAge ANBIYSISc.coreirieierieiieeieeiee et e e sae e e e e 120
511.8 Downloading and Testing the WEISEADD «...cveiereieeeee e e 120
511.9 Creating @ DeSCription File......ccoviiiieieeee et 122
5.11.10 Distributing the VWEiSLADDccveeceeceeeee et sreene e enaennens 123

B TRADEMARKS ...ttt ettt b et b et bt bt bbbt 123

Timex Corporation iv

M851 WristApp Design Guide

1 Introduction

Rev 1.2

The M851 Kernel isaplatform that is geared for developing a variety of applications that can be
incorporated into the operating system during power up or downloaded to EEPROM through USB Datalink
communications. Refer to the M851 Application Design Guide for an overview of the M851 Kernel and
how applications are processed in the M851 Kernel.

This document serves as a guide for developing a WristApp.

1.1 Applicable Documents

The following documents serves as detailed reference in the creation of this document.

M851 Application Design Guide
M851 WristApp APl Reference Guide
S1C88349 Core CPU Manual

1.2 Definition of Terms

ACB

ADD

ASD

API
APP
Common Memory Area

EEPROM

Heap

KERNEL

WristApp

Overlay

Timex Corporation

Application Control Block

Application Database Data. Thisiswhere application database
records are stored.

Application System Data. This iswhere application will store
variables required for its operation

Application Programming Interface

An application.

Memory area allocated for use by all application.

Electrically Erasable Programmable Read Only Memory. External
storage for the watch. Data and code must be loaded into internal
memory prior to to be used or executed.

Memory allocated for the active application.

Encompasses all components making up the operating system:
display, communication, resources, melody generator, hardware
drivers, database, etc.

An EEPROM-based application.

A memory area allocated for code swapping of an EEPROM-based
application.

M851 WristApp Design Guide Rev 1.2

2 MB851 Hardware

This section defines the hardware components in the M851 Watch.

2.1 Microcontroller

The microcontroller of the M851 isthe EPSON 88349. It isan 8-bit microcontroller having 48K bytes of
ROM and 2K bytes of RAM. It has built in hardware components to attached external devices like I/0
ports, seria port, LCD, timers, etc. The operating system and a number of internal applications are masked
in ROM.

22 LCD

This serves as the information window of the watch. There are four regions in the viewing area:

Lipper Dot-hMatrix

Sagment Region

1. [T
[e i]
.m. “ I-LLr-}-H-Lm-i—rH-[-L}ILq-i-I-I--L['I—rH[— Main Dat-Matrix

Regions Description
Icons Unique icons (12) that can be used to shows status of system and
application.
Upper Dot-Matrix An 11 x 5 dot matrix area. Ableto display 2 charactersin either
fixed or proportional fonts.
Segment Regions Allows for the display of 6-digit segmented digits.
Main Dot Matrix An 42 x 11 dot matrix area. Ableto display charactersin either

fixed or proportional fonts, large and regular size.

Two lines are available for writing in this area when using the
regular sized fonts.

2.3 Switches

The system provides eigth switches whose functionality and use is defined by the user interface. The
kernel sends out switch activity to the foreground application through system events for processing.

Timex Corporation 2

M851 WristApp Design Guide Rev 1.2

cw

e SET
-0 crown
N NORMAL cew
Ty
START-SPLIT \l
STOP-RESET
Switch Name Switch Type

START/SPLIT Momentary Close

STOP/RESET Momentary Close

MODE Momentary Close

EL Momentary Close

HOME Permanent

SET1 Permanent

CwW Permanent

CCwW Permanent

24 Lamp

The display deviceisilluminated by an Electo-Luminescent (EL) display. The Night-mode featureis
controlled by the kernel.

2.5 Buzzer

Thiswill convert the digital signals generated inside the microcontroller into audible tones. Through a
melody generator provided by the kernel, complex melodies can be generated following a melody structure.

2.6 USB Datalink

Thisincludes the physical components that allows two-way communications between the watch and the
PC. The PC serves as a user interface to the watch. It coordinates and controls the information that will be
transferred to and from the watch. With the PC, the user can do the following:

Activate or deactivate applications

Customized mode names

Select the order of the active applications in the mode list
Set time and date

Download EEPROM -based applications

Download new databases for active applications

Upload information stored in the watch

Etc.

Aninternal application, COMMUNICATION MODE, interprets and processes all the commands being
sent from the PC. This mode is automatically enabled when an active USB cable is plugged to the watch.

Timex Corporation 3

M851 WristApp Design Guide Rev 1.2

2.7 EEPROM

Microcontrollers have limited internal memory that can be used to store data and applications. The
EEPROM serves as a high-capacity storage device that can be used to store data or code. The
microcontroller is not capable of directly executing code stored in EEPROM. It must first be copied into
internal memory prior to any processing or execution.

Utilities are provided by the kernel to facilitate accessing data from the EEPROM.

Timex Corporation 4

M851 WristApp Design Guide Rev 1.2

3 M851 Platform

This section provides an overview of the M851 Kernel Architecture.

3.1 Overview

The M851 Kernel is areal-time operating system that serves as a platform for executing applicationsin a
state machine framework. The kernel is composed of the core, hardware, display, audio, timer resource,
EEPROM manager, utilities, and communications.

Core

Hardware Drivers

Display Drivers

Audio Drivers

Timer Resource

Database Utilities

Utilities

Communications

Timex Corporation

The core module controls the operation of the entire system. 1t makes sure
that all hardware events are processed in atimely manner and that
applications operate in a predefined manner. The core architecture defines
how applications are structured to work within the system.

The core manages the resources that are made available to applications as

well as manage the application. The core processes hardware events, and if
reguired, it will pass system events corresponding to the hardware event to the
application for further (and custom) processing.

The Hardware drivers provide alayer abstraction to the actual implementation
on how to operate any hardware. The hardware macros are available for use
by the core and the applications. Some macros are to be used exclusively by
the kernel.

The Display drivers are an extension of the hardware drivers dedicated only to
display services. Itisahigh level driver to allow the kernel and applications
to display any datain any region on the display hardware. It provides
complex display services such as blinking and scrolling.

The Audio drivers are an extension of the hardware drivers dedicated only to
the melody generation. Itisahigh level driver that provides servicesto
generate complex melodies.

The Timer Resources handles all time keeping requirements for an
application. A resource contains both data and code to control the data.

The available resources are Time-of-Day resource, Time Zone Check
resource, Backup resource, Timer resource, Stopwatch resource, and the
Synchro resource.

The resources are executed in the background. It provides macros to
manipulate every aspect of its operation. The resource frees up the
application from having to supply code to do timing specific operations such
as keeping track of time, timer functions, and comparing time data.

Provides utilities to access (read and write) records stored in EEPROM. It
provides a number of database access operations namely: sequential, fixed-
sized random, variable-size random and double linked list access.

The Utilities modules provides common functions that may be used by any
applications. For example: conversions, formatting, lookup, common banner
display, pseudo-randon number generation, etc.

The Communication module consists of two modules that work together.

M851 WristApp Design Guide Rev 1.2

The first module are the the low level drivers that communicates
with the serial port to receive and pre-process the data packets
received through datalink.

The second module is the communication application. This receives
the valid data packets and processes the command embedded in the
packet.

3.2 Kernel Architecture

The Kernel manages a memory area known as Heap Memory. The Heap Memory serves as a depository
for code or data that an application will use. It also allocates space used for code overlay for swapping in
EEPROM -based applications code and code for periodic tasks.

The Kernel interfaces to the application through the Application Configuration Data (ACD) and the
Application Control Block (ACB). The ACD and ACB provides the kernel with the info on how an
application is configured in the system, the location of the application data, location of the state manager
and the resource handler routines.

With this generic structure, the Kernel can process any application regardless of it being stored in internal
memory or external memory. Adding new applicationsto the system is facilitated by this architecture
whether the application will be added during the design time or after the microcontroller has been
permanently programmed.

Due to its dependence on heap memory, the Kernel islimited in its ability to spawn alarger number of
application in memory due to limited internal memory of the microcontroller.

Timex Corporation 6

M851 WristApp Design Guide Rev 1.2

4 WristApp Design Guide

A WristApp is basically an EEPROM-hased application. The kernel will support multiple EEPROM-based
applications that also has a fixed address for its overlay area. Applications of thistype can be larger than
the maximum available heap memory. When an EEPROM based application becomes the foreground
application through a mode change, the kernel will load the banner state into the application state handler
overlay area. On the succeeding request for a state change, the kernel will load the new state handler code
into the overlay areafor execution.

The overlay memory areais used by all EEPROM-based applications to store both common and state code
and has afixed location in memory.

The ASD islocated in the heap. Each EEPROM based application will have its own dedicated ASD
section in the heap.

The code space is composed of two sections: common code and the application states. The common code
has all the routines that will be called by the kernel and the application states. These routines are the:
resource handler, mode banner message (if defined in application), display routines, and utility routines.
The application states are the state handlers for each state used in the application.

Since only one state can be in the foreground at any given time, the kernel will automatically swap in the
required state handler into the state section. This makes for efficient use of code space and alows for
larger applications to be built even with limited physical memory. The figure below shows the memory
usage of the overlay area.

HEAP EEPROM
TOD ASD
COMM ASD EEPROM APP 1 ADD

EEPROM APP 1

COMMON
EEPROM APP 2 ADD

EEPROM APP 1 STATE 3 —

EEPROM APP 2

COMMON
EEPROM APP 2 STATE O
EEPROM APP 2 STATE 1
EEPROM APP 2 STATE 2
EEPROM OVERLAY AREA EEPROM APP 2 STATE 3
EEPROM APP 1 ASD
EEPROM APP 1
EEPROM APP 2 ASD COMMON

EEPROM APP 1 STATE O

EEPROM APP 1 STATE 1

EEPROM APP 1 STATE 2

EEPROM APP 1 STATE 3

Timex Corporation 7

M851 WristApp Design Guide

Rev 1.2

The total size requirement for an EEPROM-based application must not exceed the HEAP memory
specified by the system. The EEPROM-based application overlay usage is computed based on the sizes of
the common code and the largest state handler. The overlay size is 900 bytes.

COMMON CODE

STATEO

STATE 2
STATE 1

|
APPLICATION MEMORY USAGE

STATE SECTION

4.1 Naming Conventions

A three character prefix application code will be used to distinguish application owned labels and

subroutines.
Type Usage
Constants All upper case characters.
Example:
TODNUMBEROFRESOURCE equ 2
TODSECONDSDATAOFFSET equ 0
Variables Prefix isin upper case with mixed case for descriptive variable
name.
Example:
TODSecondDat a
TODM nut eDat a
Bit Variables The letter ‘B’ in lower case with the application prefix code in upper
case and mixed case for descriptive bit variable name.
Example:
bTODTr acki ngHol dToSet equ 00000001B

Timex Corporation

M851 WristApp Design Guide Rev 1.2

Labels All in lower case characters and descriptive of its function within the
subroutine or program flow.

Example:

t odchecknext event

Subroutines Prefix isall in lower case with mix case for descriptive label name.
Example:

t odDef aul t St at eManager
t odResour ceRef r eshHandl er

Filenames MSDOS Filename convention. Eight character filename (maximum)
with 3 character extension (maximum). ASM for source code files.
H for header files.

Example:

t oddef . asm
tod. h

4.2 Files and Directories

42.1 Header Files

Header files are stored under the H directory of an application. They will have the extension *.H.
Generally, applications will have three header files associated with them. Namely:

General header File Contains application specific equates used by an application as well
as redefinitions of system equates.

Macro File Contains macro definitions that will be used by the application.

Variable File Contains the offset definitions for variables as well as definitions for

the application system and application database heap memory
requirements. Bit definitions of application status flags are defined
inthisfile.

4.2.2 Source Files

Source files are stored under the SRC directory of an application. They will have the extension * . ASM.
Typical source files are for the banner state, default state, set banner state, set state, popup state,
background handler, display routines and utilities.

4.2.3 Build Directory

The build directory is where all outputs of the build scripts will be stored. Thiswill alow the source and
header directory free from the clutter of multiple object and list files. On a successful build of awristapp,
this directory will contain the parameter and code binary files for download to the watch.

Timex Corporation 9

M851 WristApp Design Guide Rev 1.2

4.3 Application Setup Parameters

The kernel will use these parameters to setup an application. The application will not be initialized if the
kernel cannot allocate al the required system resources.

Application setup is done during power up for enabled ROM-based applications. During a communication
session, any application can be initialized under PC control. In both operations, the setup parameters
remain the same.

Most of the parameter settings indicated in this section (after some manipulation) will be stored in the
kernel to the Application Configuration Data and Application Control Block. Each application hasits own
dedicated ACD and ACB.

4.3.1 Application Offset Mask

The Application Offset Mask specifies whether data specified in the parameter table needs to be converted
to the absolute address in heap memory. Thisis because the kernel will allocate available heap memory for
application system data asit isinitialized in the system.

The Application Control Block addresses are all absolute memory addresses in internal memory.

Thisisthe structure of the Application Offset Mask

Byte | Bit Offset Mask Name

0 0 | bCOREAppSyst enDat aCxf f set 0 = Absolute Address
1 = Relative Address
1 | bCOREAppDat abaseDat aCxf f set 0 = Absolute Address
1 = Relative Address
2 | bCOREAppSt at eManager O f set 0 = Absolute Address
1 = Relative Address
3 | bCOREAppResour ceHandl er O f set 0 = Absolute Address
1 = Relative Address
4 | bCOREAppModeNane f set 0 = Absolute Address
1 = Relative Address

5 | Unused

6 | Unused

7 | Unused

4.3.2 Timer Resource Requirements

The application will specify the number of timer resources it would require for its operation. It will retain
ownership of the resource until it is removed from the system. When aresource is reserved, the kernel will
place the index of the resource (in order of allocation) at the start of the application system data area.

Byte Timer Resource Type Maximum

Time of Day Resource’

Backup

Time Zone Check Resource

Timer Resource

Stopwatch Resource

QR|WIN|IFL O
RINWON| D~

Synchro Resource

! The TOD application owns three TOD resources. The kernel owns one TOD resource.

Timex Corporation 10

M851 WristApp Design Guide Rev 1.2

The resource index aways start at 0x00. For example, the TOD Resource index are 0x00, 0x01, 0x02 and
0x03. The Timer Resource index are 0x00, 0x01 and 0x02.

4.3.3 Icon Resource

The application will specify the LCD flagsit will use to convey status information when operating in
background mode. These status flags will be visible only when the primary mode (TOD Application) is the
foreground application. For example, atimer application will use the hourglassicon to indicate that it is
running in the background.

A maximum of three applications can own and reserve an LCD icon during initialization. The kernel will
check the usage status from each of the owners to determine how to display theicon. A BLINK condition
has precedence over an ON or OFF status.

Byte | Bit Icon Bit Name Icon Graphic
0 0 | bCOREAppFlag_L L L
1 | bCOREAppFlag A A A
2 | bCOREAppFlag_P P P
3 | bCOREAppFag NOTE Note J.
4 | bCOREAppFlag HOURGLASS Hourglass X
5 | bCOREAppFlag_RING Ring m
6 | bCOREAppFlag_ ARROW Arrow v
7 | bCOREAppFlag ALARM Alarm ﬁ
1 0 | bCOREAppFlag_MOON_Flag Moon (
1 | bCOREAppFlag_STP Stopwatch ®
2 | bCOREAppFlag_TIMELINE_Flag Timeline mERTEmE
3 | Unused
4 | Unused
5 | Unused
6 | Unused
7 | Unused

NOTE: When an application isin foreground mode, it has full use of all theicons and is not restricted to
the display limitations imposed by this parameter. The Timeline Icon should not be used (displayed) by the
application owner when it is currently the foreground application.

4.3.4 Memory Requirements

The application will specify the number of bytesit requires of heap memory space. Heap memory can be
used for both data and code. An applicationisnot initialized if the kernel does not have enough memory to
be allocated.

| Word (16-bit) | Heap Memory Use

Timex Corporation 11

M851 WristApp Design Guide

Rev 1.2

0 Application Code Size
1 Application System Data Size
2 Application Database Size

For EEPROM -based applications, the code size and database size define the amount of EEPROM memory
to be allocated. Application System Data size will be the amount of memory from the internal memory
heap allocated for the ASD.

Although the code size for EEPROM-based apps can be larger than the wristapp overlay area size, the
common code section and the state handler code must fit within the overlay area limitations (900 bytes).

4.3.5 Application Configuration Data

The application will specify through the Application Configuration Data how the application is going to
behave in the kernel when initialized or executed. It also provides additional information to the kernel
other system requirements.

Byte

Bit

Bit Name Description

0

0 | bCOREACDReser ved

Restricted. Kernel Use Only.

1 | bCOREACDCodeLocat i on

0 = Internal Memory
1 = External Memory

2 | bCOREACDDat abaseDat aLocat i on 0 = Internal Memory

1 = External Memory
3 | bCOREACDCodel nval i d 1=Codeisinvalid
4 | bCOREACDDat abaseMdi f i ed 1 = Database modified by user
5 | bCOREACDI nval i dDat abase 1 = Database isinvalid/not present
6 | bCOREACDPasswor dRequi r ed 1 = Password required for access
7 | bCOREACDUser Speci fi edivbdeNane 1 =Mode name located in

EEPROM

The table below shows some predefined configuration data definitions for WristApps.

Configuration Byte Application

COREACDEEPROVAPP

CODE external. ADD external.

4.3.6 Application ID

This two-byte parameter is a unique identifier of an application. The application typeis used during an
application peek operation where the kernel searches for the first matching application for peeking.

The first byte indicates the application type, while the second byte indicates an instance of that application.
By default, all ROM based application have an instance value of 0x00. If ancther instance of a ROM
based application isinitialized, the system will increment the Instance Number by 1.

Byte Description
0 Application Type
1 Application Instance Number
Code Application Type
000H COREAPPTYPESY STEM
002H COREAPPTYPEOPTION
011H COREAPPTYPEDATE
020H COREAPPTYPECHRONO
021H COREAPPTYPETIMER

Timex Corporation

12

M851 WristApp Design Guide Rev 1.2

022H COREAPPTYPESYNCHROTIMER
023H COREAPPTYPECOUNTER
040H COREAPPTYPECONTACT
050H COREAPPTYPETASK

060H COREAPPTYPENQOTES

070H COREAPPTYPESCHEDULE
080H COREAPPTYPETIDE

090H COREAPPTYPEDEMO

O0AQOH COREAPPTYPEGAME

OEOH COREAPPTYPEALARM

OE1H COREAPPTY PEAPPOINTMENT
OE2H COREAPPTYPEOCCASION

Application types above index OxDF are considered to be applications that is dependent upon the primary
time zone settings. Thiswill allow the background handler of these application to be called with the event
COREEVENT _PRI MARY_TI ME_CHANGE whenever the primary time zone data changes.

NOTE: Theinstance number may be different than the value specified in this parameter table if
downloaded through a PIM.

4.3.7 Address Control Block

The kernel uses these parameters to locate the start address of both data and code used during application
execution. With the datain the Application Offset Mask, the kernel will convert the offset parametersinto
absolute memory addresses.

Word (16-bit) Description
0 System Data Address/Offset
1 Database Data Address/Off set
2 State Manager Address/Offset
3 Resource Handler Address/Offset
4 Application Banner Name Address/Offset

The WristApp build script provides equates to plug into offset 2 and 3 of the Address Control Block. So
use the following below:

Word (16-bit) Description
0 System Data Address/Offset
1 Database Data Address/Offset
2 CODESTATEADDRESS
3 CODECOVIVONADDRESS
4 Application Banner Name Address/Offset

NOTE: The string data array referenced by the Application Banner Name must follow the Application
Banner Message Format.

4.3.8 Sample Application Parameter Template
The following is a sample application parameter template for a WristApp.

ACB of f set mask.

Timex Corporation 13

M851 WristApp Design Guide

; Application SystemData is |ocated i

n heap.

; Oher ACB entries are |located either in ROM or EEPROM

db bCOREAppSyst enDat aCf f set

Nunmber of resources required.

db 00h ;
db 00h ;
db 00h ;
db 00h ;
db 00h ;
db 00h ;

TOD

Backup

Ti me Zone Check

Ti mer Resource

St opwat ch Resource
Synchro Ti ner Resource

; Flag(s) ownership.

db 0 ; LCD Flags 1

db 0 ; LCD Flags 2
Heap size requirenents.

dw 0280H Code

dw CNTSYSTEMDATASI ZE ; ASD

dw CNTDATABASEDATASI ZE ; ADD

Application Configuration Data Byte.

db COREACDEEPROVAPP

Code is external.

; Application Unique ID.

db COREAPPTYPECOUNTER ;
db 01lh ;

Application type
Application instance nunber

ACB Par anet ers.

dw CNTSYSTEMDATASTARTOFFSET

dw CNTDATABASESTARTOFFSET ;
dw CODESTATEADDRESS ;
dw CODECOMMONADDRESS ;
dw | cdBanner Msg_COUNTER ;

4.3.9 Application Initialization

ASD address of fset.

ADD address of fset.

App state nanager address

App background handl er address
App node name function address

Rev 1.2

A WristApp isinitialized for the first time when the current communication session is completed. The
WristApp’s background handler is processed with the system event COREEVENT _| NI T. Thiswill allow
the WristApp to setup the required parametersin the ASD section. It could also use thistime to update
ASD information from the database header info if available.

Timex Corporation

14

M851 WristApp Design Guide Rev 1.2

4.4 Application State Handlers

4.4.1 Application Framework

The application is based on the state machine concept. Only one state is active at one time and processes
all the external events. When a state becomes active, it will first initialize al required data and status prior
to receiving and processing external events.

The M851 Kernel provides the mechanism to implement the state machine architecture. The applications
are basically made up of a number of states, where each state handles a specific function of an application.
For example, thereis always a banner state, default state, a set state and a popup state.

The Kernel will only know the address of the Application State Manager located in the Application Control
Block. The State Manager will use the system variable CORECurrentState to determine the actual state
handler to execute.

For EEPROM based application, only one state handler is located in the overlay areain heap. Thereisno
need to have a state manager. The entry in the Application Control block will be the address of the state
handler.

4.4.2 State Transition Diagram

The State Transition Diagram (STD) facilitates the creation of an application in a state machine framework.
The STD shows in agraphic format the available application states, the events the state will be processing
and the associated action and state transitions resulting from the event being processed. With the STD, the
application can be analyzed at this stage for commonality and optimization. Once the STD is complete and
optimized, it becomes the template in coding the state handlers.

4421 A StateTransition Diagram

The state is represented as acircle. The name of the state describes the general function of the state. The
lines and arrows indicate the events that have occurred and the action to be taken.

Switch 1 Depress Switch 1 Releasa

1 sme low res timesaut HOLD TO PEEK A acton
STATE

Low Res Timeout Expired
o BTN

4.4.2.2 Application State Transition Diagram

The diagram below shows the state transition diagram for an entire application. This diagram shows the
relationships and interaction between states.

Timex Corporation 15

M851 WristApp Design Guide Rev 1.2

SET1 DEF
FET T

PREVIOUS
APP

SET BAMMER
STATE

MEXT MODE
[EEEILT]

HOME DEP
T AChCn

TIMEQUT CONE
i ACI0n

MEXT MODE
Mo BCS00N

HOME DEF
aclion

CW PLLEE
N0 achon

LOW FULSE
EESE

EVENT
achon

4.4.2.3 Implementing The Application State Transition Diagram

The State Transition Diagram will serve as a guide to develop the application template for all the state
handlers. With the template ready, the actual code to implement the function can be added to the
appropriate sections.

Guidelines in the implementation:

The arrows pointing from a state indicates the events that occurred while in the state is active.
Thiswill be processed inside a state.

The arrow pointing into a state from another state will be processed in the new state as a state
entry event.

The actions are initialized inside the state handler when the event is processed.

The code template bel ow shows the actual code to implement the application state transition diagram
shown in the previous section. The macro code shown below are not the actual macros used in the M851
Kernel, but are used here for purposes of facilitating explanation of the operation of the code. The code
below uses C syntax for discussion purposes only.

AppDef aul t St at eManager ()

swi t ch(CORECur r ent Event)

{
case STATEENTRY:
L S
/1 ; STATE ENTRY PROCESSI NG
L
11

Timex Corporation 16

M851 WristApp Design Guide Rev 1.2

/1 insert State Entry Processing Here
11
br eak;

case SET1DEP:

[
/1 ; SET 1 DEPRESS PROCESSI NG

L
Breg = SET1BANNERSTATE;

CORE_REQ STATE_CHANGE;

br eak;

case MODEDEP:

/1 ; NEXT MODE PROCESSI NG

[
CORE_REQ NEXT_MODE_CHANGE;
br eak;
}

}

[

/1 SET 1 BANNER STATE HANDLER

//

AppSet 1Banner St at eManager ()

swi t ch(CORECur r ent Event)

{
case STATEENTRY:

N R AR R SRR R R R R R T
/1 ; STATE ENTRY PROCESSI NG
L

/1

/1 insert State Entry Processing Here
/1

CORE_REQ TI MEQUT_2SEC,
br eak;

case HOVEDEP:

R R R R R R R R R R RN

/1 ; HOME DEPRESS PROCESSI NG

Breg = DEFAULTSTATE;
CORE_REQ _STATE_CHANGE;
br eak;

case TI MEOQUTDONE:

L e
/1 ; TIMEQUT DONE PROCESSI NG
L
Breg = SETSTATE;

CORE_REQ _STATE_CHANGE;

br eak;

Timex Corporation 17

M851 WristApp Design Guide

AppSet St at eManager ()
{

swi t ch(CORECur r ent Event)

{
case STATEENTRY:

Ll

/1 ; STATE ENTRY PROCESSI NG

L e

/1

Rev 1.2

/1 insert State Entry Processing Here

11
br eak;

case HOVEDEP:

Breg = DEFAULTSTATE;
CORE_REQ _STATE_CHANGE;
br eak;

case CWPULSE:

4.4.3 State Index

The application can have a maximum of 256 states. The first six states are predefined for common
operation among applications. The predefined states are shown in the table below.

Index Kernel Definition

Description

0x00 | COREBANNERSTATE

The state to proceed on a mode entry.

0x01 | COREDEFAULTSTATE

The state to proceed to after a mode banner
state and for any mode change requests that
bypasses the mode banner state.

0x02 | CORESET1BANNERSTATE

Using the common crown handler, thisis
the state that will be active when the crown
isplaced in the SET 1 position.

Timex Corporation

18

M851 WristApp Design Guide

Rev 1.2

0x03 | CORESETISTATE Handles the application SET 1 processing.
0x04 | COREPOPUPSTATE The state to proceed on an application
popup request through the kernel.

0x05 | COREPASSWORDDEFAULTSTATE Password entry default state handler

0x06 | COREPASSWORDSETBANNERSTATE | Password entry set banner state handler

0x07 | COREPASSWORDSETSTATE Password entry set state handler

0x08 | General Purpose State Index These states have no kernel restrictions on
. its usage.

OxFF

USER INTERFACE NOTES:

When in the CORESET1BANNERSTATE, the application must request for a banner timeout
prior to changing state to CORESET1STATE.

APPLICATION NOTE:

If the application does not support a popup state, the state index COREPOPUPSTATE can be used
as agenera purpose state index. Same rule follows for COREPASSWORDDEFAULTSTATE,
COREPASSWORDSETBANNERSTATE and COREPASSWORDSETSTATE. This prevents
skipping of unused state indexes.
To support password protection, then the following indexes:
COREPASSWORDDEFAULTSTATE, COREPASSWORDSETBANNERSTATE and
COREPASSWORDSETSTATE should be used for common password entry and verification

utility.

4.4.4 System Events

When the user depresses a switch, or arequested timeout has expired, or a state change was requested, the
kernel will send these events to the foreground state of an application for processing. The following system
events are defined:

System Event

Description

COREEVENT_STATEENTRY

- Used to initialize a state when it becomes

the foreground state.

- Passed always on a mode or state change to

the new state handler.

COREEVENT_TI MEOQUTDONE_LOWRES

- When arequested low resolution timeout

expires

COREEVENT_TI MEQUTDONE_HI GHRES

- When arequested high resolution timeout

expires

COREEVENT_STI CKY_TI MEQUTDONE

- When a sticky timeout conditions are

completed.

COREEVENT_CROMN_EL_DEPRESS

- Passed when the crown is depressed
- Used exclusively for EL control

COREEVENT_CROMN_EL_RELEASE

- Passed when the depressed crown is

released.

- Used exclusively for EL control.

Timex Corporation

19

M851 WristApp Design Guide

Rev 1.2

COREEVENT_CROMN_HOVE

- Passed when the crown returns to the

HOME position from any SET position.

COREEVENT_CROMN_SET1

- Passed when the crown is placed in the

SET 1 position.

COREEVENT_CW PULSES

- Sent to the application every 125ms when

aCW transition of the crown is detected
within the 125ms sample window.

- Used when the application places the

system in pulse mode.

- The variable COREEventArgument stores

the number of pulses detected within the
sample window.

COREEVENT_CCW PULSES

- Sent to the application every 125ms when

a CCW transition of the crown is detected
within the 125ms sample window.

- Used only when the application places the

system in pulse mode.

- The variable COREEventArgument stores

the number of pulses detected within the
sample window.

COREEVENT_CW EDGE_TRAI LI NG
COREEVENT _CW EDGE_LEADI NG

- Sent to the application on atrailing/leading

edge transition of the crown in the
clockwise direction.

- Used only when the system is not in pulse

mode.

- The application must use only the

TRAILING events when in edge mode.
Thisiswhere the iControl hardware makes
acliking sound.

COREEVENT_CCW EDGE_TRAI LI NG
COREEVENT_CCW EDGE_LEADI NG

- Sent to the application on atrailing/leading

edge transition of the crown in the counter-
clockwise direction.

- Used only when the system is not in pulse

mode.

- The application must use only the

TRAILING events when in edge mode.
Thisiswhere theiControl hardware makes
acliking sound.

COREEVENT_MODEDEPRESS - Switch depression was detected.
COREEVENT_STOPRESETDEPRESS

COREEVENT_STARTSPLI TDEPRESS

COREEVENT_MODERELEASE - Switch releases was detected.

COREEVENT_STOPRESETRELEASE
COREEVENT_STARTSPLI TRELEASE

COREEVENT_ POPUPCANCEL

- Sent to the application if any switch events

was detected during melody generation
phase of apopup. The event that cancelled
the melody is stored in

Timex Corporation

20

M851 WristApp Design Guide

Rev 1.2

COREEventArgument.

- The current popup melody is cancelled.

COREEVENT_DI SPLAY_UPDATE_TODRES

- Sent to the application to indicate that a

TOD resource (whose display update
reguest bit was set) has been updated.

- The event is sent directly by the timer

resource when it updates it data set.

- The application must specifically request

the resource to send the update event.

COREEVENT_DI SPLAY_UPDATE_TMRRES

- Sent to the application to indicate that a

TIMER resource (whose display update
request bit was set) has been updated.

- The event is sent directly by the timer

resource when it updates it data set.

- The application must specifically request

the resource to send the update event.

COREEVENT_DI SPLAY_UPDATE_STPRES

- Sent to the application to indicate that a

STOPWATCH resource (whose display
update request bit was set) has been
updated.

- The event is sent directly by the timer

resource when it updates it data set.

- The application must specifically request

the resource to send the update event.

COREEVENT_DI SPLAY_UPDATE_SYNCRES

- Sent to the application to indicate that a

SYNCHRO resource (whose display
update request bit was set) has been
updated.

- The event is sent directly by the timer

resource when it updates it data set.

- The application must specifically request

the resource to send the update event.

COREEVENT_MELODY_DONE

- Sent to the application when the melody

generator compl etes the requested mel ody.

- The application must specify that a melody

done event isto sent after completion of
the melody.

COREEVENT_END_OF_SCROLLI NG_MESS

- Sent to the application when the scrolling

has reached sentinel character.

- The application must request that the event

be sent after completion of the scroll.

- Scrolling is stopped.

COREEVENT_| CON_REFRESH

- Sent to the application when any LCD

icons for the primary mode is updated.

- The application must request for these

events.

COREEVENT_EVENTGENERATI ON

- Sent to the application when a resource

Timex Corporation

21

M851 WristApp Design Guide Rev 1.2

(previously setup for event generation) has
detected aresource specific event
condition.

COREEVENT_ COMVDATAPACKETREADY - Sent to the comm application when a
datalink packet has been completely
received by the system

COREEVENT_COMMFI RSTBYTERECEI VED - Sent to the comm application when the
first byte of the datalink packet has been
received by the system.

COREEVENT_COMVDI SCONNECTED - Sent to the comm application when the

USB cable has been disconnected.

445 Requesting System Events

Certain system events are passed to the application for processing only when it is requested by the
application that these events be passed.

4.45.1 Switch Depressions

Switch depressions are passed to the applications only when the keymask for the switch has been enabled.
It is advisable to allow only the switches that is used by the current state handler to prevent the switch event
to be passed to the application and thus canceling all blinking, scrolling and timeouts.

The three macros to setup switch depress events are shown below:

CORE_ALLOW KEYS Using the specified keymask bits, this macro specifies the switches to be
passed as eventsto the application.

CORE_MASK_KEYS Using the specified keymask bits, this macro specifies which switches
are to be removed from the existing mask.

CORE_ALLOW ALL_KEYMASK Thisallows all switches to be passed to the application.

The keymask bits are defined below:

bCOREMbdeSwi t ch
bCORESt opReset Swi t ch
bCORESt art SplitSw tch
bCORECWSWI t ch
bCORECCWBWI t ch
bCOREELSwI t ch

To alow only the mode and the stop/reset switch to be passed to the application, use the following code:

CORE_ALLOW KEYS (bCOREMbdeSwi t ch| bCORESt opReset Swi t ch) ;

When using the macro CORE_ALLOW_KEY S, take note to specify the bit mask bCOREMbdeSwi t ch in
the default state to allow mode changes.

Timex Corporation 22

M851 WristApp Design Guide Rev 1.2

4452 Switch Releases

Switch Release events are only passed to the application if a switch depression was done previously. Itis
advisable to suspend switch releases if the application does not handle them in the current state handler to
prevent an unused release event to be passed to the application killing any current blinking, scrolling or
active timeouts.

The application can cancel the release event of the current depressed switch by calling the macro:
HW KBD_CANCEL__CURRENT_SW TCH_RELEASE;

If an application does not want to handle any switch release events in the current handler, then the macro
below should be used.

CORE_SUSPEND_SW TCH_RELEASE;
To re-enable switch releases to be passed as events again, then the macro below should be called.

CORE_ENABLE_SW TCH_RELEASE;

4453 Popup Cancel Event

If a popup state handler generates a melody, the Ul specifies that any switch depression will cancel the
melody and proceed with processing. The application can define all switch cases to handle killing the
melody.

The application can make use of the macro shown below. This macro will trap the “alowed” switch
depress events and crown events and wrap it all in one core system event COREEVENT _ POPUPCANCEL.
The trapped switches are now stored in COREEventArgument. Thiswill also cancel the currently active
melody.

CORE_REQUEST_MELODY_POPUPCANCEL;
The “allowed” switch depress events mentioned above indicates the switch events that matches the key
mask on the foregroundstate handler. By default, EL switch depression are not passed as an event to the
application. The Ul might specify that the EL also cancel a popup. It isrequired that popup state handlers
that requires the EL to cancel the popup must call the macro CORE_ALLOW ALL_KEYMASK to have the EL

depress events be processed. When the popup has processed the popup cancel event, it can restore or
specify anew keymask.

4454 RingEdgesand Pulses

Ring Trailing Edges are ring events passed to the application by default. Ring Leading Edge Events are
suspended by default.

To request ring pulse events to be passed to the application, the macro below should be called:
CORE_ENABLE_PULSE_MODE;

To request ring edge events again, the macro below should be used:
CORE_DI SABLE_PULSE_MODE;

To suspend al ring types of ring edge events, the macro below should be used:

CORE_SUSPEND_RI NG_EVENTS;

Timex Corporation 23

M851 WristApp Design Guide Rev 1.2

4455 |con Refresh

Certain application requires that it be called whenever changes are being done to the status of the primary
mode icons. These applications may be the TOD and the Options Mode. The TOD application requires an
icon refresh event whenever the user manually enables/disables NightM ode or the system automatically
enables/disables Nightmode so it can update the MOON icon. The Options mode requires the update of the
NightMode or the Chime whenever the system changes the current status so it can display the appropriate
message. |n the option mode, the event was used to update the message along with the icon depending on
the Ul requirement.

To enable or disable receiving the event COREEVENT _| CON_REFRESH, then the macros below should be
called:

CORE_BACKGROUND_| CON_REFRESH_ENABLE;
CORE_BACKGROUND_| CON_REFRESH_DI SABLE;

4.45.6 End of Scrolling

The application can request an event everytime a message that is scrolling reaches the end of the message.
The macro is below to send the “end of scrolling” event to the application. Thiswill also stop scrolling the
message once it reaches the end of the message. If the size of the message does not require scrolling, then
the event COREEVENT _END_OF _SCROLLI NG_MESS is sent after the message is displayed on the LCD.

LCD_SCROLL_RAM OR_ROM MSG_MAI N_DM LI NE2 EVENT_ON;
If the application want the message to scroll continuosly, then the macro below is used:

LCD_SCROLL_RAM OR_ROM MSG_MAI N_DM LI NE2 EVENT_OFF;

4457 Resource Updates

By default, on any state change, resource display updates are disabled by the core. To have resource
display updates event passed to the application, the application must make an APl call to the resourceto
request for updates. These events can then be used to display the new or updated data.

An application may request different types of resource to send the update events. Each resource type will
send a unique system event. To request (and cancel) aresource update, use the followingAPIs:

KTOD_ENABLE_DI SP_UPD_SEC_EVENT
KTOD_DI SABLE_DI SP_UPD_SEC_EVENT
KSTP_ENABLE_DI SP_UPD_EVENT
KSTP_DI SABLE_DI SP_UPD_EVENT
KTMR_ENABLE_DI SP_UPD_EVENT
KTMR_DI SABLE_DI SP_UPD_EVENT
KSYN_ENABLE_DI SP_UPD_EVENT
KSYN_DI SABLE_DI SP_UPD_EVENT

4458 Timeouts

Application must request application timeouts for the system to generate the timeout done events. The
events are passed when the timeout counters decrements to zero.

CORE_REQ TI MEQUT_HI RES <ti meout count _hires>;
CORE_REQ TI MEQUT _LORES <ti nmeout _count | ores>;

Timex Corporation 24

M851 WristApp Design Guide

Rev 1.2

CORE_REQ TI MEQUT_STI CKY <ti neout _count _hires >;

The parameter timeout_count_loresis specified in seconds. The following equates are available for

timeout_count_|ores:

Equate Description
TI MEQUTLORES 2SEC 2 seconds
TI MEQUTLORES_3SEC 3 seconds
TI MEQUTLORES 4SEC 4 seconds
TI MEQUTLORES 10SEC 10 seconds
TI MEQUTLORES 20SEC 20 seconds

The parameter timeout_count_hiresis specified in increments of 0.125 seconds. The following equates are

available for timeout_count_hires:

Equate Description
TI MEOUTHI RES_P250SEC 0.250 seconds
TI MEOQUTH RES_P5SEC 0.500 seconds
TI MEOUTH RES_1SEC 1 second

TI MEOUTH RES_1P5SEC 1.500 seconds
TI MEOUTH RES_2SEC 2 seconds

TI MEOUTH RES_3SEC 3 seconds

TI MEOUTH RES_4SEC 4 seconds

TI MEOUTH RES_5SEC 5 seconds

TI MEOUTH RES_6SEC 6 seconds

4.4.6 State Manager

There is no need for a state manager for EEPROM based applications. Thisis because the kernel will only
load the foreground state handler and into the same base address in the overlay area. The State Manager
address specified in the application control block will store the base address for state handler.

4.46.1 Display Clearing On State Change

Using the macro CORE_REQ_ STATE_CHANGE to request a state change, the Icd display is always cleared.
To prevent the display from being cleared during a state change, then the macro
CORE_REQ_STATE_CHANGE_NO_CLEAR DI SPLAY should be used.

447 Mode Banner State Handler

The core will aways make the mode banner the state to proceed on a mode change.

It is advised that the mode banner state define a popdown state usually the default state. This preventsa
popup from occurring in the middle of the banner timeout from returning to the banner state. To set the
popdown state, the following code is used:

/1 set popdown state should a popup occur during node banner tineout
CORE_SET_POPDOWN_STATE OPTDEFAULTSTATE;

It is advised that the mode banner utilize the following code to display the mode banner message. This will
allow the user through the PC to change the mode banner name.

/] display the node banner for the application
AReg = CORECurr ent Mode;
CORE_CALL_MODE_NAME,;

Timex Corporation 25

M851 WristApp Design Guide Rev 1.2

By default, mode banner will request for a 1.5 second high resolution timeout before requesting a state
change to the default state. Switch depressions will cancel the mode banner timeout. Crown Set event will
not only cancel the mode banner timeout, but will proceed to the SET Banner State.

If the application supports password protection, then mode banner timeout event should make the password
state handler the foreground state. Thiswill require the user to enter a 2-character password, verified by
the system before making the default state the foreground application.

If apassword is currently required, it is advised that the banner state suspend popups. Thiswill prevent a
popup from occurring during mode banner timeout and directly going to default state. Another method is
to make the password state the popdown state if a password isrequired. So on a popdown, the password
state becomes the foreground state.

Sample banner state handler:

opt Banner St at eManager ()

swi tch(CORECurrent Event)

{
case COREEVENT_STATEENTRY:
N R R R R R R R R R R R R R R R R
/1 ; MODE BANNER ENTRY
L

/'l set popdown state if a popup occurs during timeout
CORE_SET_POPDOWN_STATE OPTDEFAULTSTATE;

/1 display the node banner for the application
AReg = CORECurr ent Mode;
CORE_CALL_MODE_NAME,;

/'l request for a 1.5 second timeout banner
CORE_REQ TI MEQUT_HI RES TI MEOUTHI RES_1P5SEC;
br eak;

case OPTEVENT STOPRESETDEPRESS:
case OPTEVENT_STARTSPLI TDEPRESS:
case COREEVENT CW EDGE_TRAI LI NG
case COREEVENT_CCW EDGE_TRAI LI NG
case COREEVENT_TI MEOUTDONE_HI GHRES:

N N R R R R R R R R R R R R R R R
/1 ; CANCEL MODE BANNER TI MEQUT EVENTS

/'l Request for a state change to set state
BReg = OPTDEFAULTSTATE;
CORE_REQ_STATE_CHANGE;

br eak;

case COREEVENT_CROWN_SET:

/'l Request for a state change to set banner state
BReg = OPTSETBANNERSTATE;

CORE_REQ_STATE_CHANGE;

br eak;

case OPTEVENT_MODEDEPRESS:

N R R R R R R R
/1 ; MODE SW TCH DEPRESS PROCESSI NG

Timex Corporation 26

M851 WristApp Design Guide Rev 1.2

/'l Request for a node change to the next node
/1 or peek at primary time zone

CORE_REQ MODE_CHANGE_NEXT;

br eak;

}

The kernel provides two routines that will handle the basic banner state functionality that may be required
by an application.

cor eCommpnBanner St at eHandl er Common State Banner Handler
cor eCommonBanner St at eHandl er W t hPasswor d Common Banner State Handler with check
for password.

When the above routines are used, the banner state handler will be coded as follows:

cnt waBanner St at eManager : ; ** SUBROUTI NE cnt waBanner St at eManager

car cor eCommonBanner St at eHandl er
ret

; **END SUBROUTI NE cnt waBanner St at eManager

If password protection is required for the mode, then the banner state handler will be coded as follows:

cnt waBanner St at eManager : ; ** SUBROUTI NE cnt waBanner St at eManager

car cor eCormonBanner St at eHandl er Wt hPasswor d
ret

; **END SUBROUTI NE cnt waBanner St at eManager

If the routine cor eCormpnBanner St at eHandl er W t hPasswor d is used, then state index 5,6, and
7 should be coded as shown below:

For state handler index 5:

cnt | ndex5St at eManager : ; ** SUBROUTI NE cnt | ndex5St at eManager

car cor ePasswor dDef aul t St at eHandl er
ret

; **END SUBROUTI NE cnt | ndex5St at eManager

For state handler index 6:

cnt | ndex6St at eManager : ; ** SUBROUTI NE cnt | ndex6St at eManager

car cor ePasswor dSet Banner St at eHandl er
ret

; **END SUBROUTI NE cnt | ndex6St at eManager
For state handler index 7:

cnt | ndex7St at eManager : ; ** SUBROUTI NE cnt | ndex7St at eManager

car cor ePasswor dSet St at eHandl er
ret

; **END SUBROUTI NE cnt | ndex7St at eManager

Timex Corporation 27

M851 WristApp Design Guide Rev 1.2

4.4.8 Default State Handler
The default state handler controls the main function specified for an application.

449 Set Banner State Handler

The core will aways make the Set banner the state to proceed when the crown is pulled to the SET
position.

It is advised that the set banner state define a popdown state usually the set state. This prevents a popup
from occurring in the middle of the banner timeout from returning to the set banner state. To set the
popdown state, the following code is used:

/1 set popdown state should a popup occur during node banner tineout
CORE_SET_POPDOAN_STATE OPTSETSTATE;

Sample Set Banner State Handler:

opt Set Banner St at eManager ()

swi tch(CORECurrent Event)

{
case COREEVENT_STATEENTRY:
N R R R R R R R R R R R R R
/1 ; SET BANNER ENTRY
// ...

/'l set popdown state if a popup occurs during
/] set banner timeout
CORE_SET_POPDOWN_STATE OPTSETSTATE;

/1 clear display
LCD_CLEAR DI SPLAY;

//display 'OV OFF TIME for both night-node and chi ne banner
LCD DI SP_SMALL_DM MSG_ONOFF_TI ME;

/'l request for a 1.5 second timeout banner
CORE_REQ _TI MEQUT_HI RES TI MEOUTHI RES_1P5SEC,
br eak;

case OPTEVENT_MODEDEPRESS:

case OPTEVENT_STOPRESETDEPRESS:
case OPTEVENT_STARTSPLI TDEPRESS:
case COREEVENT_CW EDGE_TRAI LI NG
case COREEVENT_CCW EDGE_TRAI LI NG
case COREEVENT_TI MEQUTDONE_HI GHRES:

T R R N R R R R R R
/1 ; CANCEL SET BANNER TI MEQUT EVENTS

L
/'l Request for a state change to set state

BReg = OPTSETSTATE;

CORE_REQ_STATE_CHANGE;

br eak;

case COREEVENT_CROMN_HOVE:

R R R R R R R
/1 ; CROAN HOVE EVENT PROCESSI NG

L
/1 Request for a state change to default state

BReg = OPTDEFAULTSTATE;

CORE_REQ STATE_CHANGE;

br eak;

Timex Corporation 28

M851 WristApp Design Guide Rev 1.2

4.4.10 Set State Handler

The Set State Handler defines the setting function of an application. It is advised that the handler disable
popups for the duration of the set state.

Use ring edge events if the data being set only has afew selection. Usering pulse events to track the
number of pulses detected in a predetermines time frame.

Use the accel eration routines to convert the raw pulses detected by the system to predetermined accel erated
values. Thisallowsfor fast setting of data. Below is a sample code fragment the uses acceleration to
update data.

case COREEVENT_CW PULSES:

L R R R R I
/1 ; CWPULSE EVENT
[Iiiiiiiissiaiiiiiiiiiiiiiiiiiiiig

/1 ; CH ME SUB- OPTI ON

L
/1 W& will be adjusting only the hour data.

/1 The m nute data renmi ns at zero.

/1 W use the utility to convert the data in COREEvent Ar gunent
/1 into accelerated data. The accelerated data is stored in
/1 KRESM nBuf f er .

UTLACCELERATI ON_1M N,
AReg = KRESM nBuffer;

/] point to the current hour data of the current tine structure
/1 being displayed

HLReg = OPTTi neStructurePtr;

++HLReg;

BReg = *HLReg;

/1 go to decinal nath operations since our data is in packed BCD.
UTL_DECI MAL_MATH_MODE;

/1 add the current hour with the accel erated data.
AReg += BReg;

/1l check if we are still within hour maxinmnumlimts. if over,
/1 then we shoul d waparound the data.
if(AReg >= OPT_MAX_HOUR)

AReg -= OPT_MAX_HOUR;
}

/1 restore default nath operation node
UTL_BI NARY_MATH_MCDE;

/1l store the new hour data into the structure
*HLReg = AReg;

/1 display the new data and request blinking
got o opt Set Di spl ayRefreshTi meOnl y;

Timex Corporation 29

M851 WristApp Design Guide Rev 1.2

4.4.11 Popup State Handler

The popup state handler is executed whenever aresource requests for a popup session. The kernel will call
the interrupted application’s Task Exit handler, stores the datain CORECur r ent Mbde and

CORECur r ent St at e into COREPopupMyde and COREPopupSt at e. CORECur r ent St at e isnot
saved if the state handler specified a different popdown state.

When a popup is complete, it must be terminated with a popdown request using the macro below. Thiswill
alert the kernel that a popup session is complete. The stored COREPopupMdde and COREPopupSt at e
becomes the new foreground application unless the kernel detects that there are pending popups to be
processed.

CORE_REQ_POPDOWK

4.4.11.1 Special Time Zone Check Popup Processing

Normally, when the popup state handler has processed the record that generated the popup through the
Time Zone Check Popup, the state handler can request a popdown immediately.

There are some cases wherein there are more then one entry that matches the record that was entered into
the Time Zone Check resource for checking. Sincethereis only one TZC Resource allocated to an
application, thereis no way to store the entries in individual TZC resources.

When the popup state handler completes processing (melody generation, melody cancellation or
completion, 4 second timeout after scrolling, etc.), it could check for its database for any other record aside
form the one aready displayed. If there are no more entries, then it could then request a popdown. If there
is another entry, then the popup state handler can re-execute the code stored in state entry event processing
section to generate the new melody, etc. and proceed with processing the “new” popup.

It is up to the application on how many entries it wants to popup for the sametime. The current Ul
specifies only one queued popup when the current oneis active.

4.4.12 Password Entry State Handler

Some applications are required to check if a password is required to access the data stored in the database.
If apassword isrequired, it will request a state change to the application’ s password entry and verification
State.

The kernel provides a generic password entry and verfication state handler. The state handler
nameiscor ePasswor dDef aul t St at eHandl er (),

cor ePasswor dSet Banner St at eHandl er () and
cor ePasswor dSet St at eHandl er ().

The application is required to allocate index 5, 6 and 7 in the Application State Manager. When the
password is entered and verified, it will request a state change to the application’s default state.

During execution of password handler states, al popups are suspended.

4.5 Built-in State Handlers

The system provides a number of state handlers that a wristapp can use that are already stored in ROM.
Thiswill speed up loading the code from EEPROM as well as minimize the total EEPROM usage of a
WristApp.

Timex Corporation 30

M851 WristApp Design Guide Rev 1.2

These state handlers are designed to function in a predefined manner that are used by the built-in ROM
applications. They should be used as intended.

State Handler Description

coreCommonBannerStateHandler Handles mode banner state processing.
Displays either the default mode banner
message or the user defined mode banner
stored in EEPROM,;
Waits for 1.5 seconds prior to requesting
a state change to default state index;
Process Mode Switch depression to
proceed to the next mode;
Setup the popup return state to be the
default state index;
Process the Crown_Set event to proceed
to the Set Banner State index;
Process the other switches to bypass the
1.5 second timeout and request a state
change to the default state index.

coreCommonBannerStateHandlerWithPassword Handles mode banner state processing.

- Displayseither the default mode banner
message or the user defined mode banner
stored in EEPROM;

Waits for 1.5 seconds prior to requesting
a state change to default state index;
Process Mode Switch depression to
proceed to the next mode;
Setup the popup return state to be the
default state index;
Checks if the mode is currently setup to
request a password prior to proceeding to
the default state index;
If Password Not Required:
0 Processthe Crown_Set event to proceed
to the Set Banner State index;
0 Processthe other switchesto bypassthe
1.5 second timeout and request a state
change to the default state index.
If Password is required:

O Process Crown_set event to proceed to
the Password Set Banner state index;

0O Processthe other switches to bypass the
1.5 second timeout and request a state
change to the Password Default Sate
index.

corePasswordDefaultStateHandler Handles the following:
- Displaysthe message “ PASSWORD

NEEDED” ;
Process the Crown_Set event to request a
state change to the Password Set Banner
state index;
Process the Mode switch to proceed to the
next mode;

corePasswordSetBannerStateHandler Handles the following:

Timex Corporation 31

M851 WristApp Design Guide Rev 1.2

Displays the message “ ENTER
PASSWORD” ;

Requests a 1.5 second banner timeout;
On timeout expiration, request a state
change to the Password Set State index;
Process the Crown_Home event to
request a state change to the Password
Default Sate index;

Process switch events to bypass the
timeout and request a state change to the
Password Set Sate index;

corePasswordSetStateHandler Handles the following:

- Handlesall the eventsrequired to request
input from the user for a two character
password;

Process the Crown_Home event to check
if the password entered is correct;

If password is correct, request a state
change to the default state index;

If password isincorrect, then display the
message “ PASSWORD INVALID” and
request a state change to the password
default state index after a 2 second
timeout period.

utlYouRockStateManager If a WristApp does not support a set state, then the
set banner state should use this function. It
handles the following:
Display the message “ YOU ROCK!" ;
Process the Crown_Home event to
request a state change to the default state
index.

The code section below shows how the Y ou Rock State Manager is used in the code;

Set St at eManager :

car ut | YouRockSt at eManager
ret

The WristApp developer can choose to customize the operation of the built-in state handlers by preempting
the system event passed by the OS. The code section below shows away to bypass the message displayed
on state entry to the utlY ouRockStateM anager with a custom message.

Set St at eManager :

; preenpt the STATE_ENTRY event for custom processing

I d A, [CORECurrentEvent]
cp A, #COREEVENT_STATEENTRY
jr NZ, process_event _i n_defaul t _handl er

; display custom zed banner nessage
Id 1Y, #MY_CUSTOM MESSAGE
LCD_DI SP_BANNER_MSG

ret

process_event _i n_defaul t _handl er:

Timex Corporation 32

M851 WristApp Design Guide Rev 1.2

car ut | YouRockSt at eManager
ret

MY_CUSTOM MESSAGE:
; custom nessage “MY NAMWE'
db LCDBANNER_COL4
db DV6_M DMb_Y
db LCDBANNER_COL2
db DV6_N, DV6_A, DV6_M DM6_E
db LCD_END BANNER

4.6 Timer Resource Usage

The Timer Resource allows background operation under kernel control without having the application
provide the code and data to update the required variables.

The application request ownership of specific Timer Resource for its operation only during application
initialization. The kernel will automatically reserve the specified resource and store the resource index at
the top of the application system dataarea. Thereservation is donein this sequence: TOD, BACKUP,
TZC, TIMER, STOPWATCH, and SYNCHRO.

4.6.1 Display Update Events

Any foreground application can request display update events from any resource (except for the Backup
and Time Zone Check Resource). The events are processed by the application to show updated resource
data. The frequency of events being passed to the application is dependent upon the type of resource. Only
active resources will send out display update events to the foreground application.

Resource Type Freguency
Time of Day Resource 1Hz
Timer Resource 8 Hz
Stopwatch Resource 16 Hz
Synchro Resouce 16 Hz

Display Update Event requestsis not restricted to the owner application. Any foreground application can
request this event from aresource. When an event occurs, the kernel will send the event associated with
the resource. The following are the the different update events:

COREEVENT DI SPLAY_UPDATE_TODRES
COREEVENT _DI SPLAY_UPDATE_TMRRES
COREEVENT DI SPLAY_UPDATE_STPRES
COREEVENT DI SPLAY_UPDATE_SYNRES

On amode or state change, the kernel will cancel all display update event requests of al timer resources.

4.6.2 Popup and Event Generation

Owner applications can request popup or events to be generated to accompany any resource events that
occurred. These events vary from resource to resource. The table below shows a summary of the events.

Resource Type Resour ce Event

Backup Resource - Counter that is decremented every minute until it
reaches 0.

Timex Corporation 33

M851 WristApp Design Guide Rev 1.2

Time Zone Check Resource - Exact Match with Reference Time.

Timer Resource - Countdown reaches 0:00.00.
Countup reaches specified time of resource.
Halfway? Count is reached (countup and

countdown).
Stopwatch Resource - Countup data reached maximum time.
Synchro - Countup data reached maximum time.

When an event is requested, the kernel will pass the event COREEVENT_EVENTGENERATION to the
foreground application regardless of resource ownership.

When a popup is regquested, the kernel will acknowledge the request and queues the resource popup. When
the kernel completes other higher priority tasks, it will then proceed with the popup check operation. If
multiple popups are queued, the popup priority is based on the following order: TIMER, BACKUP, TIME
ZONE CHECK, TIMER and SYNCHRO.

The application owner of the resource will now become the foreground application. The current state
would be the popup state (COREPOPUPSTATE).

If the application generates a message that can be cancelled by any switch depression, the macro
CORE_REQUEST_MELODY_POPUPCANCEL must be called in the popup state handler. If aswitch was
used to cancel the melody, the kernel will convert the switch event into the event

COREEVENT _POPUPCANCEL with the old switch event in COREEvent Ar gurrent . The popup
application must look at the entry in the COREEvent Ar gumrent so that it can process the crown set event.

After completing the operation, the application must request a popdown through the macro
CORE_REQ_POPDOM.

APPLICATION NOTE

Before an alarm or appointment application popup request for a popdown, it is advise that it checks all
the entries in the database that matches the current time in the popup clock and if available, restart the
popup sequence for the new entry. It is up to the application to determine how many more matching
entries to popup. Take note that the application is not requesting a new popup here from the kernel.

4.6.3 Time Of Day Resource

The Time-of-Day resource keeps track of the time (second, minute, hour, date, month, year, day of week
and week number). The resource provides a number of methods that can be used to manipulate, modify
any data or status bits of a specific resource. Refer to the M851 Application Programming Interface
Document for more details in using the TOD Resource.

TOD Resource Data Structure:

Offset Data Type Description
0 Application Index Index of application owner
1 Resource Flag Specifies status of the resource and how this data

2 Typical use of this event is to track the halfway mark of atimer count. This mark can be any number
between 0:00.00 and the countdown time.

Timex Corporation 34

M851 WristApp Design Guide Rev 1.2
structure is displayed on the LCD.
2 Update Flag Indicates the data positions that were recently updated.
3 Second Seconds datain BCD format
4 Minute Minute datain BCD format
5 Hour Hour datain BCD format
6 Date Date datain BCD format
7 Month Month in BCD format
8 Year (Lo Byte) Y ear data (low byte) in BCD format
9 Y ear (Hi Byte) Y ear data (high byte) in BCD format
10 Day of Week Computed Day of Week data
11 Week Number Computed Week Number datain BCD format

Resource flag bit definitions:

—

Name

Description

bKReser ved

Resource is owned

bKActi ve

Resourceis active

bKDi spUpdRequest

Display Update Event is requested

bKTODPr i maryTZ

Resource is the primary time zone

bKTCDEuUr oFor mat

Display date in Euro format

bKTOD24Hour For mat

Display hour in 24-format

bKTODWeekNunber Di spl ay

Display week number

~|o|ola|w|nk|o|@

bKTODYMDFor mat

Display in YMD format

Update flag bit definitions:

t Name Description
unused
bKTODM nut eUpd Minute data is updated
bKTODHour Upd Hour datais updated
bKTODDat eUpd Date data is updated

bKTODMont hUpd

Month data is updated

bKTODYear Upd

Y ear datais updated

bKTODVéek Upd

Week datais updated

~|o|ola|w|N| - oD

Unused

4.6.4 Backup Resource

The Backup Resource provides an application the ability to track the number of minutes since the last

resource setup and activation.

Thisisused to track a backup alarm for an alarm application rather than wasting a Time Zone Check

Resource which is much more complex to setup.

BACKUP Resource Data Structure:

Offset Data Type

Description

0 Application Index

Index of application owner

1 Resource Flag

Specifies status of the resource

2 Counter

Specifies the number of minutes of countdown.

Resource flag bit definitions:

| Bit | Name

Description

Timex Corporation

35

M851 WristApp Design Guide Rev 1.2

0 | bKReserved Resource is owned

1 | bKActive Resourceis active

2 | Unused

3 | Unused

4 | Unused

5 | Unused

6 | bKGener at ePopup Generate a popup when counter reaches zero.
7 | bKGener at eEvent Generate an event when counter reaches zero.

4.6.5 Time Zone Check Resource

The Time Zone Check Resource is used to check data stored in the resource against a reference time zone.
Thisis primarily used for applications such as the alarm and appointment types. The applicationis
responsible for determining the time data to store in the resource for checking.

The reference time zone discussed hereis usually the primary time zone. But, if the time zone checking
has been suspended for along period of time (set mode, multiple popups, €tc.), the kernel will grab a copy
of the current primary time zone data and stores it into a popup clock resource. The popup clock resource
will now become the new reference time zone. When the watch isin a position to initiate atime zone
check, it will compare it against the reference time zone. The reference time zone is updated a minute
every second until it catches up with the primary time zone. Any matching entry will be popped up. Once
it exceeds the primary time zone data, the kernel disables the popup clock and makes the primary time zone
as the reference time zone.

The resource will generally check for an exact match between hour and minute data. The user can also
specify that the resource check for matching month, date, year or a combination of these entries.

The application must provide code in its Resource Handler to process the event COREEVENT _REFRESH to
put in the best entry in the time zone check resource. The application must use the reference timezone data.
By convention, any application that changes datain the TOD resource must request the Kernel to execute
all resource handlers with the event COREEVENT _REFRESH.

TZC Resource Data Structure:
Offset Data Type Description
0 Application Index Index of application owner
1 Resource Flag Specifies status of the resource
2 Update Flag Specifies if month, date and year data are required for
an exact match
3 Minute Minute datain BCD format
4 Hour Hour datain BCD format
5 Date Date datain BCD format
6 Month Month in BCD format
7 Year (Lo Byte) Y ear data (low byte) in BCD format
8 Y ear (Hi Byte) Y ear data (high byte) in BCD format
Resource flag bit definitions:
Bit Name Description
0 | bKReserved Resource is owned
1 | bKActive Resourceis active
2 | Unused
3 | Unused
4 | Unused

Timex Corporation 36

M851 WristApp Design Guide

Rev 1.2

5 | Unused
6 | bKGener at ePopup Generate a popup when counter reaches zero.
7 | bKGener at eEvent Generate an event when counter reaches zero.

Update flag bit definitions:

Bit Name Description

0 | Unused

1 | Unused

2 | Unused

3 | BKTZCDat eUpd Date datais significant in checking for exact match
4 | BKTZCvont hUpd Month datais significant in checking for exact match
5 | bKTZCYear Upd Y ear datais significant in checking for exact match
6 | Unused

7 | Unused

APPLICATION NOTES:

If an application has multiple entries with the same popup time, only one entry is placed in the
resource. Once the popup occurs, the application is responsible (if required) to display all the
matching entries (like if a popup occurred) before requesting a popdown.

Database is stored in EEPROM. Reading a number of records from EEPROM may take along
time and a watchdog reset might occur in the middle of the operation. It is recommended that the
macro HWNRESETWAT CHDOG be inserted in the loop.

NOTE: Having only one entry per application makes for efficient use of processor time (and battery life)
since the application will search for the best record to put into the resource and will await until a popup
occurs to check for the next entry. So every minute, even if an application has 50 active records, the kernel
will check only one resource against the reference time zone.

4.6.6 Timer Resource

The Timer Resource provides general timer functions to an application. Thisisused mainly by Timer
applications. With this resource, an application can start, stop, and reset the timer. The timer can handle
both count-down and count-up functions. With the user set data, the timer can do an automatic reload of
the user set data and start counting. With the pre-warning data, the timer can invoke a popup to indicate the
count has reach a specified time. The timer resource can be linked to start either a stopwatch resource or

another timer resource when the timer has expired.

The following tables show the data structure of the timer resource.

TIMER Resource Data Structure:

Offset Data Type Description
0 Application Index Index of application owner
1 Resource Flag Specifies status of the resource
2 Update Flag Specifiesif month, date and year data are required for
an exact match
3 Previous Counter Sample For resource use only
4 Work Hundredth data Running hundredths datain BCD format
5 Work Second data Running seconds datain BCD format
6 Work Minute data Running minute datain BCD format
7 Work Hour data Running hours datain BCD format
8 Linked TMR ID Index Link to TMR Resource

Timex Corporation

37

M851 WristApp Design Guide

Rev 1.2

9 Linked STPID

Index Link to STP Resource

10 User Second data

User set seconds datain BCD format

11 User Minute data

User set minute datain BCD format

12 User Hour data

User set hours datain BCD format

13 Pre-warning Second data

Pre-warning seconds datain BCD format

14 Pre-warning Minute data

Pre- warning minute datain BCD format

15 Pre-warning Hour data

Pre- warning hours datain BCD format

16 Running repeat counter data

Running repeat counter

17 Preset repeat counter data

Preset repeat counter

Resource flag bit definitions:

Bit Name Description
0 | bKReserved Resource is owned
1 | bKActive Resource is active
2 | bKD spUpdRequest Display update request
3 | bKTMRLI nk Link to atimer resource
4 | bKSTPLI nk Link to a stopwatch resource
5 | bKNot Reset Indicates resourceis not in reset state
6 | bKGener at ePopup Popup Request for resource events
7 | bKGener at eEvent Event Request for resource events

Update flag bit definitions:

Bit Name Description
0 | bKTMRSecondUpd Seconds data has been updated
1 | bKTMRM nut eUpd Minute data has been updated
2 | bKTMRHour Upd Hour data has been updated
3 | BKTMRPr eVr ni ngPopup Current popup is a pre-warning popup
4 | BKTMRPr eWar ni ngDone Pre-warning popup has aready occurred
5 | BKTMRRepeat Automatically reload user data and begin countdown

0 = no repeat
1 = repeat countdown/countup

6 | bKTMRPr eVAar ni ng

Request for a pre-warning popup
0 = no pre-warning popup
1 = Request for a Pre-warning popup

7 | bKTVRDI recti on

Count direction:
0 = count down
1 = count up

APPLICATION NOTES:

POPUPS AND BACKGROUND HANDLERS

Popup requests are generated when a timer countdown/up expires. Along with the popup request,
the resource will execute the application’s background handler. In due time, the kernel will
execute the application popup. This allows an application to keep on updating the timer resource
with new countdown data even if popups are currently suspended by the system. For example: a
timer application having multiple countdown data that is started in sequence. When the first
countdown data expires, the application resource handler will load the new countdown data and

starts the timer resource.

PRE-WARNING POPUP

Timex Corporation

38

M851 WristApp Design Guide Rev 1.2

A pre-warning popup can be setup to indicate that the countdown has reach a predefined time. For
example, atimer application can set up a half-way alert indicator when the countdown data
reaches the half-time of the countdown. If an application is specified to generate only a beep
when it reaches a halfway mark, the kernel by default will till clear the display. The display will
flicker as the kernel switches to the popup state then back to the interrupted application. It is
advisable to generate the beep inside the resource handler rather than in the popup to prevent the
flicker.

INVOKING A STOPWATCH RESOURCE

When atimer resource countdown data expires, it can automatically start a stopwatch resource by
using the STP Link. For example, atimer application can start a chronograph application upon
expiration. Thisiscommonly referred to as the CDC (Count Down Chrono) operation. The
application must check for the existence of an application before setting up the linksto a
stopwatch resource.

INVOKING A TIMER RESOURCE

When atimer resource countdown data expires, it can invoke another timer resource to begin
counting by using the TMR Link. For example: atimer application can have multiple countdown
times used for an exercise routine. On expiration of the timer, it can automatically start another
timer resource that has the next set of countdown data. The application must check for the
existence of an application before setting up the links to a stopwatch resource.

INVOKING A SYNCHRO RESOURCE

A synchro resource is automatically started if atimer resource is started from reset. The
application will not do anything to make this happen. The synchro resource now keeps track of
the application that started it. When the timer resource is stopped, the synchro stoppage timer will
automatically started. If started again, the synchro stoppage timer will stop.

If an application is using two timer resource to implement ainterval timer application, the timer
application must take into consideration its effect on the synchro resource. The first timer must
have its reset status flag set, while the second timer resource will have its reset status flag cleared.
In that way, the start of the first interval time will start the synchro resource but the start of the
second interval timer resource will not restart the synchro resource.

4.6.7 Stopwatch Resource

The Stopwatch Resource provides general chronograph functions to an application. Thisis used mainly by
chrono applications. With this resource, an application can start, stop, and reset the chronograph. The
stopwatch resource can be linked to start either atimer resource or another stopwatch resource when the
stopwatch resource expires.

The following tables show the data structure of the stopwatch resource.

STOPWATCH Resource Data Structure:

Offset Data Type Description
0 Application Index Index of application owner
1 Resource Flag Specifies status of the resource
2 Update Flag Specifies if month, date and year data are required for
an exact match
3 Previous Counter Sample For resource use only
4 Hundredth data Running hundredths datain BCD format

Timex Corporation 39

M851 WristApp Design Guide Rev 1.2
5 Second data Running seconds datain BCD format
6 Minute data Running minute datain BCD format
7 Hour data Running hours datain BCD format
8 Linked TMR ID Index Link to TMR Resource
9 Linked STPID Index Link to STP Resource

Resource flag bit definitions:

bKGener at ePopup

Popup Request for resource events

bKGener at eEvent

Bit Name Description
0 | bKReserved Resource is owned
1 | bKActive Resource is active
2 | bKD spUpdRequest Display update request
3 | bKTMVRLI nk Link to atimer resource
4 | bKSTPLI nk Link to a stopwatch resource
5 | bKNot Reset Indicates resource is not in reset state
6
7

Event Request for resource events

Update flag bit definitions:

Bit Name Description
0 | bKSTPSecondUpd Seconds data has been updated
1 | bKSTPM nut eUpd Minute data has been updated
2 | bKSTPHour Upd Hour data has been updated
3 | Unused
4 | Unused
5 | Unused
6 | Unused
7 | BKSTPRunout Indicatesif stopwatch resource has run out

0 = not reached maximum time
1 = reached maximum time (100 Hours)

INVOKING A SYNCHRO RESOURCE

A synchro resource is automatically started if a stopwatch resource is started from reset. The
application will not do anything to make this happen. The synchro resource now keeps track of
the application that started it. When the stopwatch resource is stopped, the synchro stoppage timer
will automatically started. If started again, the synchro stoppage timer will stop.

4.6.8 Synchro Resource

The Synchro resource is a special type of stopwatch resource that is always linked to start when atimer or
stopwatch resource is started from reset. The resource will activate its stoppage counters when the timer or
stopwatch resource that started it is stopped by the user.

The synchro resource can only be reset under application control.

If asynchro resourceis currently active and a stopwatch or timer resource is started from reset, the synchro

resource is reset and started from 0:00.00.

The following tables show the data structure of the synchro resource.

SYNCHRO Resource Data Structure:

| Offset |

Data Type

Description

Timex Corporation

40

M851 WristApp Design Guide

4.7

Rev 1.2

Application Index

Index of application owner

1 Resource Flag Specifies status of the resource

2 Update Flag Specifiesif month, date and year data are required for
an exact match

3 Previous Counter Sample For resource use only

4 Hundredth data Running hundredths datain BCD format

5 Second data Running seconds datain BCD format

6 Minute data Running minute datain BCD format

7 Hour data Running hours datain BCD format

8 Linked TMR ID Index Link to TMR Resource

9 Linked STPID Index Link to STP Resource

Resource flag bit definitions:

bKGener at ePopup

Popup Reguest for resource events

bKGener at eEvent

Bit Name Description

0 | bKReserved Resource is owned

1 | bKActive Resourceis active

2 | bKDi spUpdRequest Display update request

3 | bKTMRLI nk Link to atimer resource

4 | bKSTPLi nk Link to a stopwatch resource

5 | bKNot Reset Indicates resource is not in reset state
6

7

Event Request for resource events

Update flag bit definitions:

Bit Name Description
0 | bKSYNSecondUpd Seconds data has been updated
1 | bKSYNM nut eUpd Minute data has been updated
2 | bKSYNHour Upd Hour data has been updated
3 | Unused
4 | Unused
5 | Unused
6 | Unused
7 | bKSYNRunout Indicates if synchro resource has run out

0 = not reached maximum time
1 = reached maximum time (100 Hours)

Application System Data

Application specific variables are stored in the Application System Data (ASD). These variables are often

used in the overall operation of the application.

IMPORTANT: For applications that use any timer resource, the kernel will store the resource index at the
top of the ASD. The application is responsible for allocating the required number of bytesin the ASD for
the resource index.

Since the ASD is stored in heap memory, applications can have its ASD stored anywhere in the heap. For
this reason, access to the ASD variables is done through relative addressing. The kernel variable,
CORECur r ent ASDAddr ess, stores the start address of the ASD of the foreground application. For the
Background Handler, the start address of the ASD is stored in COREBackgr oundASDAddr ess during
execution.

The following code show how to access a variable in the ASD during foreground execution:

Timex Corporation

41

M851 WristApp Design Guide Rev 1.2

; load into A the byte value stored at offset VAR ABLE OFFSET
Id I X, [CORECurr ent ASDAddr ess]
Id A, [IX + VAR ABLE_OFFSET]

The following code show how to access a variable in the ASD during background execution:;

; load into A the byte value stored at offset VAR ABLE OFFSET
I d I X, [COREbackgr oundASDAddr ess]
Id A, [IX + VAR ABLE_OFFSET]

APPLICATION NOTES:

Since this area take up valuable heap space, care must be taken to allocate variables here the will
be used throughout the lifetime of the application. For temporary variables (variables that will be
used only during a state execution, consider storing them under foreground common variables
provided by the kernel.

During application initialization, the application is responsible for clearing the variablesin the
ASD to aknown value (usually 0). Care must be taken not to overwrite any variables where the
kernel has stored all the resource indexes.

4.8 Application Database Data

Database datais stored in the Application Database Data (ADD). ADD can be located in either internal or
external memory. If the data stored in the ADD is small and fixed in size, it should be located in internal
memory. ADD should be external if it is large and may require changesin its allocation size.

NOTE: By convention, ADD should be stored in external memory.
This section is updated with new information from the PC during a communications download.

The system variable CORECur r ent ADDAddr ess is available to the foreground application to accessits
database. If the ADD isinternal, CORECur r ent ADDAddr ess specifies the starting address of the ADD
memory block. If the ADD is external, CORECur r ent ADDAddr ess specifies the absolute addressin
EEPROM of the start of the database.

Background handlers will use the system variable COREBackgr oundADDAddr ess to access database
data.

If the ADD is stored in external memory, application must allocate in the ASD a buffer to store data
retrieved from external memory. Thiswill allow the application to provide utilities to process the data
located in afixed offset in the ASD. For messages to be scrolled, the kernel provides a 101 byte scroll
buffer which the background scroll routines can directly manipulate. The scroll buffer is reference using
the label COREVWOr kBuf f er .

APPLICATION NOTES:

The application can use the database utilities provided by the kernel. This allows accessing
database records using random access or linked list methods.

4.9 System Variables

The kernel provides a number of global system variables that are accessible by all application and system
modules. The system variablesis used for the following purposes:

Timex Corporation 42

M851 WristApp Design Guide

Rev 1.2

Provides away of communicating application specific variables to be used by other applications
that requires the information to process its data.
Provides a mechanism for the kernel to pass parameters to an application with the use of direct

addressing.

Variables/Flags

Description

CORECur r ent ASDAddr ess

The base address in internal memory where the Application
System Data block resides.

CORECur r ent ADDAddr ess

Specifies the address in internal or external memory where the
Application Database block resides.

COREPTZI ndex

Updated by the TOD application (or communication mode) to
indicate the TOD resource index of the primary time zone.

CORERef er enceTZIl ndex

Modified only by the kernel.

Thisis used by the TimeZoneCheck resource to determine which
TOD resource index to compare its time entries with.

Thisis aso used by the alarm or appointment type application to
determine which timezone resource index to compare when
filling out a TimeZoneCheck resource.

When a popup occurs, the Kernel will copy primary time zone
time into the popup clock resource. This allows the system to
popup all queued alarms even though popups has been suspended
for along time. When popup clock time matches primary time
zone time, COREReferenceTZIndex will be equal to
COREPTZIndex.

COREPTZFor mat

Modified by the TOD application (or communication mode) to
indicate the timer and date format of the primary time zone.

Thisis used for any application that depends on the formatting of
the primary time zone to display its own data.

CORENi ght MbdeSt at us

Modified by the NightMode Option application (or
communication mode).

This indicates the current status of NightMode.

CORENi ght MbdeTi neOnM nut e

Modified by the NightMode Option application (or
communication mode).

Thisindicates the auto nightmode on time — minute.

CORENi ght MbdeTi neOnHour

Modified by the NightMode Option application (or
communication mode).

This indicates the auto nightmode on time — hour.

CORENi ght ModeTi neOF f M nut e

Modified by the NightMode Option application (or
communication mode).

Timex Corporation

43

M851 WristApp Design Guide

Rev 1.2

This indicates the auto nightmode off time — minute.

CORENi ght MbdeTi meOr f Hour

Modified by the NightMode Option application (or
communication mode).

Thisindicates the auto nightmode off time — hour.

COREChi neSt at us

Modified by the Chime Option application (or communication
mode).

Thisindicates the current status of chime.

COREChi neTi mneOnM nut e

Modified by the Chime Option application (or communication
mode).

This indicates the auto chime on time — minute.

COREChi neTi meOnHour

Modified by the Chime Option application (or communication
mode).

This indicates the auto chime on time — hour.

COREChi meTi meOf f M nut e

Modified by the Chime Option application (or communication
mode).

This indicates the auto chime off time — minute.

COREChi neTi meOf f Hour

Modified by the Chime Option application (or communication
mode).

This indicates the auto chime off time — hour.

CORENi ght MbdeDur ati on

Modified by the kernel and NightMode Option application.

This specifies the amount of time to enable nightmode.

CORESw t chBeepSt at us

Indicatesif a switch beep is generated for all switch depression.

HWSTPDat aBuf f er

On al switch depressions, the kernel will grab a copy of the
100hz free running counter data and store it in this variable.

This can then be used by the foreground state handler to be pass
as parameters to activate or deactivate any kernel timer resources.

4.10 Common Variables

When an application uses a variable that will be used only for the duration of the execution of the state
handler, it is best to store them in common variables. The advantages are two-fold. Firgt, it reservesthe
heap memory for important variables allowing for more applications to be active at any given time.
Second, the common variables are located in fixed memory, so direct addressing which uses less ROM can
be used instead of the index relative addressing mode required for ASD.

The kernel alocates two types of common variables. The foreground and background common variables.

Timex Corporation

44

M851 WristApp Design Guide Rev 1.2

4.10.1 Foreground Use

The kernel alocates 24 bytes for foreground use. These variables are guaranteed to store application
specific variables only when the application is the foreground application. Mode changes and popups may
change these variables. Applications must initialize these variables during state entry events.

The common foreground variablesis referenced using the label COREFor egr oundConmonBuf f er . If
the application does not use the 101 byte scroll buffer, it can make use of that space as acommon
foreground buffer.

4.10.2 Background Handler Use

These variables are to be used during the execution of the application’s background handler. Upon
completion of the background handler execution, the variables are not guaranteed to retain their values. A
foreground application may use these variables only during processing a one foreground task like a system
event processing. After processing the event, the datais no longer valid.

The common background variables is referenced using the label COREBackgr oundConmonBuf f er .

4.11 Background Handler

The Background Handler is a background task handler for an application. The application need not be the
foreground application for the background handler to be called and executed. The table below shows the
events being processed in the Background Handler. The events are stored in the variable

COREBackgr oundEvent.

Kernel System Event When Used:

COREEVENT_PORINI' T - Used only for ROM-based application to
setup/initialize the variables (or files)
required by the application.

- Used/passed only during system powerup.

COREEVENT _INI'T - Used to setupl/initialize the variables (or
files) required by the application.

- Used/Passed only when a communication
session has ended.

COREEVENT_TASKEXI T - The backgournd handler is executed by the
kernel with this event prior to any mode
change including popups.

COREEVENT_PEEK - Passed by the kernel to inform the
application to display data on the screen for
peek operation. This must be supported by
an appointment and occasion application
types.

- It isadvised that applications check first the
existence of the application before
reguesting a peek at the application.

- The PEEK event handler should clear the
display prior to displaying any data.

- It should not use any of the foreground
common variables when displaying the
data.

Timex Corporation 45

M851 WristApp Design Guide

Rev 1.2

- It can request scrolling if required to display

long messages.

COREEVENT_UPDATEDATABASEHEADER

- Prior to astart of acommunication session,

this event is passed to the application
background handler to handle cleanup of
active resources (if required). It will also be
used by the application to update the
application specific header information
stored in the database. Thiswill provide the
PC with info on how to interpret the
database stored in EEPROM without
uploading the application’s ASD block.

COREEVENT_APP_SHUTDOWN_FOR_COVM

- Prior to astart of acommunication session,

this event is passed to the application
background handler to handle cleanup of
active resources (if required). It will also be
used by the application to update the
application specific header information
stored in the database. Thiswill provide the
PC with info on how to interpret the
database stored in EEPROM without
uploading the application’s ASD block.

COREEVENT_TI MERFI NI SHED

- Used only by applications that uses the

Timer resource.

- Theresource handler is called with this

event when an event occursin the timer
resource.

- This allows the application control over the

resource with regards to updating the timer
resource data as used in ainterval timer
application where a update inside a popup
state handler is not practical.

COREEVENT_TI MERHALFWAYACHI EVED

- A timer resource countdown/countup

operation has reached its halfway mark.

COREEVENT_STP_FORCI BLY_STARTED

- A stopwatch resource was started internally

by atimer resource due to a countdown
action chrono operation.

COREEVENT_STP_RUNOUT

- Stopwatch resource data has reached

100hrs.

COREEVENT_TZC_EXPI RED_NOPOPUP

- Time zone check resource has expired. No

popup requested in the resource.

COREEVENT_TZC_EXPI RED_POPUP

- Time zone check resource has expired. A

popup is requested by the resource.

COREEVENT_PRI MARY_TI ME_CHANGE

- Request by a TOD application to indicate

Timex Corporation

46

M851 WristApp Design Guide

Rev 1.2

that the primary time has been modified by
the user. Thiswill call all the applications
whose type is greater than OxDF to allow it
to update any variables or time zone check
resourceiti s currently using.

COREEVENT_REFRESH_START

- Requests the application to update its

data/resource due to change in system
conditions (e.g. user update TOD primary
time. Thiswill be the initial event passed to
start off a background task process.

COREEVENT_REFRESH_CONTI NUE

- Requests the application to update its

data/resource due to change in system
conditions eg user update TOD primary
time Thiswill be used to continue the
processing initiated previously by the
background handler.

COREEVENT_PEEK_SEARCH_START

- Request the application to setup the

variables required for an application peek
operation. Thiswill be theinitial event
passed to start off a background task
process.

- Used only by the rom based appointment

application.

COREEVENT_PEEK_SEARCH_CONTI NUE

- Request the application to setup the

variables required for for an application
peek operation Thiswill be used to continue
the processing initiated; previously by the
background handler.

- Used only by the rom based appointment

application.

COREEVENT_DAY_UPDATE

- Request the appointment and occasion type

applications to update system variables or
flags due to aday update condition. This
will be theinitial event passed to start off a
background task process.

COREEVENT_DAY_UPDATE_START

- Request the appointment and occasion type

applications to update system variables or
flags due to a day update condition. This
will be theinitial event passed to start off a
background task process.

COREEVENT_DAY_UPDATE_CONTI NUE

- Request the appointment and occasion type

applications to update system variables or
flags due to aday update condition. This
will be used to continue the processing
initiated previously by the background
handler.

COREEVENT_HOUR_UPDATE

- Request the appointment and alarm type

Timex Corporation

47

M851 WristApp Design Guide Rev 1.2

applications to update system variables or
flags due to an hour update condition. This
will be theinitial event passed to start off a
background task process.

COREEVENT_HOUR_UPDATE_START - Request the appointment and alarm type

applications to update system variables or
flags due to an hour update condition. This
will be theinitial event passed to start off a
background task process.

COREEVENT_HOUR_UPDATE_CONTI NUE - Request the appointment and alarm type

applications to update system variables or
flags due to an hour update condition. This
will be used to continue the processing
initiated previously by the background
handler.

APPLICATION NOTES:

All application must have a background handler (even if it isjust areturn instruction).
For EEPROM -based applications, the resource handler must be located at the start of the common
section.

411.1 Kernel Variables

Since the resource handler is executed mainly as a background task, the kernel provides system variables to
be used exclusively by this handler. Prior to calling an application’s resource handler, the kernel will setup
the variables indicated in the table below.

Kernel System Variable Description

COREBackgr oundAppl ndex Application Index of application to process.

COREBackgr oundASDAddr ess Application System Data address of application to
process.

COREBackgr oundADDAddr ess Application Database Data address of application to
process.

COREBackgr oundEvent Event passed to the background handler to be processed.

4.12 Display Services

The kernel provides macros to format and display numbers, |etters, punctuations and flags on any region of
the display. There are 4 display regions on the M851 display:

Regions Description

Icons Uniqueicons (12) that can be used to shows status of system and
application.

Upper Dot-Matrix An 11 x 5 dot matrix area. Ableto display 2 charactersin either fixed or
proportional fonts.

Segment Allows for the display of 6-digit segmented digits.

Main Dot Matrix An 40 x 11 dot matrix area. Ableto display charactersin either fixed or

Timex Corporation 48

M851 WristApp Design Guide Rev 1.2

proportional fonts, large-sized fonts and regular-sized fonts.

Two lines are available for writing in this area when using the regular
sized fonts.

4.12.1 Character Sets
The kernel supports four character sets that can be used only to a specific display region. Theindex for

numbers (0 — 9) remains constant on all the character set definitions. This allows numbers to be displayed
on all regions without specia handling.

The table below is the character set for the segment region:

0.00. 00
ol

=Nt il O il ROy
- 1 '%/mmnmmmmmlmﬂﬂmm]
() - R

-y ‘g;EHﬂtHﬂ{]ﬂﬂl\‘

I G

Segment Digit 3 Segment Digit 4
Segment Digit 2 Segment Digit 5
Sagment Digit 1 —\7 /_ Segment Digit 6

Character Code Index Value Character Displayed

SEG 0

SEG 1

SEG 2

SEG 3

SEG 4

SEG 5

SEG 6

SEG 7

SEG 8

OO (NO|O|~A|W[N(FL]|O

SEG 9

>lolo|~N|jo|u|hw|N|k o

SEG A

[N
o

Timex Corporation 49

M851 WristApp Design Guide Rev 1.2
SEG B 11 B
SEG C 12 C
SEG D 13 D
SEG_E 14 E
SEG_F 15 F
SEG G 16 G
SEG H 17 H
SEG | 18 I
SEG J 19 J
SEG K 20 K
SEG L 21 L
SEG M 22 M
SEG N 23 N
SEG_O SEG 0 O
SEG_P 24 P
SEG _Q 25 Q
SEG R 26 R
SEG_S SEG 5 S
SEG T 27 T
SEG U 28 U
SEG_V 29 V
SEG W 30 w
SEG_Y 31 Y
SEG Z SEG 2 z
SEG_SPACE 32
SEG_M NUS 33 -
SEG_DASH SEG M NUS -
SEG_PLUS 34 +
SEG_COLON SEG | :
SEG_OPENPAR SEG C (
SEG_CLOSEPAR 35)
SEG_DOLLAR 36 $

The table below is the character set for regular size dot-matrix characters.

R ANE N N ANR AN BN (RN NER ANARARN)
O YHow Y
RN | i
f | "ua SEerar i ' w g pnial
i B i o | i el
Timex Corporation 50

M851 WristApp Design Guide

I.I L

Rev 1.2

Column 42

Character Code Index Character Displayed

DVb_0 0 0
DV6_ 1 1 1
DVb_2 2 2
DVb_3 3 3
DV6_4 4 4
DV6_5 5 5
DVb_6 6 6
DV6_7 7 7
DV6_8 8 8
DVb_9 9 9
DVb_ BLANK 10

DV6_A 11 A
DV6_B 12 B
DVb_C 13 C
DV6_D 14 D
DV6_E 15 E
DV6_F 16 F
DV6_G 17 G
DVvb_H 18 H
DVG_| 19 |
DV6_J 20 J
DV6_ K 21 K
DV6_ L 22 L
DV6_M 23 M
DV6_ N 24 N
DV6_O 25 o)
DV6_P 26 P
DVb_Q 27 Q
DV6_R 28 R
DV6_S 29 S
DV6_T 30 T
DV6_U 31 U

Timex Corporation

51

Timex Corporation

M851 WristApp Design Guide Rev 1.2
DVb_V 32 V
DVb_W 33 w
DVb_ X 34 X
DVb_Y 35 Y
DVb_Z 36 z
DVb_ EXCLANATI ON 37 !
DVb_DBLQUOTE 38 "
DVb_NUVBER 39 #
DVb_DOLLAR 40 $
DVb_ PERCENT 41 %
DVb_ AMPERSAND 42 &
DVb_SGLQUOTE 43 '
DVb_ OPENPAR 44 (
DVb_ CLOSEPAR 45)
DVb_ASTERI SK 46 *
DVb_PLUS 47 +
DVb_ COMVA 48 ,
DVb_DASH 49 -
DVb_M NUS DVb_DASH -
DVb_PERI OD 50 .
DVb_SLASH 51 /
DVb_COLON 52 :
DVb_SEM COLON 53 ;
DVb_LESSTHAN 54 <
DVb_ EQUAL 55 =
DVb_ GREATERTHAN 56 >
DVb_QUESTI ON 57 ?
DVb_ ATREVERSED 58 n/ a
DVb_ OPENSQBRACKET 59 [
DVb_ BACKSLASH 60 \
DVb_ CLOSESQBRACKET 61 |
DVb_Cl RCUMFLEX 62 n
DVb_ UNDERSCORE 63 _
DVb_ BACKAPOSTROPHE 64
DVb_ OPENBRACE 65 {
DVb_VERTBAR 66 |
DVb_ CLOSEBRACE 67 }
DVb_TI LDE 68 ~
DVb_SECTI ON 69 n/a
DVb_EURO 70 n/ a
DVb_POUND 71 €
DVb_YEN 72 ¥
DVb_ AUMLAUT 73 n/ a
DVb_ARI NG 74 n/ a
DVb_AELI GATURE 75 n/ a
DVb_CCEDI LLA 76 n/ a
DVb_NTI LDE 77 n/ a

52

M851 WristApp Design Guide Rev 1.2

DV6_ OUMLAUT 78 n/ a
DVb_OSLASH 79 n/ a
DVb_ UUMLAUT 80 n/ a
DVb_SZLI GATURE 81 n/ a
DVb_| NVEXCLAMATI ON 82 n/ a
DVb_ | NVQUESTI ON 83 n/ a
DVb_FEMORDI NAL 84 n/ a
DVb_ DEGREE 85 n/a
DVb_ MACRON 86 n/ a
DVb_ SPADE 87 n/ a
DV6_CLUB 88 n/a
DV6_HEART 89 n/a
DVb_ DI AMOND 90 n/ a
DV6_TEN 91 n/ a
DVE_ NEVIWIOON 92 n/a
DVb_FI RSTQUARTER 93 n/ a
DVb_LASTQUARTER 94 n/ a
DV6_ DONNARROW 95 n/a
DV6_ UPARROW 96 n/ a
DVb_AM 97 "A" (AM tine)
DVb_PM 98 "P" (PMtinme)
DV6_ MFORAMPM 99 n/ a
DVb_COVPRESS 1 100 |
DVb_LEFTARROW 101 n/ a
DVb_RI GHTARROW 102 n/ a
DVb_ CURSOR 103 n/ a
DVb_ SENTI NEL 104 n/ a
DVb_BLANK 105

The table below is the large-font character set for the main dot matrix region.

) (),) N
FEAnN ‘ il ﬂr |
EHEHHH ‘ @ g o o ey
oo | & **”“Wmﬁm i
T 1 © HH%HWHWWMMWW i
FENEEN &k |
Ennny | m%%%ﬂ.mﬁ{%@ﬁ |
nrnaa

Timex Corporation 53

M851 WristApp Design Guide

Rev 1.2

Character Code Index Character Displayed

DMVB_O 0 0
DMVB_1 1 1
DMVB_2 2 2
DVB_3 3 3
DMVB_4 4 4
DMB_5 5 S)
DMVB_6 6 6
DVB_7 7 7
DMVB_8 8 8
DMVB_9 9 9
DVB_ SPACE 10

DVB_A 11 A
DMVB_L 12 L
DVB_P 13 P
DMB_S 14 S
DMB_T 15 T
DVB_| 16 |
DVB_PERI OD 17

DVB_DOT 17

DVB_COLON 18

DVB_DASH 19 -

Pixel Operations. A pixel isreferenced as Pixel (x,y) where x is the column number and y is the row

number.

Timex Corporation

54

M851 WristApp Design Guide Rev 1.2

Pixel 1 1 Pixel 8,4
TRINIPSIRRRRENAN | — Row 1
e e e e
R
'.}'.':‘l.'rl."}"!‘"H.‘il,'i*'.'?'.'ll.'“,'f-l'.'?' Row 11
Column 1 |: Column 42

4.12.2 Displaying Numbers

The kernel provides macros to display numerical datathat is stored in BCD-format. It is recommended that
applications use BCD-formatted data for its numerical variables that will be displayed. The macros can
display the BCD datain various formats such as:

1, 2 or 3digits

fixed and proportional fonts

regular or large-sized fonts

Zero or No-zero suppression

zero suppression in MSD position only

Displaying Numbers in the Segment Region

LCD_DI SP_2DI G_SEG DATA W TH_ZERO_SUP

LCD_DI SP_3DI G_SEG DATA_W TH_ZERO_SUP

LCD DI SP_2DI G SEG DATA_SUP_ZERO MBD

LCD_DI SP_3DI G_SEG DATA_NO _LSD SUP

LCD_DI SP_2DI G_SEG DATA_NO _ZERO SUP

LCD_DI SP_3DI G_SEG DATA_NO_ZERO_SUP

Displaying Numbers in Dot Matrix Regions — Zero Suppression

LCD DI SP_SVALL_PROP_W DTH_2DI G DM DATA_SUP_ZERO

LCD_DI SP_SVMALL_FI XED W DTH_2DI G DM DATA_SUP_ZERO

LCD_DI SP_SVALL_PROP_W DTH_3DI G_DM DATA_SUP_ZERO

LCD_DI SP_SVALL_FI XED_W DTH_3DI G_DM DATA_SUP_ZERO

Displaying Numbers in Dot Matrix Regions — Zero Suppression on leading digits

LCD_DI SP_SVALL_PROP_W DTH_2DI G DM DATA_SUP_ZERO NMSD

LCD_DI SP_SVMALL_FI XED W DTH_2DI G DM DATA_SUP_ZERO _NSD

LCD_DI SP_SVALL_PROP_W DTH_3DI G_DM DATA_NO _LSD_SUP

LCD DI SP_SVALL_FI XED W DTH_3DI G DM DATA _NO LSD SUP

Displaying Numbers in Dot Matrix Regions — No Zero Suppression

LCD_DI SP_SVALL_PROP_W DTH_2DI G DM DATA_NO ZERO SUP

LCD_DI SP_SMALL_FI XED_W DTH_2DI G DM DATA_NO _ZERO SUP

LCD_DI SP_SVALL_PROP_W DTH_3DI G_DM DATA_NO_ZERO _SUP

LCD_DI SP_SMALL_FI XED W DTH_3DI G DM DATA_NO_ZERO SUP

Displaying Large-Fonts on Main Dot-Matrix Region

Timex Corporation 55

M851 WristApp Design Guide Rev 1.2

LCD_DI SP_BI G 2Dl G T_DM DATA_SUP_ZERO

LCD DI SP_BI G 3Dl G T_DM DATA_SUP_ZERO

LCD DI SP_BI G 2Dl G T_DM DATA_SUP_ZERO MSD

LCD DI SP_BI G 3Dl G T_DM DATA _NO LSD SUP

LCD DI SP_BI G 2Dl G T_DM DATA_NO ZERO SUP

LCD_DI SP_BI G 3Dl G T_DM DATA_NO ZERO SUP

Clearing 2-digit/3-digit in Dot Matrix Regions

LCD_CLR SMALL_PROP_W DTH_2DI G_DM DATA

LCD_CLR SMALL_FI XED W DTH_2DI G_DM DATA

LCD_CLR SMALL_PROP_W DTH_3DI G_DM DATA

LCD_CLR SMALL_FI XED_W DTH_3DI G_DM DATA

4.12.3 Displaying Alphanumeric Characters
The kernel provides macros to display a character to any display region.

Displaying an al phanumeric character

LCD_DI SP_SEG CHAR

LCD_DI SP_SVALL_PROP_W DTH_DM CHAR

LCD_DI SP_SVALL_FI XED W DTH_DM CHAR

LCD_DI SP_BI G_DM CHAR

Clearing character/digit position

LCD CLR 2D G T_SEG

LCD CLR 3D G T_SEG

LCD_CLR BI G 2Dl G T_DM DATA

LCD CLR BI G 3Dl G T_DM DATA

4.12.4 Displaying Messages
Each display message macro requires a specific format in the definition of the message.

Sample Segment Message Display Usage:

| YReg = | cdSegMsg_WEEKLY;
LCD_DI SP_SEG LI NE_MSG

| cdSegMsg_WEEKLY:
db SEGW SEGE, SEGE, SEGK, SEG L, SEGY

Sample Regular Dot-Matrix Font Message Display Usage:

/1 fornatted nessage display
| YReg = | cdFor matt edSPLI TMessage;
LCD DI SP_FORMATTED SMALL_FI XED_W DTH_DM MSG;

| cdFor mat t edSPLI TMessage:
LCDMVAI NDMLI NE2COL4, 5, DMb_S, DMb_P, DVb_L, DVb_I, DVb_T

/1 unfornatted nessage display

| YReg = | cdUnfornmattedSPLI TMessage; // address of nessage

| XReg = LCDMAI NDMLI NE2COL4; /1 display address

BReg = 5; /'l characters displayed
LCD DI SP_UNFORVATTED _SMALL_PROP_W DTH_DM MSG

| cdUnf or mat t edSPLI TMessage:

Timex Corporation 56

M851 WristApp Design Guide Rev 1.2
DV6_S, DV6_P, DMb_L, DWVb_I, DM6_T

Sample Large Dot-Matrix Font Message Display Usage:

/1 formatted nessage displ ay
| YReg = | cdFor natt edSPLI TMessage;
LCD_Di SP_FORVATTED_BI G_FONT_DM MsG,

| cdFor mat t edSPLI TMessage:
LCDVAI NDMLI NE2COL4, 5, DMvB_S, DMvB_P, DMB_L, DMB_I, DMB_T

/1 unformatted message displ ay

| YReg = | cdUnfornmattedSPLI TMessage; // address of nessage

| XReg = LCDMAI NDMLI NE2COL4; /1 display address

BReg = 5 /'l characters displayed
LCD DI SP_UNFORVATTED BI G_FONT_DM MsG

| cdUnf or mat t edSPLI TMessage:
Dv8_S, DvB_P, DMB_L, DMB_I, DMB_T

For more information, refer to the Application Programming Interface Document on how to use the
message display macros.

Displaying messages

LCD_DI SP_SEG LI NE_MBG

LCD_DI SP_FORVATTED _SMVALL_PROP_W DTH_DM _MSG

LCD_DI SP_FORVATTED SMALL_FI XED W DTH_DM NSG

LCD_DI SP_UNFORMATTED SMALL_PROP_W DTH_DM MBG

LCD_DI SP_UNFORMATTED SMALL_FI XED_W DTH_DM _MBG

LCD_DI SP_FORVATTED Bl G_FONT_DM MBG

LCD_DI SP_UNFORMATTED BI G_FONT_DM MSG

LCD_DI SP_BANNER_NMSG

4.12.5 Clearing Display Regions
The table below shows the macros to clear specific display regions.

Clearing display regions

LCD_FI LL_DI SPLAY

LCD_CLR DI SPLAY

LCD_CLR ALL_FLAGS

LCD_CLR SEG LI NE

LCD_CLEAR UPPER DM

LCD_CLEAR VAl N_DM

LCD_CLR_MAI N_DM LI NE1

LCD_CLR _MAI N_DM LI NE2

Timex Corporation 57

M851 WristApp Design Guide Rev 1.2

4.13 Mode Banner

4.13.1 Handling

The application is responsible for displaying the application mode banner during mode selection. The
application will provide the start address to a banner message during application initialization as well asthe
banner message itself. The kernel stores the mode name address information in the Application Control
Block.

An application can specify that mode banner message to be displayed be taken from the Mode Banner
Database in EEPROM. The banner message in EEPROM must be stored prior to any access.

The following macros provides the application with this choice.

CORE_USE_DEFAULT_MODE_BANNER
CORE_USE_USER_SUPPLI ED_MODE_BANNER

The core macro CORE_CALL__MODE_NAME will display the mode banner either indicated in the
Application Control Block or from EEPROM.

The kernel provides mode banner messages for built in ROM applications. These are:

Banner M essages Availablein ROM

| cdBanner Msg_TIl ME_OF_ DAY

| cdBanner Msg_ CHRONO

| cdBanner Msg_| NTERVAL _TI MER

| cdBanner Msg_TIl MER

| cdBanner Msg_APPT

| cdBanner Msg_DATE

| cdBanner Msg_NOTE

| cdBanner Msg_OPTI ON

| cdBanner Msg_SYNCHRO Tl MER

| cdBanner Msg_ COWM

| cdBanner Msg_CONTACT

4.13.2 Banner Message Format

The banner message has control codes embedded in the message that either indicates the column position
and the end of the message. The table below shows the control codes:

Control Code Description

LCDBANNER_COLn Signals the starting column to display the message where n indicates
the column position. Thisis aways the first byte in the message. If
the control code is present in the middle of the message array, this
will signify the starting column in the second line.

LCD _END BANNER Signals the end of the banner message.

Sample code for atwo-line mode banner message:

| cdBanner Msg_TI ME_OF_DAY:
db LCDBANNER_COL12
db DV6_T, DVb_|, DVM6_M DMb_E
db LCDBANNER_CCOL6
db DV6_O DMB_F, DVb_SPACE, DM6_D, DV6_A, DV6_Y
db LCD_END_BANNER

Timex Corporation 58

M851 WristApp Design Guide Rev 1.2

Sample code for a one-line mode banner message:

| cdBanner Msg_CHRONC
db LCDBANNER_COL5
db DVM6_C, DM6_H, DM6_R DM6_O, DVM6_N, DV6_O
db LCD_END_BANNER

Sample code for a one-line mode banner message in the second line:

| cdBanner Msg_CHRONC:
db LCDBANNER_COL1
db LCDBANNER_COL5
db DVM6_C, DMb_H, DMb_R, DMb_O, DV6_N, DVb_O
db LCD_END_BANNER

4.14 Mode Change

The kernel provides a number of macros to provide an application control in changing the foreground
application. During a mode change, including popups, the core will execute the following operations prior
to giving control to the new foreground state handler:

Execute Resource Handler previous application with the COREEVENT _TASKEXI T.
Clear al display update request flags on all kernel resources.

Clear entire display.

Cancel all switch depressions.

Cancel al timeouts.

Blinking is cancelled.

Scrolling is cancelled.

CORECur r ent St at e isset to COREDEFAULTSTATE.

CORECur r ent Event isset to COREEVENT _STATEENTRY

CORECur r ent ASDAddr ess is set to the foreground application ASD address.
11. CORECur r ent ADDAddr ess is set to the foreground application ADD address
12. Copy Common Code from EEPROM to overlay arealocated after ASD.

13. Copy State 0 from EEPROM to overlay arealocated after common code.

©CoNoOR~WDN PR

=
©

USER INTERFACE NOTES:

The application will use the macro CORE_REQ MODE CHANGE_NEXT to change to the next
mode. The kernel will make the determination if it should proceed to the next mode or go back to
TOD mode. The kernel will keep track if the user intended to go back to primary mode or just
peeking into the primary mode.

The application can use the macro CORE_ REQ MODE_CHANGE NEXT _NO_PEEK to changeto
the next mode or the primary mode without the peek at primary mode option.

For atimer application in a CDC operation, it will request a special mode change macro that will
bypass displaying the application banner and directly execute the default state.

4.15 State Change

During a state change, the core will execute the following operations prior to giving control to the state
handler:

1. If the state change request macro used is CORE_REQ STATE_CHANGE then the entire
display iscleared. If the macro usedis
CORE_REQ STATE CHANGE _NO CLEAR DI SPLAY, then the display is not cleared.

Timex Corporation 59

M851 WristApp Design Guide

Clear al display update request flags on all kernel resources.

Blinking is cancelled.

Scrolling is cancelled.

CORECur r ent Event isset to COREEVENT _STATEENTRY

Copy the new state from EEPROM to overlay arealocation after common code.

ok wd

Rev 1.2

4.16

Icons

Theicons are used to indicate application status to the user that may otherwise be inappropriate to represent
using messages. Theicons available in the system are shown in the table below:

Icon Common Use
L - Used in conjunction with A and P to display LAP
A - Used in conjunction with L and P to display LAP
- Indicate AM
P - Used in conjunction with L and A to display LAP
- Indicate PM
LAP - Display LAP
AP - Appointment is within a specified number of daysfrom the primary time
NOTE - Indicate hourly chimeis active
ALARM - Indicate that an alarm is active
CLOCK
RI NG or - Used in conjunction with the Hourglass icon and arrow to indicate timer
TAI L app isin repeat mode
ARROW - Used in conjunction with the hourglass or Stopwatch icon to indicate the
mode of operation for atimer type application
HOURGLASS - Indicate that a timer type application is running
STOPWATCH - Indicate that a chronograph type application is running
MOON - Indicate that nightmode is active
TI MELI NE - Specifies upcoming appointment/occasions/both on the next 7 days.

Theicons are used in two different modes — foreground mode and application resource mode. Different
macros are provided to control the icons in the two modes.

When an application is in the foreground mode, it has full control of al icons. Macros are provided to clear
and display the icons.

Macrosfor 1con Control in Foreground Mode

LCD_UPD L_FLAG ON OFF

LCD_UPD A _FLAG ON OFF

LCD_UPD_P_FLAG ON/ OFF

LCD_UPD LAP_FLAG ON OFF

LCD_UPD_NOTE_FLAG ON OFF

LCD_UPD_ACLK_FLAG ON OFF

LCD_UPD TAI L_FLAG ON OFF

LCD_UPD_ARROW FLAG ON OFF

LCD_UPD_TMR_FLAG ON/ OFF

LCD_UPD_CHR_FLAG ON/ OFF

LCD_UPD_MOON_FLAG ON OFF

LCD_UPD_AP_FLAG ON OFF

LCD_UPD_TI MELI NE_FLAG ON OFF

When the primary mode becomes the foreground application, the icons behave as application display icon
resource. Asresources, they are reserved during application initialization through the application

Timex Corporation

60

M851 WristApp Design Guide Rev 1.2

parameter file. The TOD application (being the primary mode) is designed not to use theiconsin
foreground mode. Typical use of the iconsisto indicate application status. For example, the Hourglass
icon is used to indicate that atimer type application is running in the background. With this setup, the
primary mode does not need to know what applications are active in the background and how to update the
application’s statusicons. The applications are responsible for the state of its own icon status through the
use of the macro indicated below:

LCD_UPDATE_TOD FLAG RESOURCE_STATE <l conName>, <I conSt at us>

IconName indicates the icon resource to modify. The table below shows the icon resource names

I con Resour ce Names

MOON_RSRC_FLAG

NOTE_RSRC FLAG

ACLK_RSRC_FLAG

ARRON RSRC_FLAG

TAI L_RSRC_FLAG

TMR_RSRC_FLAG

CHR_RSRC_FLAG

P_RSRC_FLAG

A _RSRC FLAG

L_RSRC FLAG

AP_RSRC_FLAG

TI MELI NE_RSRC_FLAG

IconStatus indicates how the icon resource is displayed in the primary mode. The table below
shows the available icon status.

Status for |con Resource

FLAG ON

FLAG OFF

BLI NK_ON

BLI NKOFF_FLAGOFF

BLI NKOFF_FLAGON

Statusfor Timeline Resour ce

FLAG ON | TI NELI NE_DATA

FLAG OFF

The timeline resource provides additional information when FLAG_ONisset. TIMELINE_DATA
isa7-bit data where each data bit represents a day from current date where an active
appointment/occasion/both is scheduled to occur.

APPLICATION NOTES:
The macro LCD_UPDATE_TOD_FLAG RESOURCE_STATE can be used in conjunction with
the foreground macros without affecting the icon display state in the foreground mode. The

changes are visible only when the primary mode becomes the foreground application.

Only three applications can be allocated to specify in the application parameter file that it wantsto
use a specific display icon resource.

Timex Corporation 61

M851 WristApp Design Guide Rev 1.2

4.17 Generic Blink Services

The kernel generic blink services allows for greater flexibility in blinking any aspect of the display under
application control. The application provides the start address of the display routine and the start address of
the clear routine. When the generic blink engine is activated, it will use the two addresses specified to
alternate showing and clearing a message, character, icon or any combination.

The generic blink manager provides a4Hz blink rate. The generic blink macros are shown in the tables
below.

Blink Macros (4Hz)

LCD_WRI TE_4HZ_GEN _BLI NK_DI SP_ROUTI NE_ADDR <addr >

LCD_WRI TE_4HZ_GEN BLI NK_CLR_ROUTI NE_ADDR <addr >

LCD_WRI TE_4HZ_GEN BLI NK_POSI TI ON <addr >

LCD_WRI TE_4HZ_GEN_BLI NK_DI SP_ROUTI NE_PREL OADED*

LCD_WRI TE_4HZ_GEN BLI NK_CLR_ROUTI NE_PREL OADED*

LCD_WRI TE_4HZ_GEN_BLI NK_PCSI TI ON_PRELOADED*

*The macros with the suffix PRELOADED indicate that the argument for the macro is already
loaded in the BAReg register pair.

Typical usage of the generic blink service.

BAReg = &t odDi spl ayGi t yCodeO;

LCD_WRI TE_4HZ_GEN _BLI NK_DI SP_ROUTI NE_PRELQADED;

LCD WRI TE_4HZ_GEN BLI NK_CLR_ROUTI NE_ADDR t odSet Cl ear Di spl ayGi t yCode;
CORE_REQ BLI NK_4Hz;

APPLICATION NOTES:

Although the general definition for ablink operation is the display and clearing of data, it does not
necessarily mean a blank display. Since the blink engine requires only a start address of two
routines, it can be pointed to any routine for adifferent ‘effect’. For example, it can be used to
alternatively display the messages“INTRUDER” and “ALERT”.

4.18 Scroll Services

To bypass the limited number of characters that can be displayed on aline in the main dot matrix area, the
Kernel provide scrolling services that allows strings as long as 101 bytes to be scrolled automatically at
fixed scroll speed. Macros are also provided to alow manual scrolling in both directions. The message
pattern must be terminated with the DM5_SENTINEL character.

The following macros are used to control the scrolling:

Control Macro Description
LCD_GENERATE_SCROLL_EVENT enable/disable event generation during scrolling
LCD _PAUSE_SCROLLI NG pause automatic scrolling
LCD RESUME 8HZ SCROLLI NG resume automatic scrolling
LCD UPD PI XEL_SCROLL_RATE update pixel scroll rate
LCD SCROLL_MSG LEFT scroll data by x number of pixel columnsto the left
LCD SCROLL_MSG RI GHT scroll data by x number of pixel columnsto the right

The scroll display macros shown in the table below can be used to display message string (formatted for
scrolling). The macros will check if the message is scrollable. If the entire message fitsin the line, no
scrolling is done otherwise, the Kernel will automatically invoke scrolling the message at a predefined

Timex Corporation 62

M851 WristApp Design Guide Rev 1.2

scroll rate. All messages intended for scrolling should have the DVb_ SENTI NEL character as the last
character in the message.

Display Macro Description
LCD_SCROLL_RAM OR_ROM MSG M | scroll datafrom ROM or RAM inline 1 of the main
Al'N DM LI NE1 DM area
LCD_SCROLL_RAM OR_ROM MSG M | scroll datafrom ROM or RAM in line 2 of the main
Al'N DM LI NE2 DM area

Sample code to scroll a message in application system data area:

| YReg = * CORECur r ent ASDAddr ess + ALMEDBVESSAGEOFFSET;
LCD_SCROLL_RAM OR_ROM MSG MAI N_DM LI NE2 EVENT_OFF;

APPLICATION NOTE:

An application can specify that an event be passed back to the state handler whenever the entire
message has been displayed. Thisis useful for popup state handlers where it will initiate a
popdown operation only when the entire message has been displayed.

4.19 Password Protection

The Application Control Block will have a flag that will indicate that a password is required for the
application prior to going into the default state.

The application will provide for a password state available in the state manager framework. The
application banner state will make the decision (based on the ACB password flag) to proceed directly to
default state or go to the password state.

The kernel will provide a utility that will be used to handle the application peek state for password entry
and verification. If the password is entered correctly, it will proceed to the default state. If not, it will
remain in the password state. The utility will also handle MODE change requests.

The password state handlers are:

cor ePasswor dDef aul t St at eHandl er ()
cor ePasswor dSet Banner St at eHandl er ()
cor ePasswor dSet St at eHandl er ()

Timex Corporation 63

M851 WristApp Design Guide Rev 1.2

TIMECUT DOME - Pagavord rained

TREGUT DOME - Password requined

COW PLILSE

TIMEOLT

Banner
State

Password
Sot
State

HOME - Yalid password

MODE DEP

ZTOP DEF
HOME - Irmvedid pesswiarnd

4.20 Setting

The kernel provides macros that will change the events generated by the CW and CCW switches. During
power-up, the reset handler will read the bond options to determine the type of setting mechanism that the
watch will use. These are the crown-set and ring-set mechanism.

Mechanical Overview:

An upward movement of the crown will trigger the CW pin and a downward movement will
trigger the CCW pin. In the ring mechanism, a rightward movement will trigger the CW pin and a
leftward movement will trigger the CCW pin.

To simplify the conventions used for directions, only two directions are used: Clockwise and
Counter-Clockwise. So for a crown mechanism, aforward movement will be clockwise direction.
For the ring mechanism, aleftward movement will be the clockwise direction.

The hardware drivers then provide a software abstraction layer that simplifies the applications
interaction with the CW and CCW switches by consistently dealing with CW and CCW direction.

The kernel provides two general types of events triggered by the CW and CCW switches — Edges and
Pulses. Edge events are generated with each transition of the signals. The pulse events are generated from
the number of pulses (a high-low-high transition) detected within a sample window of 125ms. No pulse
events are passed if no pulses are detected. By default, the switches will generate edge type events.

4.20.1 CW/CCW Event Swapping

The kernel provides a macro to swap the CW and CCW events and to restore to default settings. This
allows the application to reverse the signals in the hardware driver level while still dealing with clockwise
and counterclockwise directions.

The swap operation is intended to have the application work with clockwise and counterclockwise
directions when selecting data.

Timex Corporation 64

M851 WristApp Design Guide Rev 1.2

For aring-set mechanism selecting a mode, a clockwise move will select the next mode. In setting data, a
clockwise movement will increment the data. The swap operation will have no effect for aring-set
mechanism.

For a crown-set mechanism, a clockwise movement will select the previous mode. In setting data, a
clockwise movement will increment the data. The swap operation was meant to handle this reverse
operation to be transparent to the application.

Swap Macro Description
CORE_RESET_LOG C_CW AND_CCW TO | Send the default CW and CCW events as dictated
_BOND_OPTI ONS by the bond option setting.

CORE_REVERSE_LOG C_CW AND_CCW | Invert the current status of sending CW and CCW
events to the application.

4.20.2 Ring/Crown Acceleration

In set operation, atypical application might use the edge events to toggle or select between afew
selections. To select from arange of numbers, the application might elect to receive pulses so it can make
use of data acceleration.

To enable pulses to be sent to the application, the kernel provides two macros to enable and disable the
pulse feature.

Request Description
CORE_ENABLE PULSE_MODE Setsthe PulseMode flag. Thiswill send out
CW/CCW pulse events.
CORE_DI SABLE_PULSE_MODE Clears the PulseMode flag. Thiswill send out
CW/CCW edge events.

Acceleration converts the number of pulses generated within awindow into predetermined values to allow
faster setting of the data variables when the user turns the crown or ring fast. The predetermined values are
defined such that if the ring or crown is turned slowly, it will only increment in single steps. Below isthe
predefined table of values for acceleration.

Used for most application setting that increments by 1:

Table Name:
ut | Accel erati onTabl e
ut | Accel erati onTabl elSec
ut | Accel erati onTabl e1lM n

Number of Pulses Accelerated Value
1 0x01
2 0x02
3 0x18
4 0x28

Used for application setting that increments by 5:

Table Name:
ut | Accel erati onTabl e5M n

Number of Pulses | Accelerated Value

Timex Corporation 65

M851 WristApp Design Guide Rev 1.2

0x05

0x10

0x55

AIWIN(F

0x55

Sampl e code to use acceleration:

/1 Get the nunber of pul ses detected during sanple w ndow
LReg = COREEvent Argunent ;

/1 1 ookup the corresponding accel erated data fromtable
| XReg = &utl Accel erationTable - 1;
BReg = *(1 XReg + Lreg);

421 Timeout Services

The kernel provides two resolutions for timeout services available for the applications. These are the low-
resolution timeouts that has a 1second resolution, and the other is the high-resolution timeout that has a
resolution of 125ms.

The kernel provides two macros to request timeouts.

Timeout M acros

CORE_REQ TI MEQUT_LORES <Nunber O Second_ I nterval >

CORE_REQ TI MEQUT_HI RES <Nunber O 125nsec_| nterval >

When the timeout expires, the kernel will send an event (depending on the requested timeout resolution) to
the application. The two events are: COREEVENT _TI MEOQUTDONE_LOARES and
COREEVENT_TI MEOUTDONE_HI GHRES.

A special timeout macro is provided that works with the release of a switch during a specified timeout.
Thistimeout is invoked using the macro CORE_REQ Tl MEQUT_STI CKY. When the swich that requested
this special timeout is release prior to the required duration, the system will send the event
COREEVENT_STI CKY_TI MEQUTDONE when the timeout expires. If the switch remains depressed pass
the specified timeout duration and is released, then the switch release event will be passed to the
foreground application. The state handler must be able to handle both of these events.

4.22 Popups

Only timer resources can generate popup requests for processing by the application. This allows any
critical events generated by the resource to be acknowledged and processed by the owner application.

Popup priority is based according to the resource type: TIMER, STOPWATCH, SYNCHRO, BACKUP
and TIMEZONECHECK.

Applications not using the time zone check resource, timer resource, stopwatch resource and synchro
resource do not require a popup state.

Prior to giving control to the application popup state, the kernel will clean up the current active application
by calling the resource handler of the current application with the event COREEVENT _TASKEXI T. Then
it saves the current mode and state to return to after the application popup state completesits processing. In
most cases, the popup will return to the interrupted state of the application. In some cases, this poses a Ul
problem and is recommended that the state handler specify the application state to popdown. Thisis done
through the macro CORE_SET _POPDOWN_STATE where its takes the application state index to return to
asits argument.

Timex Corporation 66

M851 WristApp Design Guide Rev 1.2

Once the popup state handler completesiits task, it must execute the macro CORE_REQ POPDOWN to
restore the watch to the interrupted foreground application.

USER INTERFACE NOTES:

Popups must suspended whenever the crown isin the SET1 state.
Popups are suspended when the Communication becomes the foreground application.

All queued popup entries are removed when communication module receives the first byte
transmitted.

APPLICATION NOTES:

When popups are suspended, the kernel will activate the popup clock (if it isn't already active) and
grabs a copy of the primary time zone time. When popups are again enabled by the system, the
popup clock will serve as the reference time zone for the time zone check resourceand is
incremented by one minute for every second that elapsed. Thiswill provide a method in which
entries in the time zone check resource (and the application using the resource) will provide the
user with a popup for all the entries that was ‘missed out’ during the popup suspension).

Timing critical applications like the timer must not use the popup mechanism to load new values
into the timer resource when it expires due to the fact that popups may be suspended. This will
lead to inaccurate readings. For the timer resource, the resource is tasked to automatically execute
the owner applications resource handler to handle the rel oad.

4.23 Application Peek Services

Appointment and Occasion type applications are required to provide a peek service through the Resource
Handler. When an application requests for a peek service for a particular application or application type,
the kernel will look in the control block for asimilar application. When found, it will execute the ‘ peeked
at’ application’s background handler with an event COREEVENT _PEEK. The background handler is only
responsible for displaying the application’ s information. Since the current application remains the same,
the resource handler must not use any common foreground variables used for displaying data.

It is advisable for the application to check for the existence of an appliation prior to calling a peek
operation.

Typical usage of a peek macro:

BReg = COREAPPTYPEAPPOI NTNMENT;
CORE_REQ PEEK_APP_TYPE;

4.24 Background Tasks

When a state handler or a background handler code is processed, the core will give control to the handler
until it has completed all processing. If this processing takes avery long time, it would be perceived by the
user that the watch has hanged based on unresponsiveness to switch depressions or the regular display
updates are not being seen.

An example of this condition is when an alarm or appointment is searching for the next upcoming
appointment. For a database of 800 records, this search would take about 10 seconds to complete. One of
the conditions to start the alarm or appointment search is when the primary time zone data was changed by
the user. Since the search isinitiated through the background handler and taking 10 seconds to complete,
the user will perceive the watch freezing its display for 10 seconds before the tod seconds beginsticking
again. To prevent such delayed perception, the appointment and alarm applications are designed to make
use of the background task execution capability of the M851. The operation involves processing 10 records

Timex Corporation 67

M851 WristApp Design Guide Rev 1.2

at atime, saving the current results of the partial search and requesting the system to call back the
background handler when the system is not busy with other higher priority task. When the system is not
busy, it will continue processing the background task reloading the previous results and starts processing
the next 10 records. If not yet complete, it will continue requesting a background task.

To request for a background task, the following macros are used:

Background Task Macros

CORE_REQ BACKGROUND_TASK

CORE_REQ_BACKGROUND_TASK_W TH_PRI ORI TYCHECK

CORE_REQ BACKGROUND_TASK_FOR_APPTYPE

CORE_REQ BACKGROUND_TASK_FOR_APPTYPE_W TH_PRI ORI TYCHECK

CORE_REQ BACKGROUND_TASK_FOR_PTZBASEDAPPS

CORE_CLEAR_BACKGROUND_APPLI CATI ON_TASK

CORE_CLEAR ALL_BACKGROUND_APPLI CATI ON_TASK

The following are the events that can be used to request a background task:

Events Used for the Background Task Macros

COREEVENT_REFRESH_START

COREEVENT_REFRESH_CONTI NUE

COREEVENT_PEEK_SEARCH_START

COREEVENT_PEEK_SEARCH_CONTI NUE

COREEVENT_DAY_UPDATE

COREEVENT_DAY_UPDATE_START

COREEVENT_DAY_UPDATE_CONTI NUE

COREEVENT_HOUR_UPDATE

COREEVENT_HOUR_UPDATE_START

COREEVENT_HOUR_UPDATE_CONTI NUE

4.25 Application Requests

During state handler processing, an application can send out a system request to the kernel. These requests
will be acknowledged and processed by the kernel in either two places: during state processing or after state
processing. The table below shows the system requests available to the application.

State Transition:

Request Description
CORE_REQ MODE_CHANGE Requests a mode change to a specific mode.
CORE_REQ MODE CHANGE NEXT Requests a mode change to the next mode

defined in the mode list with wraparound.

If application is active for more than 4
seconds, it will go to the Primary Mode.

If the mode change to the Primary mode was
done through a MODE switch depress, then
if the user holds the MODE for more than 1
second, the kernel will treat it as a Peek to
Primary Mode. On release of the MODE
switch, the system will go back to the old
mode.

Timex Corporation 68

M851 WristApp Design Guide

Rev 1.2

CORE_REQ_MODE_CHANGE_NEXT_NO_PEEK

Requests a mode change to the next mode

defined in the mode list with wraparound.

If application is active for more than 4
seconds, it will go to the Primary Mode.

No Primary Mode Peek is enabled.

CORE_REQ_STATE_CHANGE

Request for a state change. Thiswill clear
the entire display.

CORE_REQ STATE_CHANGE_NO _CLEAR DI

SPLAY

Request for a state change without clearing
the entire display.

Timeouts:

Request

Description

CORE_REQ _TI MEOUT_HI RES

Request for a high resolution timeout

CORE_REQ _TI MEOUT_LORES

Request for a L ow resolution timeout.

CORE_REQ_TI MEOUT_STI CKY

Request for a Sticky timeout

CORE_CANCEL_TI NEOUTS

Cancel ALL Timeouts

Popup and Peek Operation:
Request Description
CORE_REQ POPDOMN Request a popdown

CORE_REQ PEEK_APP_TYPE

Request a peek to the first application in the
Application Configuration Data List (ACD)

giving its App type.

CORE_ENABLE_POPUPS

Enable Popups in the current state.

CORE_CANCEL_ANY_PTZ_POPUPS

Cancel any Primary Time Zone Check (TZC) and
Backup (BCK) resource popup

CORE_SUSPEND_POPUPS

Suspend any Popup during the current state
processing.

CORE_CANCEL_ALL_POPUPS

Cancel all popups queued in the system

Blink and Scroll Services:

Request

Description

CORE_ENABLE_2HZ_BLI NKI NG

Enables the 2Hz Blinking (used in the lcd module
only

CORE_REQ BLI NK_2HZ

Request Blinking at 2Hz

CORE_CANCEL_BLI NK_2HZ

Cancel Blinking at 2Hz for one or more flags

CORE_REQ BLI NK_4HZ

Request Blinking at 4Hz

CORE_CANCEL_BLI NK_4HZ

Cancel Blinking at 4Hz

CORE_REQ_SCROLLI NG

Request Scrolling

CORE_CANCEL_SCROLLI NG

Cancel 8hz scrolling

NightMode and Hourly Chime:

Request

Description

Timex Corporation

69

M851 WristApp Design Guide

Rev 1.2

CORE_SET_NI GHT_MODE_AUTO

Enables Automatic Processing of NightMode.
NightMode is enabled and disabled following the
ON and OFF time setting.

CORE_NI GHT_MODE_ON

Enables NightMode and disables automatic
NightMode processing. Nightmodeis
deactivated after a specified time.

CORE_NI GHT_MODE_OFF

Disable NightM ode and disable the automatic
night mode processing.

CORE_SET_CHI ME_MODE_AUTO

Enables Automatic Processing of Hourly Chime.
Chime is enabled and disabled following the ON
and OFF time setting.

CORE_CHI ME_MODE_ON

Enables Hourly Chime and disables automatic
Chime processing.

CORE_CHI ME_MODE_OFF

Disable Hourly Chime and disable the automatic
hourly chime processing.

Switches and Crown:

Request

Description

CORE_RESET_LOG C_CW AND_CCW TO
_BOND_OPTI ONS

Send the default CW and CCW events as dictated
by the bond option setting.

CORE_REVERSE_LOG C_CW AND_CCW

Invert the current status of sending CW and CCW
events to the application.

CORE_ENABLE_PULSE_MODE

Setsthe PulseMode flag. Thiswill send out
CW/CCW pulse events.

CORE_DI SABLE_PULSE_MODE

Clears the PulseMode flag. Thiswill send out
CW/CCW edge events.

CORE_SUSPEND_RI NG_EVENTS

Suspends any ring events to be passed to the
application.

CORE_SUSPEND_RI NG_LEADI NG_EDGE
_EVENTS

Suspends any ring events matching High-Low
transition to be passed to the application

CORE_SUSPEND_SW TCH_RELEASE

Suspends any switch releases to be passed to the
application.

CORE_ENABLE_SW TCH_RELEASE

Enables any switch releases to be passed to the
application.

Communications:

Request

Description

CORE_SET_COWM _MODE_STATUS

Indicate to the system that is currently in
Communictions mode.

Miscellaneous:

Request

Description

CORE_LAVP_OFF

Turn the Lamp OFF and clear the lamp request
bit.

Timex Corporation

70

M851 WristApp Design Guide Rev 1.2

4.26 Using Database Files Located in EEPROM

The kernel provides utilities to access records in databases stored in EEPROM. Thisisintended to
minimize the application code size by providing utilities to access recordsin the database.

The application is responsible for setting aside memory in the Application System Data to serve as a buffer
to hold arecord from the database.

4.26.1 Database Structures and Access

The database provides utilities to handle 4 type of database structures. The database structure to useis
dependent on the requirements of the application.

4.26.1.1 Sequential Database Structure

Sequential Access Database

Allocation Size (2-byte)

Database Size (2-byte)

App Specific Header Size (1-byte)

App Specific Header
(variable size up to 255 bytes)

Records

Allocated Unused Space

The following section details how the fields in the database structures are computed. The diagram below
shows an exampl e of a sequential access database.

Timex Corporation 71

M851 WristApp Design Guide Rev 1.2
A
ALLOCATION SIZE
B
DATABASE SIZE
. APP SPECIFIC HEADER SIZE
Other Header Information
D
RECORD #0
H
reserved
|
Section Description

Allocation Size

A 16-bit quantity indicating the EEPROM usage of the database. This
value is always in multiples of 64. This optimizes the download speed
during communications. The allocation size is defined by the A and |
pointers.

All ocationSi ze = (((DatabaseSi ze-1)/64)+1)*64

Database Size

A 16-bit quantity indicating the actual size of the database. Thisis
computed by:

Dat abaseSi ze = Ofset(H — Ofset(A)

4.26.1.2 Fixed-Sized Random Database Structure

Timex Corporation

72

M851 WristApp Design Guide

The following section details how the fields in the database structures are computed. The diagram below

Rev 1.2

Random Access Database with Fixed-Size
Record Structure

Allocation Size (2-byte)

Database Size (2-byte)

App Specific Header Size (1-byte)

Number of Records (2-byte)
Record Size (1-byte)

Remaining App Specific Header
(variable size up to 252 bytes)

Record Data #0

Record Data #1

Record Data #2

Record Data #3

Record Data #4

Record Data #5

Record Data #n

shows an example of a fixed-sized random access database with 4 records.

A
ALLOCATION SIZE

DATABASE SIZE
APP SPECIFIC HEADER SIZE
NUMBER OF RECORDS
RECORD SIZE

Other Header Information

RECORD #0

RECORD #1

RECORD #2

RECORD #3

reserved

Section

Description

Allocation Size

A 16-bit quantity indicating the EEPROM usage of the database. This

Timex Corporation

73

M851 WristApp Design Guide Rev 1.2

value is always in multiples of 64. This optimizes the download speed
during communications. The allocation sizeis defined by the A and |
pointers.

Al'l ocationSi ze = (((DatabaseSi ze-1)/64)+1)*64

Database Size

A 16-bit quantity indicating the actual size of the database. Thisis
computed by:

Dat abaseSi ze = Ofset(H — Ofset(A)

App Specific Header Size

An 8-bit quantity that indicates the number of bytes allocated for
application specific information. This section can also store information
about the database itself. It might be used after an upload of the database to
recreate the database in the PC.

AppSpeci fi cHeader Si ze = Ofset (D) — Ofset(Q

The required minimum value for this section is 0x03 (2 bytes for number of
records and 1 byte for record size).

Number Of Records

A 16-bit quantity that specifies the number of records in the database.

4.26.1.3 Variable-Sized Random Database Structure

Timex Corporation

Random Access Database with
Variable-Sized Record Structure

Allocation Size (2-byte)

Database Size (2-byte)

App Specific Header Size (1-byte)

Number of Records (2-byte)

Remaining App Specific Header
(variable size up to 253 bytes)
Record #0 Offset 2-byte
Record #1 Offset 2-byte
Record #2 Offset 2-byte

Record #n Offset 2-byte

Record 0

Record 1

Record 2

Record 3

Record 4

Record n

74

M851 WristApp Design Guide

Rev 1.2

The following section details how the fields in the database structures are computed. The diagram below
shows an example of avariable size random access database with 4 records.

ALLOCATION SIZE
DATABASE SIZE
APP SPECIFIC HEADER SIZE
NUMBER OF RECORDS

Other Header Information

Offset of Record #0
Offset of Record #1
Offset of Record #2
Offset of Record #3

RECORD #0

RECORD #1

RECORD #2

RECORD #3

reserved

Section

Description

Allocation Size

A 16-bit quantity indicating the EEPROM usage of the database. This
value is always in multiples of 64. This optimizes the download speed
during communications. The allocation sizeis defined by the A and |
pointers.

Al l ocationSi ze = (((DatabaseSi ze-1)/64) +1) *64

Database Size

A 16-bit quantity indicating the actual size of the database. Thisis
computed by:

Dat abaseSi ze = Ofset(l) — Ofset (A

App Specific Header Size

An 8-bit quantity that indicates the number of bytes allocated for
application specific information. This section can aso store information
about the database itself. It might be used after an upload of the database to
recreate the database in the PC.

AppSpeci fi cHeader Si ze = Ofset (D) — Ofset(Q

The required minimum size of this section is 0x02 (2 bytes for the number
of records.)

Timex Corporation

75

M851 WristApp Design Guide Rev 1.2
Number Of Records A 16-bit quantity that specifies the number of recordsin the database. The
number of records will also indicate the number of offset pointers.
Offset of Record #0 A 16-bit quantity that points to the base offset of Record #0.
OfsetOf Record_0 = Ofset(E) — Ofset (D)
Offset of Record #1 A 16-bit quantity that points to the base offset of Record #1.
OfsetOf Record_1 = Ofset(F) — Ofset (D)
Offset of Record #2 A 16-bit quantity that points to the base offset of Record #2.
OfsetOf Record_2 = Ofset(@ — Ofset(D)
Offset of Record #3 A 16-bit quantity that points to the base offset of Record #3.
OfsetOf Record_3 = Ofset(H — Ofset(D)

4.26.1.4 Link-List Database Structure

Double Linked-List Database Structure
Allocation Size (2-byte)

Database Size (2-byte)

App Specific Header Size (1-byte)

Remaining App Specific Header
(variabale size up to 251 bytes)

Next Previous
Record Record

Offset Offset Record Data
2-byte 2-byte

Next Previous
Record Record

Offset Offset Record Data
2-byte 2-byte

Next Previous
Record Record

Offset Offset Record Data
2-byte 2-byte

Next Previous
Record Record

Offset Offset Record Data
2-byte 2-byte

The following section details how the fields in the database structures are computed. The diagram below
shows an example of alink-list access database with 3 records.

Timex Corporation

76

M851 WristApp Design Guide Rev 1.2

A
ALLOCATION SIZE g
DATABASE SIZE
. APP SPECIFIC HEADER SIZE
NUMBER OF RECORDS
Other Header Information
D
PREV | NEXT
PTRO | PTRO AL
[E
PREV | NEXT
PTR1 | PTR1 Ao
L
PREV | NEXT
PTR2 | PTR2 e
H
reserved
1
Section Description
Allocation Size A 16-bit quantity indicating the EEPROM usage of the database. This

value is always in multiples of 64. This optimizes the download speed
during communications. The allocation sizeis defined by the A and |
pointers.

Al l ocationSi ze = (((DatabaseSi ze-1)/64) +1) *64

Database Size A 16-bit quantity indicating the actual size of the database. Thisis
computed by:

Dat abaseSi ze = Ofset(H — Ofset(A)

App Specific Header Size | An 8-bit quantity that indicates the number of bytes allocated for
application specific information. This section can aso store information
about the database itself. It might be used after an upload of the database to
recreate the database in the PC.

AppSpeci fi cHeader Si ze = Ofset (D) — Ofset(Q

The required minimum size of this section is 0x02 (2 bytes for the number
of records.)

Number Of Records A 16-bit quantity that specifies the number of recordsin the database. The
number of records will also indicate the number of offset pointers.

Previous Pointer #0 A 16-bit quantity that points to the base offset of the previous record. Since
thisthisthe first record in the list (there is no previous record), itsvalueis
0x0000.

PrevPoi nter _1 = 0x0000

Timex Corporation 77

M851 WristApp Design Guide

Rev 1.2

Next Pointer #0

A 16-bit quantity that points to the base offset of the next record (Record
#1).

Next Pointer 0 = Offset(E) — O fset(A)

Previous Pointer #1

A 16-bit quantity that points to the base offset of the previous record
(Record #0).

PrevPointer 1 = Ofset(D) — Ofset(A)

Next Pointer #1

A 16-bit quantity that points to the base offset of the next record (Record
#2).

Next Pointer 1 = Ofset(F) — Ofset(A)

Previous Pointer #2

A 16-bit quantity that points to the base offset of the previous record
(Record #1).

PrevPointer 1 = Ofset(E) — O fset(A)

Next Pointer #2

A 16-bit quantity that points to the base offset of the next record (Record
#2). Sincethisisthelast record intheligt, its value is 0x0000.

Next Poi nter _1 = 0x0000

4.26.2 Database Usage Macros

For opening and closing a database file:

DB_OPEN_FI LE

DB_OPEN_FI LE_LI NK_LI ST

DB_CLOSE_FI LE

For writing to a sequential access or to alink list database record:

DB_WRI TE_RECORD

DB_WRI TE_RECORD W THOFFSET

DB_READ_RECORD

DB_READ_RECORD_W THOFFSET

For writing to a fixed-sized random access database record:

DB_WRI TE_RECORD_RANDOVFI X

DB_WRI TE_RECORD_W THOFFSET_RANDOMFI X
DB_READ_RECORD_RANDOMFI X
DB_READ_RECORD_W THOFFSET_RANDOMFI X

For writing to a variable-sized random access database record:

DB_WRI TE_RECORD_RANDOWAR
DB_WRI TE_RECORD_W THOFFSET_RANDOWAR
DB_READ_RECORD_RANDOWAR

Timex Corporation

78

M851 WristApp Design Guide Rev 1.2

DB_READ RECORD_ W THOFFSET_RANDOWAR
For double linked list record manipulation:

DB_LOCATE_| NSERTI ON_BYSI ZE_LI NKLI ST
DB_REMOVE_RECORD LI NKLI ST
DB_| NSERT_RECORD LI NKLI ST

To determine the absolute address in EEPROM where arecord is located:

DB_GET_ABSOLUTE_ADDRESS_OF RECORD RANDOWAR
DB_GET_ABSOLUTE_ADDRESS_OF_RECORD_RANDOVFI X

4.26.3 Opening and Closing a Database

Executing the macro DB_OPEN_FI LE opens a database file for read or write access. It also powers up
the EEPROM. The macro also sets up database specific variables so it can properly execute the macros
provided to access the different type of database structures.

It isrequired that when the database access has been completed during state execution, it should call the
macro DB_CLOSE_FI LE to power down the EEPROM.

4.26.4 Upload and Download of Database

When a database is downloaded by the PC to the watch, the database is contains all the information
required by an application using the database in the Application Specific Header Block.

When adownload is complete, the kernel will execute the applications Resource Handler with the event
COREEVENT_I NI T. This gives the application the opportunity to check the database being downl oaded.
Since the information in the Application Specific Header Block is the information that the application
requiresin the ASD, it can copy the information from the database into the ASD through the macro:

DB_READ_APPL| CATI ON_| NFOHEADER
The application will use the data now present in the ASD for database manipulation and access.

When a database upload is required by the PC, the kernel will execute the Resource Handler of the database
owner with the event COREEVENT _UPDATEDATABASEHEADER. Thiswill copy ASD data specific to
the database. This allows the PC to interpret the database. The application can use the macro to upload
ASD datato the database header.

DB_WRI TE_APPLI CATI ON_I NFOHEADER

4.26.5 PC Synchronization of Watch Data

The PC software requires status flags of the database and the record for synchronization purposes.

The kernel provides a status flag is stored in the Application Configuration Data to indicate that a database
record has been modified. Only database that has been marked modified will be uploaded to the PC. When
the application modifies an entry in the record, it should call the macro below to mark the database as
modified.

CORE_DATABASE_MODI FI ED_BY_USER

Timex Corporation 79

M851 WristApp Design Guide Rev 1.2

The application is also responsible to make it a part of the record two status flags required by the PC. This
is the Record Modified and Record Deleted Flag.
APPLICATION NOTES:

It isrequired to close a database file after using it. Opening afile for access will also power the
EEPROM. Closing afile will deactivate power to the EEPROM.

4.27 Melody Services

The kernel provides ten system melodies for use by the application. Nine are predefined as system
melodies. Oneis defined for a custom melody. The kernel also provides macros to activate and deactivate
any melody. The user can change the melodies by downloading the new melody pattern from the PC.

The following are the macros used for manipulating the melodies.

Audio M acros

AUDSTART_SYSTEM MELODY

AUDSTOP_NMELODY

The available system melody indexes are;

I ndex Melody Name Typical Use
0 AUDSWBEEPIVEL ODY Switch beep
1 AUDHOURCHI MEMEL CDY Hour chime
2 AUDALARMVEL ODY Alarm popup melody
3 AUDAPPO NTMENTMELODY Appointment popup melody
4 AUDTI MERVELODY Timer melody
5 AUDI NTERVALTI MERVELODY | Interval timer melody
6 AUDHALFTI MERMVELODY Halfway Mark of Timer melody
7 AUDCOMVERRORVEL ODY Communications error tone
8 AUDCUSTOMVEL CDY User define melody

These system melodies are activated by using the macro AUDSTART _SYSTEM MELODY. The application
can specify whether a COREEVENT _MEL ODY_DONE is sent to the foreground application when the
melody is completed.

The melody done action parameters are:

Action Parameter Description
AUDSENDMEL ODYDONEEVENT | The event COREEVENT _MELCDY_DONE is send to
the foreground application when the melody is
done.
AUDNOVEL ODYDONEEVENT No action is required when the melody is done.

Below is a sample code to activate a system melody.

/1 begin al arm system nel ody and generate nel ody done event
AUDSTART_SYSTEM MELODY AUDALARMVELCDY, AUDSENDMEL CDYDONEEVENT

An application can define a melody table located in its own code space. The table must conform with the
Melody Table Structure discussed in the next section. To activate the user melody table, use the macro

Timex Corporation 80

M851 WristApp Design Guide Rev 1.2

AUDSTART _SYSTEM MELODY with the AUDCUSTOVEMEL QDY as the argument. To define the base
address of the custom melody pattern, use the macro AUDSETUP_MEL ODYADDRESS.

4.27.1 Melody Table Structure

A melody table consists of one or more melody patterns. A melody pattern contains a repetition count,
frequency and duration codes, and a control code. The control code is used to indicate the end of a melody
pattern. For amelody pattern that is repeated more than once, the control code signals the audio driver to
repeat the melody pattern. When the repetition count of the melody pattern is complete, the control code
indicates whether it is the end of the melody table or that another melody pattern exists. The maximum
size for each pattern is 255 bytes.

MELODY TAELE STRUCTURE

FATTERN A PATTERM B - PATTERM n

PATTERN STRUCTURE

REF FRED & FRET & CONTROL
COUNT DURATION DURATION CODE
REP COUNT Indicates number of repetitions for current pattern. Maximum valueis
255.

FREQ & DURATION A byte value indicating the frequency and duration. The frequency
datais stored in the upper nibble. The duration datais stored in the
lower nibble.

The available frequency codes are:

AUD1KHZ
AUD1p3KHZ
AUD1p6KHZ
AUD2KHZ
AUD2p3KHZ
AUD2p7KHZ
AUD3p2KHZ
AUDAKHZ
AUDNUL L

The Duration isavalue from 0 to 15. The actua time duration is
computed using the formula:

(Duration +1)
32

Maximum Time: 0.5 seconds
Minimum Time: 21.35 milliseconds

CONTROL CODE Indicates an end of a current melody pattern. Depending on the
control code being used, it signifies that another melody pattern exists
or thisisthe last pattern.

The available control codes are:

Timex Corporation 81

M851 WristApp Design Guide

AUDCONTI NUEPATTERN
AUDENDMELODYPATTERN

A sample melody pattern used to generate the Timex Step Tone.

ALARM MELODY TABLE

audSysAl arm

db 10
db (AUD2KHZ)| 3

db (AUDNULL)| 3

db (AUD2KHZ) | 3

db (AUDNULL)| 15

db (AUDNULL)| 3

db AUDCONTI NUEPATTERN
db 40

db (AUD2KHZ)| 3

db (AUDNULL)| 3

db AUDENDVELODYPATTERN

Timex Corporation

nunber of repetitions
frequency and duration
frequency and duration
frequency and duration
frequency and duration
frequency and duration
continue to next pattern
nunber of repetitions
frequency and duration
frequency and duration
end of mel ody pattern

Rev 1.2

82

M851 WristApp Design Guide Rev 1.2

5 COUNTER WristApp: Putting it all together.

This section will go through the process of building a wristapp — the Counter WristApp — from design,
compile and downloading the application to the watch. This application is simple and does not require any
database access.

3 WARNING: Thereis no debugging capability once the WristApp is downloaded
=) intothewatch. You will either have a fully operational wristapp or the watch
resets during WristApp execution.

5.1 Specification

The diagram below shows how the counter wristapp operates and how it interacts with the user inputs.

Timex Corporation 83

M851 WristApp Design Guide Rev 1.2

1 [2 I El I 4 | L] I] I ki I 8 k]
A Counter A
i B
T4 fgunt
c 17 c
sTRTSPLT | © 4 COURTT 4 COunT
3 18 " 16 g
B
1 E T B
§ STUFRESET | T s
= HOLD TO
i . RESET | k] i
SET s
F . COUMIER | k
G L [}
H H
NOTES
4 1. This display appears only if this mode is enabled. Otherwise. the next mode banner shall be displayed. #
2. The counter's current value is displayed in large digits in the main dot matrix.
The counter’s current direction is indicated in the upper dot matrx, with an up arrow if UP is selected, or a down
. amrow if DOWN is selected. y
3. The counter’s value is incrementad or decremented depending upon the direction setling described belaw, 1T the
counter value is at its minimum or maximum, it cannot be decremented or incrementad, respectively; the button
] shall have no fuction.]
I The Button Beep (see Appendix D) shall be generated for each press of START/SPLIT A
4. The counter is set to zern. The counter direction is unchanged,
] 5. In the first step, the user may set the curent counter value. In the second step, the user may set the counter]
direction
(al e
i I] I E] [] I 5 I [hi I] []

Timex Corporation 84

M851 WristApp Design Guide Rev 1.2

5.2 States

5.2.1 State Transition Diagram

The specification can be broken down into its basic components. The counter application can be grouped
into 4 distinct operations: banner, default, set banner and set operations.

TheBanner State Handler. Thisinvolves mainly
displaying the name of the mode. We need to
design this handler to allow the M851 PIM to
display the user specified mode banner. Notice the
required 1.5 second timeout prior to going into
default mode.

The Default State Handler. Thisisthemain
interface of the application.

NOTE: The hold-to-reset operation may be put into
adifferent state handler to simplify the number of
events the default state handler will process. Since

sTaRTERLT | C 4 COURTY T T 4 COuRT thisisasmall application, putting the reset operation
18 " 16 inside the default state handler is easily facilitated.
| Hoki Operainn |
TEEEL jopro [
RESET |

The Set State Banner Handler. By convention,

‘ thisisarequired state prior to going to the actual
. EETE. . setting state. Notice the required 1.5 second timeout

prior to going into the set state handler.

The Set State Handler. Thiswill handle al aspects
of setting for the application. The dotted rectangle
shows blinking. Each display line represents the
fields for setting. Thisfirst line shows setting of the
counter initial value. The second line shows setting
of the count direction.

The diagram shown below shows the operations involved to implement the wristapp. Most applications
with a setting operation would usually use the basic four states: banner, default, set banner and set state.
This allows the wristapp to conform with conventions used in the m851.

Timex Corporation 85

M851 WristApp Design Guide Rev 1.2

The diagram shows the inputs that should be handled by each state handler. This can aso serveasa
checklist to confirm that all system events are handled.

Arrows pointing to a state is handled as a State Entry event in the pointed (destination) state.
Arrows pointing away from a state indicates the event that is processed by the state handler. If it
points back to the same state, it means that no state changeis required. Linesand arrows pointing
to another state indicates that the event should also request for a state change.

Dotted lines indicate a watch activity that is not controlled by the application such as a popup
operation. When a popup is complete through a popdown, the dotted line away from the popup
state indicates where it should go back. Stateswith no dotted lines indicates that popups are not
allowed to occur. By convention, popups are suspended when the foreground state is either the set
banner state or set state.

Lines going to the state NEXT MODE is handled through a mode change.

i n - e
START! IT
I . MODE SPL

[
POFUF _,_.---H‘ ,h"-., POPUP
- Ehie

, K _ CWY FULSE

5 “'-

b A\

FOFDOWNY, y
L

I COW FULSE

ANY SWITCH

BANNER
MODE

ANY SWITCH

TIMEDQUT DONE

CROW™N SET

TIMEQUT DONE

CROWMN HOME

5.2.2 Banner State

o The banner state should handlethe
porve _f Porup L following cases:
I . Handlethe system event STATEENTRY

' and do the following:
i - Allow popups to occur. But
i popdown should directly proceed
to the default state.
Request for a 1.5 second hi-res
timeout
Handle the MODESWITCHDEPRESS to
go to the next mode.
Handle STARTSPLITDEPRESS to go to
the default state.
Handle STOPRESETDEPRESS to go to
the default state.
When hi-res timeout expires, proceed to
the default state.

AN SWITCH

TIMEQUT DOMNE

MODE

Timex Corporation 86

M851 WristApp Design Guide Rev 1.2

5.2.3 Default State

" The default state should handle the following
i; h‘-.__ POFLIF cases.
! Handle the system event STATEENTRY and do
| sropmeseroer thefoll owing:
Display counter data

Handle the MODESWITCHDEPRESS to go to
— the next mode.
STEFIRESET REL - Handle STARTSPLITDEPRESS. Thiswill
either increment or decrement the counter. Stop
when boundary conditions are reaced.
Handle STOPRESETDEPRESS to go into areset
operation:

Display HOLD TO RESET

Allow switch releases to be passed as

events

Request 2 second hi-res timeout
Handle STOPRESETRELEASE:

Clear display

Display counter data
Handle the event TIMEOUTDONE_HIGHRES:

Clear current counter to 0.

Display counter data.
Handle CROWN_SET and request a state change
to the set banner state index.

TIMEQUT DOME

CROWM SET

5.2.4 Set Banner State

The set banner state should handle the following
cases.

Handle the system event STATEENTRY and do
the following:

Do not alow popups to occur.

Request for a 1.5 second hi-res timeout
Handle the MODESWITCHDEPRESS to go to the
Set state.

Handle STARTSPLITDEPRESS to go to the set
state.

Handle STOPRESETDEPRESS to go to the set
TIMEQUT DONE StaIe

When hi-res timeout expires, proceed to the set
state.

Handle CROWN_HOME and reguest a state
change to the default state index.

AWy SWITCH

CROWWMN HOME

5.2.5 Set State

Timex Corporation 87

M851 WristApp Design Guide Rev 1.2

noge STARTISRLIT The set state should handle the following cases:

ZHhPULSE . Handle the system event STATEENTRY and do the
following:
CRIOWN HOME CGW FULSE - Initialize the first setting field position

Display current data to be set

Setup and request for 4hz blinking

Set the system into pulse mode to generate the

PUL SE events.
Handle the MODESWITCHDEPRESS to go to the
next field setting with wraparound.
Handle the STOPRESETDEPRESS to go to the next
field setting with wraparound.
Handle the CW_PULSES. Increment counter data
(using acceleration) or toggle count direction.
Handle the CCW_PULSES. Decrement counter data
(using acceleration) or toggle count direction.
Handle CROWN_HOME and request a state change
to the default state index (after some data validation).

CROWM HOME

5.3 State Index
The table below shows the index assigned to each state handler.

Index State

0 Banner state index

1 Default state index

2 Set banner state index
3 Set state index

5.4 Using the WristApp Wizard to Create Templates

The WristApp Wizard will facilitate in the creation of the required files for aproject. The files generated
are complete and can be assembled and linked and downloaded into the watch. The fileswill serveasa
template to be modified to implement the WristApp.

541 Steplof3

Section Description

WristApp Name Soecify the name of the wristapp folder. Thisislimited to 8 characters due
to the limitations imposed on the assembler and linker utilities.

Location Soecify the path of the application. By default, the application is stored
under the directory C:\m851\app.

Abbreviation The abbreviation code is used to uniquely name the filename, variables,
macros, procedures and labels used in the wristapp.

Description Specify the WristApp function.

Timex Corporation 88

M851 WristApp Design Guide

® WristApp Wizard - Step 1 of 3

Rev 1.2

The firgt gight characters of ‘\Wriztbpp M ame
will be automatically uze as directory default.

Wriztdpp M ame;

lEDunter

Location:

|c: WWE51 WA pph Counter

Ahbreviation: [3 letters max only]

CHT Thiz will be uzed as prefis for flenames,
labels, vanables, procedures, and macros.

Dezcnption / Motes: [Dptional]

|Eu:uunts up and dowr

Timex USB Data Link

Fmew Corporafion

MHest »» | Cancel

5.4.2 Step 2o0f3

Section Description

Mode Banner Soecify the text that will be displayed when the WrsitApp becomes the
foreground application. The column number is used to center the banner
name without resorting to space characters for padding.

Include Set State Check this box if a set state is used in the WristApp. By convention, if a
set state is used, there must be a set banner state that describes the setting
function.

Set Banner Soecify the test that will be displayed when the WristApp enters a setting

operation. The column number is used to center the banner name without
resorting to space characters for padding.

Timex Corporation

89

M851 WristApp Design Guide Rev 1.2

WristApp Wizard - 5tep 2 of 3

Enter Default Displays here:
Mode Banner
3 Coiurriti: Below is your quide for entering
, data:
|I:IIILINTEFE |1 :]
[Line 2
| | :l E IEE NiN_ EEER
Linet ".'EHI .I; i
i b
: IT] TR
v Include Set State Line2 !'f 'rla i'.i i'.i !‘- 5
S illl I IR B R E NN []
et Banner t

[¥ Calumn Ma: Te——Column Ho. ——43
|SET |1n :|
v Line 2

=]
COUNTER |E e

<< Back | Mest »»
5.4.3 Step 3o0f3
Section Description
Resource to Own Soecify the resource type and number required for the WristApp. If a

resource is checked, the wizard will automatically create the variable
placeholder for the resource index during allocation. This can be found in
the XXXvars.h

Note: The counter wristapp does not use any of the resources provided by
the system.

Application Type Select the application type of the WristApp. By default, you can use the
COREAPPTYPEGENERIC.

Certain application types will provide the WristApp will additional benefit
specific to an application type. For example, the appointment type
wristapp will be passed an event during hour and day rollovers. Alarm
type application are called during hour rollovers. Another exampleis
when the primary time zone is modified by the user, the following
application types are informed of the change: appointment, occasion and

alarm.
Primary Mode Icon Check the primary mode icons used by the WristApp. Theseiconsare
Resource used as status information of a wristapp when it is currently activein the

Timex Corporation 90

M851 WristApp Design Guide

Rev 1.2

background or to display WristApp specific information..

For example, the Stopwatch icon is can be used by a chrono wristapp to
indicate the state of the chrono: ON if chrono is running, OFF ischrono is
stopped.

Another example could be that an alarm wristapp can use the Alarm Clock
icon to indicate that an alarmis active and will popup within 12 hours. It
could also be blinked to indicate that a backup alarmis pending.

Note: The counter application does not use any primary mode icons.

WristApp Wizard - Step 3 of 3

Rezources to own;

| Swnchro Timer

Flags to Use:
[

LA

"""" 3 [Include Popup State
....... 3 [Pazzword Support

| Stopwatch ...

B ™EEEE i Flag

Set your parameters here:

Application Type:

-

PIEO * 0 &

<< Back | Eirnizh | Cancel |

5.4.4 File Template Generation

The following screen shows the files being generated by the WristApp wizard ready for modification. This
wizrd will also generate the appname.SCR that can be opened by the M851 WristApp Builder utility.

Timex Corporation

91

M851 WristApp Design Guide

Successfully Done!

The follawing files hawve been Created:

C:AMBEETApphcounterssrchontpor. azm
C:A 851 Apphoounters srchenbubil. azm
C:A 851 \Apphocountersarchentdisp. asm
C:AMBETApphcounterssrchentdef. azm
C:h 851 A pphocounterssrchentB ckhd. azm
C:AMEET\Apphcountertsrchentban. asm
C:h 851 A pphoounterhient b

C:A 851 Apphocountershienbvars. b
C:AMBETApphcountertsrchontzet. azm
C:A 851 Apphoounters srchentzetbn, asm

'ou o have a functional “Wriztdpp zource code. Build
and download it to the watch using "ME51 ‘Wristhpp
Builder. exe' .

Edit it uzsing Codetfite editior or any ather plain text
editar.

5.5 State Files

Rev 1.2

The state handlers are to be coded in different files. Thiswill allow the build scripts to properly place the

correct state handler code to be loaded from eeprom during execution. In this example, we have the

following files:

File

Description

cnt ban. asm
cntdef.asm
cntset bn. asm
cntset.asm

Banner state sourcefile.
Default state sourcefile.
Set banner state sourcefile.
Set state sourcefile.

5.6 Background Handler

All WristApps are required to handle these system events. In the counter application, most of these

required system events are coded with just RET (RETurn from Subroutine) instructions. The background
handler will be located at the start of the common section.

Event

Description

COREEVENT_INI'T

COREEVENT_TASKEXI T

Timex Corporation

Sent by the system to initialize the application data

after acommunication session.

Sent by the system whenever a voluntary or

involuntary (i.e. popup) mode change. Thisallows

92

M851 WristApp Design Guide Rev 1.2

the application to clean up prior to making another
application the new foreground application.

COREEVENT_PEEK Sent by the system whenever another application
reguests the mode to display its current data set.
For example, the TOD requires an an appointment
and occasion type application to support this
request.

COREEVENT_APP_SHUTDOWN_FOR_COWM Sent by the system when the watch begins
communications with the PC. Thisalowsthe
application to clean up its data and perhaps update
the database header for upload.

The background handler code will be coded into a separate file. Thiswill alow the build scriptsto locate
the background handler code to be loaded into the overlay area.

File Description

cnt BckHd. asm Background handler source file.

5.7 Parameter File

The M851 requires information about the wristapp so it can be incorporated into the system. Below isthe
parameter file for the counter application:

ACB of f set nask.

; Application SystemData is |located in heap.
; Oher ACB entries are |located either in ROM or EEPROM
db bCOREAppSyst enDat aOx f set

Nunmber of resources required.

db 00h ; TOD

db 00h ; Backup

db 00h ; Time Zone Check

db 00h ; Timer Resource

db 00h ; St opwat ch Resource

db 00h ; Synchro Tiner Resource

Fl ag owner shi p.

db 0 ; LCD Flags 1
db 0 ; LCD Flags 2

Heap size requirenents.

dw 0000H ; Code
dw CNTSYSTEMDATASI ZE , ASD
dw CNTDATABASEDATASI ZE ; ADD

Application Configuration Data Byte.

Timex Corporation 93

M851 WristApp Design Guide Rev 1.2

db COREACDEEPROMAPP ; Code is external.

Application Unique ID.

db COREAPPTYPECOUNTER ; Application type
db 00h ; Application instance nunber

; ACB Par anet ers.

dw 0000h ; ASD address of fset

dw 0000h ; ADD address offset (no database)

dw CODESTATEADDRESS ; App state nanager address

dw CODECOMMONADDRESS ; App background handl er address

dw | cdBanner Msg_COUNTER ; App node nane function address
Notes:

Code heap size requirement is 0000h. The utility that will build the wristapp will compute this
number automatically. If not using the scripts, this must be
the allocation size of the wristapp code in egprom.

Database heap size requirement. This value specifies the size of the database being
downloaded with the wristapp. The PIM automatically
updates this section prior to sending the parameter fileto
the watch.

The counter wristapp does not have any database stored in
external memory. So thisvalueis set at 0x0000.

ASD address offset is 0000h. All WristApps have offsets of 0000H for its ASD.

ADD address offset is 0000h. All WristApps uses the EEPROM for database storage.
Thiswill always be 0x0000.

The counter does not have database nor store any data in
the ADD section whether in internal or external memory.

Use of a label located in ROM: The banner message * COUNTER” is already predefined in

| cdBanner Msg_COUNTER the M851 OS. This showsthat a WristApp is able to execute

functions and reference labels embedded in the firmware.

This could well have been a label located in either the
common code or in the banner state handler.

The parameter code will be coded into a separate file. Thiswill allow the build scripts to locate the
background handler to be used during application download to the watch.

File Description

cnt por.asm Parameter source file.

5.8 Miscellaneous Files

There are application specific routines that may be used by two or more state handlers. Examples of which
are the display routines. Though it can be coded inside the state handler code that usesit, it would be
appropriate that it be located in the common section in the WristApp overlay area.

Timex Corporation 94

M851 WristApp Design Guide Rev 1.2

The Counter WristApp requires the following files to be stored in the common section.

File Description
cntdi sp. asm Display routines for the counter wristapp.
cntutil.asm Utility routines for the counter wristapp.

5.9 Directory Structure

The build scripts requires a specific directory structure to facilitate location of required files. Create the
required directories for the application prior to using the build utilities.

All source files are to be stored under the C: \ MB51\ APP\ appnarne\ SRC directory.
All header files are to be stored under the C: \ MB51\ APP\ appnane\ Hdirectory.

All build scripts will be created under the C: \ MB51\ APP\ appnane\ BUI LD directory.
Output files during wristapp creation will bein the C: \ MB51\ APP\ appnane\ BUI LD
directory.

All executable fileswill be located in the C: \ MB51\ Bl Ndirectory.

All the M851 header and macro fileswill beinthe C: \ MB51\ | NCLUDE directory.

The assembler, linker and locator executable will be located in the C: \ C88 directory.

The figure below shows a snapshot of the counter wristapp directory structure:

() ICEsaLe

) e -

The figure below shows the file list for the counter wristapp header files:

Timex Corporation 95

M851 WristApp Design Guide

B ComESTha pEtoounterth

igirress | C-rdStppeountarh

Fle Edit Yew Fovores Took Heb ;'f

O=-8 3 F

Foidars
= I3 sl
= 2 am
E S osurber
153 bukd
|_jn
3ot
& bin
) ik
®) My [netalstiors
& () WYIDIA
|7 Progran Flas
0 Temp
2 umers

The figure below shows the file list for the counter wristapp source files:

B C:\mA5 1 lappioounterisc

Pl At Wew Fgaories Toos Hep R
Qe - O ¥ | 5o [l rores | [
Addrees |77 CoynB 5 1 pphoounker isic “ gl
Folders = ! n. !']
E I na51 "~ | Sl oz |
3 |53 wep aithan.aen oiBddaern bdetasn
5 2 courder
5 buid % B h
=1 YR
I_;I e niden, sam L g nizetann
- bn
1 mohude 1
E 123 My Instalations h h
E I3 wwipca Ll
I Program Fles tsethn asm - cnhutl msm
2 Tep
ST T
e

5.10 Coding the WristApp

5.10.1 Header File

Rev 1.2

Most of theitemsin the header files are redefinitions to the system equates provided by the M851 OS. The
equates are redefined to make the label more descriptive of the operation or function. For example, the
switch event equate COREEVENT _SW TCH1DEPRESS in the counter set state handler could be redefined
asCNT_CHANGE_TO _NEXT_FI ELD_SETTI NGto indicate afunction to change to the next setting field

position.

STATE REDEFI NI TI ONS
CNTBANNERSTATE equ COREBANNERSTATE
CNTDEFAULTSTATE equ COREDEFAULTSTATE
CNTSETBANNERSTATE equ CORESETBANNERSTATE
CNTSETSTATE equ CORESETSTATE

EVENT REDEFI NI TI ONS
CNT_STATEENTRY equ COREEVENT_STATEENTRY
CNT_TI MEOUTDONELOARES equ COREEVENT_TI MEQUTDONE_LOWRES

Timex Corporation

96

M851 WristApp Design Guide Rev 1.2

CNT_TI MEQUTDONEH! GHRES equ COREEVENT_TI MEQUTDONE_HI GHRES
CNT_TI MEOUTDONESTI CKY equ COREEVENT_STI CKY_TI MEQUTDONE
CNT_ELDEPRESS equ COREEVENT_CROWN_EL_DEPRESS
CNT_ELRELEASE equ COREEVENT _CROWN_EL_RELEASE
CNT_CROMHOVE equ COREEVENT_CROWN_HOVE
CNT_CROMNSET equ COREEVENT_CROWN_SET1
CNT_CWPULSES equ COREEVENT_CW PULSES
CNT_CCWPULSES equ COREEVENT_CCW PULSES
CNT_CVEDGE equ COREEVENT_CW EDGE_TRAI LI NG
CNT_CCWEDGE equ COREEVENT_CCW EDGE_TRAI LI NG
CNT_MODEDEPRESS equ COREEVENT_SW TCH1DEPRESS
CNT_STOPRESETDEPRESS equ COREEVENT _SW TCH2DEPRESS
CNT_STARTSPL| TDEPRESS equ COREEVENT_SW TCH3DEPRESS
CNT_MODEREL EASE equ COREEVENT_SW TCHIREL EASE
CNT_STOPRESETRELEASE equ COREEVENT _SW TCH2REL EASE
CNT_STARTSPLI TRELEASE equ COREEVENT_SW TCH3REL EASE
CNT_POPUPCANCEL equ COREEVENT_MEL ODYPOPUPCANCEL
CNT_DI SPLAYUPDATETCDRES equ COREEVENT_DI SPLAY_UPDATE_TODRES
CNT_| CONREFRESH equ COREEVENT_| CON_REFRESH
CNT_ANYSW TCHDEPRESS equ COREEVENT_ANYSW TCHDEPRESS
CNT_ANYSW TCHREL EASE equ COREEVENT_ANYSW TCHREL EASE

SW TCH MASK REDEFI NI TI ONS
CNTSW TCHVASK_MODE equ bCORESWi t chi
CNTSW TCHVASK_STOPRESET equ bCORESWi t ch2
CNTSW TCHVASK_STARTSPLIT equ bCORESWi t ch3
CNTSW TCHVASK_CW equ bCORECWSW t ch
CNTSW TCHVASK_CCW equ bCORECCWBWI t ch
CNTSW TCHVASK_EL equ bCOREELSW t ch
CNTSW TCHVASK_CW CCW EL equ (CNTSW TCHVASK_CW CNTSW TCHVASK_COW

CNTSW TCHVASK_EL)

H GH RESOLUTI ON TI MEQUT DEFI NI TI ONS (Based on 8Hz)

CNTHI RESTO_1P5SECONDS
CNTHI RESTO_2SECONDS

equ
equ

TI MEQUTHI RES_1P5SEC
TI MEQUTH RES_2SEC

M SCELLANECQUS DEFI NI TI ONS

m ni mum val ue for the counter

CNTM NDATA

equ

; maxi mum val ue for the counter

CNTMAXDATA

5.10.2 Variable File

equ

data in BCD fornmat

0000h

data in BCD fornat

0999h

There is no requirement to separate the contents of the header and variablefiles. It is coded into separate

files for maintenance purposes only.

; COUNTER APPLI CATI ON SYSTEM DATA

; indicates the starting offset for the ASD.

This is always 0x00.

CNTSYSTEMDATASTARTOFFSET equ 0
CNTFLAGSOFFSET equ 0
bCNTCount Down equ 00000001B ; b0 : 0 - Count up
; ;1 - Count down

Storage for counter data in BCD fornat.

Timex Corporation

97

M851 WristApp Design Guide

CNTDATALOCOFFSET equ
CNTDATAHI OFFSET equ

Rev 1.2

1
2

i ndi cates the nunber of bytes to be allocated in the ASD

’CNT SYSTEMDATASI ZE equ

3

COUNTER APPLI CATI ON DATABASE DATA

CNTDATABASESTARTOFFSET equ
CNTDATABASEDATASI ZE equ

CNTSYSTEMDATASI ZE
0

FOREGROUND VARI ABLE REDEFI NI TI ONS

CNTTenpFl ags equ (COREFor egr oundConmonBuf fer + 0)
bCNTSet Di recti on equ 00000001B ; bO : 0 - Change counter data.
; 1 - Change direction.
NOTES:

APPLICATION SYSTEM DATA

Variables stored in this section will maintain its data
throughout the life of the application. Accessto these
variables must be through the index access instructions
since the absolute address of the variablesis determined
only during run-time.

For example:

; Set | YReg the address of the counter ASD.
Id 'Y, [CORECurrent ASDAddr ess]

; load counter flag value into A register
Id A [1Y + CNTFLAGSOFFSET]

FOREGROUND VARIABLE

Variables stored in this section will be available only if
the application is the foreground application. Upon
return from a mode change or from a popup, the data
stored in this section previously must be assumed to be
destroyed.

Compared to data stored in the Application System Data
area, variables can be accessed directly. The absolute
address of the variable can be determined at design time.

For example:

Load the data that contains the current
setting item

id A, [CNTTenpFl ags]
bi t A, #bCNTSet Direction
jr Z, cnt Set Di spAndReqBl i nkSet Dat a

5.10.3 Banner State Handler

The core provides a common code for the banner state handler. This handles all the requirements for a

basic banner state handler.

Timex Corporation

98

M851 WristApp Design Guide Rev 1.2

| F @EF(' SUBROUTI NE')
UNDEF SUBROUTI NE
ENDI F
DEFI NE SUBROUTI NE "' cnt waBanner St at eManager ' "

GLOBAL cntwaBanner St at eManager

cnt waBanner St at eManager :

car cor eCommonBanner St at eHand! er
ret
NOTES:
GLOBAL Functi onName This will indicate to the assembler and linker system that
thisfunction is available to all files compiled in a project.
I'F @EF(' SUBROUTI NE') Thisisarequired code prior to a function. The APIsare
ENDIU:;'DEF SUBROUTI NE designed for the M851 OS and would require the
DEFI NE SUBROUTI NE "' Funct i oNnane' " SUBROUTINE token to be defined.

5.10.4 Default State Handler
The following is the code for the Counter default state handler.

I F @EF(' SUBROUTI NE')
UNDEF SUBROUTI NE
ENDI F
DEFI NE SUBROUTI NE "' cnt Def aul t St at eManager' "

GLOBAL cnt Def aul t St at eManager

cnt Def aul t St at eManager :

; Set | YReg the address of the counter ASD.
Id 'Y, [CORECurrent ASDAddr ess]

load in the systemevent to be processed
I d A, [CORECurrent Event]

; Check if state entry event.
cp A, #CNT_STATEENTRY
j Z, cntDefaul t St at eSt at eEnt r yEvent

; Check if start/split depress event.
cp A, #CNT_STARTSPLI TDEPRESS
Z, cntDefaultStateStart SplitDepressEvent

; Check if stop/reset depress event.
cp A, #CNT_STOPRESETDEPRESS
Z, cntDef aul t St at eSt opReset Depr essEvent

; Check if stop/reset release event.
cp A, #CNT_STOPRESETRELEASE
j Z, cntDef aul t St at eSt opReset Rel easeEvent

; Check if npde depress event.
cp A, #CNT_MODEDEPRESS
Z, cnt Def aul t St at eModeDepr essEvent

; Check if tineout hi-res done event.
cp A, #CNT_TI MEOUTDONEHI GHRES

Timex Corporation 99

M851 WristApp Design Guide Rev 1.2

jr Z, cntDef aul t St at eTi meout H ResDoneEvent
; Check if crown set event.

cp A, #CNT_CROWNSET

jr NZ, cntDefaul t St at eExi t

B e X)

; CROWN SET

ckkkkhhkhkhkhkhkhhhhhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkk*x*%x
’

; request a state change to the set banner state
Id B, #CNTSETBANNERSTATE
CORE_REQ_STATE_CHANGE

cntDefaul t StateExit:

ret

cnt Def aul t St at eSt at eEnt r yEvent :

B o X
’

, STATE ENTRY

ckkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhhkhhhhhkhkhkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhkkkhkkkkxk*x*%x
’

; Suspend ring event. Not used in this state.
CORE_SUSPEND_RI NG_EVENTS

; allow switch rel eases to be passed to this current state
CORE_ENABLE_SW TCH_RELEASE

WARNI NG!!! This is a fall through. Do not rearrange.

cnt Def aul t SubSt at eEntry:
cnt Def aul t St at eSt opReset Rel easeEvent :

B o X

; STOP/ RESET RELEASE

ckkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhhhhhhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkkkkx*x*%x
’

push 1Y

; display nessage count
LCD_CLR DI SPLAY

LCD DI SP_SEG MSG_COUNT
pop 1Y

; Displays an arrow on the small dot matrix. The position will
; depend on the count direction.

; Displays the counter data on the main dot matrix using
; large fonts.

jr cnt Di spl ayCount er Dat a

cnt Defaul t StateStart Split DepressEvent:

Timex Corporation

B X
’

; START/ SPLI T DEPRESS

ckkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhkhkhkhkhhhhhhkhhkhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkkkkxkx*x*%x
’

; Cancel current switch rel ease. Not needed in this state.
HW KBD_CANCEL _CURRENT_SW TCH_RELEASE

; Get the current counter val ue.

Id H, 1Y
add HL, #CNTDATALOOFFSET
Id HL, [HL]

100

M851 WristApp Design Guide Rev 1.2

; Load AReg with the counter status flag data and check the
counting direction.

Id A, [l1Y + CNTFLAGSOFFSET]
bi t A, #bCNTCount Down
jr Z, cntDefaul tStart SplitDepressCountUp

© COUNT DOWK OPERATI ON

Check whether it is in the m ni numval ue.

cp HL, #CNTM NDATA
jr C, cntDefaultStartSplitDepressExit
jr Z, cntDefaultStartSplitDepressExit

; Subtract 1 to the counter data.
é:ar cnt SubDat aBy1
jr cnt Def aul t SSDi spDat aAndRegAl ert

cnt Def aul t St art Spl i t Depr essCount Up:

; COUNT UP

; Check whether it is in the mninmm val ue.
cp HL, #CNTMAXDATA
jr NC, cntDefaultStart SplitDepressExit

é:ar cnt AddDat aBy1

cnt Def aul t SSDi spDat aAndReqgAl ert:

; Displays the counter data on the nain dot natrix using
; | arge fonts.

CGenerate alert to indicated that it has successfully
decrenent ed/ i ncremented the counter.

AUDSTART_SYSTEM_ MELODY AUDSVBEEPMELODY, AUDNOVEL ODYDONEEVENT

cnt Defaul t Start SplitDepressExit:
ret

cnt Def aul t St at eSt opReset Depr essEvent :

B e X
’

; STOP/ RESET DEPRESS

ckkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhkhkhkhkhkhkhkhhhhkhhhhhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkx*x*%x
’

Get the current counter value and check whether it is in the
; m ni num val ue.

add 1Y, #CNTDATALOOFFSET

Id BA, [1Y]

cp BA, #CNTM NDATA

jr Z, cnt Def aul t St opReset Depr essExi t

; Not yet inits mninm

Timex Corporation 101

M851 WristApp Design Guide Rev 1.2

; Request 2sec tineout.
CORE_REQ TI MEQUT_HI RES CNTHI RESTO_2SECONDS

LCD_CLR DI SPLAY
LCD DI SP_SMALL_DM MSG HOLD TO RESET

cnt Def aul t St opReset Depr essExi t:
ret

cnt Def aul t St at eMbdeDepr essEvent :

ckkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhhkhkhkhkhhhhhhkhhkhkhkhkhhkhhkhkhkhkhkhkhkhkhkhkhkhkkkkkx*x*%x

" MODE DEPRESS

B e o

CORE_REQ MODE_CHANGE_NEXT
ret

cnt Def aul t St at eTi neout H ResDoneEvent :

ckkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhhkhkhhkhhkhhhhhhkhhkhkhkhkhkhkhhkhhkhkhkhkhkhkhkhkhkhkkkkkx*x*%x
’

; TIMEQUT DONE HI - RES

B X

; Cancel current switch rel ease. Not needed in this state.
HW KBD_CANCEL _CURRENT_SW TCH_RELEASE

AUDSTART_SYSTEM MELODY AUDSWBEEPMELODY, AUDNOVEL ODYDONEEVENT

Cl ear counter data.

Id A #0
I d [1Y + CNTDATALOOFFSET], A
I d [1Y + ONTDATAHI OFFSET]. A

; Redi spl ay everyt hing.
jr cnt Def aul t SubSt at eEntry

5.10.5 Set Banner State Handler

The core provides a common code for the set banner state handler. It requires application specific code to
handle what to display during state entry. The rest of the code handles the basic requirements for the set
banner state handler.

| F @EF(' SUBROUTI NE')
UNDEF SUBROUTI NE
ENDI F
DEFI NE SUBROUTI NE "' cnt Set Banner St at eManager ' "
GLOBAL cnt Set Banner St at eManager
cnt Set Banner St at eManager :

; Get the event to be processed.

I d A, [CORECurrentEvent]

; Check if State Entry Event.

cp A, #CNT_STATEENTRY

jr NZ, utl Set Banner St at eManager

ckkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhkhkhkhkhhkhhhhkhhhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkkkkk*x*%

. STATE ENTRY

B X

LCD_DI SP_SVALL_DM MSG_SET_COUNTER
jr ut | Set Banner St at eManager

Timex Corporation 102

M851 WristApp Design Guide Rev 1.2

5.10.6 Set State Handler
The following is the code for the Counter set state handler.

I F @EF(' SUBROUTI NE')
UNDEF SUBRCUTI NE

ENDI F

DEFI NE

GLOBAL

SUBROUTI NE "' cnt Set St at eManager' "

cnt Set St at eManager

cnt Set St at eManager :

cnt Set Stat eExi t:

; Set | YReg the address of the counter ASD.

Id 'Y, [CORECurrent ASDAddr ess]

I d A, [CORECurrent Event]

cp A, #CNT_STATEENTRY

jr Z, cnt Set St at eSt at eEntryEvent
cp A, #CNT_MODEDEPRESS

jr Z, cnt Set St at eModeDepr essEvent
cp A, #CNT_STOPRESETDEPRESS

jr Z, cnt Set St at eSt opReset Depr essEvent
cp A, #CNT_CWPULSES

jr Z, cnt Set St at eCWPul seEvent

cp A, #CNT_CCWPULSES

jr Z, cnt Set St at eCCWPul seEvent

cp #CNT_CROMNNHOVE

jr NZ cnt Set St at eExi t

B e X
’

CROWN HOMVE

’
chkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhhkhhkhhhhkhkhkhkhhkhkhkhhhhkhhkhkhkhkhkhkhkhkhkhkkkkkx*x*x
’

I d B, #CNTDEFAULTSTATE
CORE_REQ STATE_CHANGE

ret

cnt Set St at eSt at eEntr yEvent :

Timex Corporation

ckkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhhkhhhhhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkkkk*x*%x
’

STATE ENTRY

B o X
’

; Enabl e pul se node to change val ues.
CORE_ENABLE_PULSE_MODE

; Mask start/split key. This event is not needed.
CORE_MASK_KEYS (CNTSW TCHVASK_STARTSPLI T | CNTSW TCHVASK_EL)

Clear the bit indicating that the first set itemis the counter
; dat a.
Id HL, #CNTTenpFl ags
and [HL], #@OW ~bCNTSet Di recti on)

; Refresh the display and request blinking on the editable field.
; Destroys BAReg, HLReg, | XReg.
Input: |1YReg - ASD address.

j r cnt Set Redi spl ayAndReqgBl i nk ; **EXTERNAL JUWP

103

M851 WristApp Design Guide Rev 1.2

cnt Set St at eModeDepr essEvent :
cnt Set St at eSt opReset Depr essEvent :

cnt Set St at eCWPul

chkkkkkhhhkhhkhhhhhhkhkhkhkhkhkhhkhhkhkhkhkhkhkhkhkhkhkhkkkkkk*x*%x
’

; STOP/ RESET & MODE DEPRESS

B R X

; Load the address to HLReg and toggle the set direction flag.
Id HL, #CNTTenpFl ags
xor [HL], #bCNTSetDirection

jr cnt Set Redi spl ayAndReqgBl i nk ; **EXTERNAL JUWP

seEvent :

B o X
’

; CWPULSE (I ncrenent Field Val ue)

chkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhkhkhkhkhkhkhhkhhhhhhkhhkhkhkhkhhkhhkhhkhkhkhkhkhkhkhkhkhkkkkkx*x*%x
’

; Check the itemto be set.

Id HL, #CNTTenpFl ags
bi t [HL], #bCNTSetDirection
jr NZ, cnt Set St at eToggl eDi recti on

; Add counter data by accel eration val ue.

; Destroys BAReg, | XReg, HLReg.

; Input: |1YReg - ASD address

; COREEvent Argunent - Nunber of pul ses

; Refresh the display and request blinking on the editable field.
; Destroys BAReg, HLReg, | XReg.
; Input: |1YReg - ASD address.

jr cnt Set Redi spl ayAndReqgBl i nk ; **EXTERNAL JUWP

cnt Set St at eCCWPul seEvent :

Timex Corporation

ckkkkhhkhkhhkhhhhhhkkkkk*x*%x
’

; CCW PULSE (Decrenent Field Val ue)

B R X

; Check the itemto be set.

Id HL, #CNTTenpFl ags
bi t [HL], #bCNTSetDirection
jr NZ, cnt Set St at eToggl eDi recti on

; Subtract counter data by accel eration val ue.
; Destroys BAReg, | XReg.

; Input: |YReg - ASD address

; COREEvent Argunent - Nunber of pul ses

; Refresh the display and request blinking on the editable field.
; Destroys BAReg, HLReg, | XReg.
; Input: |YReg - ASD address.

104

M851 WristApp Design Guide Rev 1.2

jr cnt Set Redi spl ayAndReqgBl i nk ; **EXTERNAL JUWP

cnt Set St at eToggl eDi recti on:

; Toggl e count - up/ count down bit.

I d A, [1Y + CNTFLAGSOFFSET]
xor A, #bCNTCount Down
I d [1Y + CNTFLAGSOFFSET], A

Clear line 2 only so that the display would not |ook Iike
; gar bage when changing from"DOM' to "UP".
; Destroys AReg, | XReg.

Refresh the display and request blinking on the editable field.
Destroys BAReg, HLReg, | XReg.
; Input: |YReg - ASD address.

jr cnt Set Redi spl ayAndReqBl i nk ; **EXTERNAL JUWP

5.10.7 Background Handler

The following code handles the events passed by the M851 OS to the counter wristapp background handler.
Only the INIT event is seen processed here. The TASKEXI T, PEEK, and APP_SHUTDOWN_FOR_COWM
are handled only as return instructions.

I F @EF(' SUBROUTI NE')
UNDEF SUBROUTI NE
ENDI F
DEFI NE SUBROUTI NE "' cnt Backgr oundHandl er " "

GLOBAL cnt Backgr oundHandl er

cnt Backgr oundHandl er:

; Load the event to be process to AReg.

Id A, [COREBackgroundEvent]
Check if INIT event.

cp A, #COREEVENT_INT

jr NZ, cnt BackgroundPr ocessExit

cnt Backgr oundl ni t Event :

ckkkhhkhkhhkhkhkhkhhhhhhhhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkkkkx*x*x
’

I NI TI ALI ZATI ON THROUGH COVM MODE

B R X
’

Counter initial data.
Data - O

, [CORECur r ent ASDAddr ess]
I'Y + CNTFLAGSOFFSET], A
I'Y + CNTDATALOOFFSET], A
(N

|
|
|
|
| + CNTDATAHI OFFSET], A

[eloRolo R o}

cnt Backgr oundPr ocessExi t:

Timex Corporation

ret

105

M851 WristApp Design Guide Rev 1.2

5.10.8 Display Routines

The following is the code for the Counter display routines.

cnt Di spl ayAr r owOnSDM
cnt Di spl ayAr r owDownOnSDM
cnt Di spl ayAr r owUpOnSDM

I F @EF(' SUBROUTI NE')
UNDEF SUBROUTI NE
ENDI F
DEFI NE SUBROUTI NE "' cnt Di spl ayArr owOnSDM "
GLOBAL cnt Di spl ayAr r owONSDM
GLOBAL cnt Di spl ayAr r owDownOnSDM
GLOBAL cnt Di spl ayAr r owUpOnSDM
cnt Di spl ayAr r owONSDM

Get the status flags.

Id A, [1Y + CNTFLAGSOFFSET]
Check the counting direction.

bi t A, #bCNTCount Down

jr Z, cntDi spl ayArr owUpOnSDM

cnt Di spl ayAr r owDownOnSDM

; Load the character to be displ ayed.
| d L, #DVb_DOWNARROW

jr cnt Di spArr onOnSDMVDI spl ay
cnt D spl ayAr r owpOnSDM

Load the character to be displayed.
Id L, #DVb_UPARROW

cnt Di spArr owOnSDMDI spl ay:

; Display proportional width character.
Destroys BAReg, HLReg, | XReg.
Input: LReg - Characer to be displayed.
| XReg- Starting DM col um.

i d I X, #LCDUPPERDMCOL1

LCD DI SP_SMALL_PRCP_W DTH_DM CHAR
ret

cnt Di spl ayCount er Dat a

| F @EF(' SUBROUTI NE')
UNDEF SUBROUTI NE
ENDI F
DEFI NE SUBROUTI NE "'cntDi spl ayCounterData'"

GLOBAL cnt Di spl ayCount er Dat a

cnt D spl ayCount er Dat a:

Display a large-font, 3-digit DM data with zero suppression
; on leading digit positions.
; Destroys BAReg, HLReg, | XReg.
Input: BReg - 100's digit BCD data.
AReg - Packed 10's and 1's digit BCD data.
| XReg- Starting DM col um.

Timex Corporation 106

M851 WristApp Design Guide Rev 1.2

'Y, [CORECurrent ASDAddr ess]

A, [1Y + CNTDATALOOFFSET]

B, [I'Y + CNTDATAH OFFSET]

| X, #LCDBI GCHARDMCOL8

LCD DI SP_BI G _3DI G T_DM DATA NO _LSD SUP
ret

o0 oo

cnt Di spl ayCount Di recti on
| F @EF(' SUBROUTI NE')
UNDEF SUBROUTI NE
ENDI F
DEFI NE SUBROUTI NE "'cntDi spl ayCountDirection'"
GLOBAL cnt Di spl ayCount Di rection
cnt D spl ayCount Di recti on:

Get the status flags and check the counting direction.

I d 1Y, [CORECurrent ASDAddr ess]
Id A [1Y + CNTFLAGSOFFSET]

bi t A, #bCNTCount Down

jr Z, cntDisplayDirecti onArrowlp

; Display "COUNT DOMN' on the nain DM
LCD DI SP_SVALL_DM MSG_COUNT_DOWN

Di spl ay arrow down on SDM
jr cnt D spl ayAr r owDownOnSDM ; **EXTERNAL JUWP

cnt Di spl ayDi recti onArr owUp:

; Display "COUNT UP" on the nain DM
LCD DI SP_SMALL_DM MSG_COUNT_UP

Di spl ay arrow up on SDM
jr cnt Di spl ayAr r owUpOnSDM ; **EXTERNAL JUWP

cnt Cl ear L2ZAndSDM
| F @EF(' SUBROUTI NE')
UNDEF SUBROUTI NE
ENDI F
DEFI NE SUBROUTI NE "' cnt C ear L2AndSDM "
GLOBAL cntd ear L2AndSDM
cnt d ear L2AndSDM

; Clear SDM
LCD_CLEAR_UPPER_DM

Clear lin

; e 2.
LCD CLR _MAI N_DM LI NE2
ret

cnt Set Redi spl ayAndReqgBl i nk
I F @EF(' SUBROUTI NE')
UNDEF SUBROUTI NE
ENDI F
DEFI NE SUBROUTI NE "' cnt Set Redi spl ayAndReqBl i nk' "
GLOBAL cnt Set Redi spl ayAndReqBl i nk
cnt Set Redi spl ayAndReqBlI i nk:

CORE_REQ BLI NK_4HzZ

Timex Corporation 107

M851 WristApp Design Guide Rev 1.2

; Load the data that contains the current setting item

I d A, [CNTTenpFl ags]
bi t A, #bCNTSet Direction
jr Z, cnt Set Di spAndRegBl i nkSet Dat a

Change the couting direction.
; Display "COUNT DOMN' or "COUNT UP' and "Arrow Down" or
; "Arrow Up" on main DM and SDM respectively.
car cnt Di spl ayCount Di recti on
; Setup the routines to be called for blinking.
LCD_WRI TE_4HZ_CGEN _BLI NK_DI SP_ROUTI NE_ADDR cnt Di spl ayCount Di recti on
LCD WRI TE_4HZ_GEN_BLI NK_CLR_ROUTI NE_ADDR cnt O ear L2AndSDM
ret
cnt Set D spAndReqBl i nkSet Dat a:
Change the counter val ue.
; Displays the counter data on the nain dot natrix using |arge
fonts.
car cnt Di spl ayCount er Dat a

; Display "SET" on 9 segnent.
LCD DI SP_SEG MSG SET

; Setup the routines to be called for blinking.
LCD_WRI TE_4HZ_GEN BLI NK_DI SP_ROUTI NE_ADDR cnt Di spl ayCount er Dat a

LCD_WRI TE_4HZ_GEN_BLI NK_CLR ROUTI NE_ADDR | cdd ear Mai nDM
ret

5.10.9 Utility Routines

The following is the code for the Counter utility routines.
cnt AddDat aBy1

I F @EF(' SUBROUTI NE')
UNDEF SUBROUTI NE
ENDI F
DEFI NE SUBROUTI NE "' cnt AddDat aBy1' "
GLOBAL cnt AddDat aBy1
cnt AddDat aBy1:
push SC

; Use decinmal addition.
UTL_DECI MAL_NATH_MODE

; Value to be added to the counter data.
Id A, #01h

Conmput e the new counter data.
; Popping of SCReg is done inside the routine.
jr cnt AddDat aBy1Ent r yPoi nt
cnt AddDat aByAccel erati on
| F @EF(' SUBROUTI NE')
UNDEF SUBRQUTI NE
ENDI F

DEFI NE SUBROUTI NE "' cnt AddDat aByAccel eration'"

Timex Corporation 108

M851 WristApp Design Guide Rev

GLOBAL

cnt AddDat aByAccel erati on

cnt AddDat aByAccel er ati on: ;. ** SUBROUTI NE
cnt AddDat aByAccel erati on

push SC

; Use decinmal addition.
UTL_DECI MAL_VATH_MODE

Determi ne the accel eration factor for COREEvent Argunent and
; wite factor into AReg.

; Get starting address into the acceleration table then subtract
; it by 1 to get the exact acceleration data. Take note that
the | east nunber of pulses that the systemw |l send is 1.

i d I X, #utl Accel erati onTablelMn - 1

; Get the nunber of pulses.
I d L, [COREEvent Argument]

; Get the acceleration factor.
Id A [IX+ L]

cnt AddDat aBy1Ent r yPoi nt :

cnt AddDat aExi t :

Timex Corporation

; Note for using this as the entry point.

; AReg - Value to be added to the current counter.
; | YReg- Counter ASD address.

; SCReg shoul d be pushed.

; bDeci mal Fl ag shoul d be set.

push (N
Set HLReg and | YReg to point to the data | ow address.
add 'Y, #CNTDATALOOFFSET
Id HL, 1Y
I ncrenent the counter.
add [H], A
inc HL
adc [HL], #O

; Get the current counter data.
I d HL, [1Y]

Check if counter data exceeds its maximum |If it exceeds
then conpute for the excess data so that it woul d | ook
; like it has wraparound.

cp HL, #CNTMAXDATA

jr C, cnt AddDat aExi t

j Z, cnt AddDat aExit

Id HL, 1Y

sub [HL], #@OW CNTMVAXDATA+1)
inc HL

shc [HL], #@H GH(CNTMAXDATA)
pop 'Y

pop SC

ret

12

109

M851 WristApp Design Guide Rev 1.2

cnt SubDat aBy 1

I F @EF(' SUBROUTI NE')
UNDEF SUBRCUTI NE
ENDI F
DEFI NE SUBROUTI NE "' cnt SubDat aBy1' "

GLOBAL cnt SubDat aBy1
cnt SubDat aBy1: ;. **SUBRQUTI NE cnt SubDat aBy1
push SC

; Use decinmal addition.
UTL_DECI MAL_MATH_MODE

Val ue to be subtracted to the counter data.
I d A, #01h

Conmput e the new counter data.
Poppi ng of SCReg is done inside the routine.
jr cnt SubDat aBy1Ent r yPoi nt

cnt SubDat aByAccel er ati on

I F @EF(' SUBROUTI NE')
UNDEF SUBROUTI NE
ENDI F
DEFI NE SUBROUTI NE "' cnt SubDat aByAccel eration'"

GLOBAL cnt SubDat aByAccel erati on
cnt SubDat aByAccel erati on:
push SC

; Use decinmal addition.
UTL_DECI MAL_MATH_MODE

Determi ne the accel eration factor for COREEvent Argunent and
wite factor into AReg.

Get starting address into the accel eration table then subtract
it by 1 to get the exact acceleration data. Take note that
; the | east nunber of pulses that the systemwll send is 1.

Id I X, #utl Accel erationTablelMn - 1

; Get the nunber of pul ses.
Id L, [COREEvent Argunent]

; Get the acceleration factor.
I d A [I1X+ L]

cnt SubDat aBy1Ent r yPoi nt :
; Note for using this as the entry point.
; AReg - Value to be added to the current counter.
; | YReg- Counter ASD address.
; SCReg shoul d be pushed.
; bDeci mal Fl ag shoul d be set.

push 1Y

; Set HLReg and | YReg to point to the data | ow address.
add 1'Y, #CNTDATALOOFFSET

Timex Corporation 110

M851 WristApp Design Guide Rev 1.2

Id HL, 1Y

; Decrenent the counter.
sub [HL], A

inc HL

shc [HL], #O

; Get the current counter data.
I d HL, [1VY]

Check if counter data exceeds its mnumum |If it exceeds
then conpute for the excess data so that it would I ook
like it has wraparound.

cp HL, #CNTMAXDATA
r
r

j C, cnt SubDat aExi t

j Z, cnt SubDat aExi t

Id HL, 1Y

add [HL], #@ OW CNTVAXDATA + 1)

inc HL

adc [HL], #@H GH(CNTMAXDATA)
cnt SubDat aExi t:

pop 'Y

pop SC

ret

5.11 Creating the WristApp

This section will guide you to a series of stepsto build a WristApp. At thispoint, it isassumed that all files
required for the wristapp has been coded (and hopefully reviewed). A WristApp Builder utility is provided
inthe SDK package that will facilitate the process. The utility islocated in the C: \ MB51\ Bl Ndirectory.

& MB51 WristApp Builder

B Tools Hep
B e L e et et e P e P — N ——
{ Appication Parometess i iSouceFiesenp ;
i : H i i
1 ApplcationName [pounte : i | = Apckcation -
i Folder Hame [t i : = Pasameter Fis !
' H ' C:AMESTWAppheoenterisncentpod, azm .
i Dicepien [Courts up and dovn ; : = Header Fils :
i BannerLine 1 [' i CAMASTWApphcounterhicntvars. h :
: : i C:AMES1\Appcounterhient b i
E Brarunar Line 2 | H 1 = Bachonound Hander Fie i
| vasionf ST H ! C:AMB51Wppheounterarcientbokhd, asm i
E o i E = Comeece Fis: E
§ et I - A CAMBS 1 \Apphcounter\srcontdisp am ;
i i : CAMBST\Apphcounterischentutil. asm :
: ;
1 [Passweed Support [~ Databaze Supeset i i =l State 0 i
i |k C:\MES1\Appcounter\srclcatban asm :
: : i = Stabe 1 i
e e e L O = : C-AMBST\App\countersichentded azm :
i HesdeDieclony [E\MBST\ipphcounteith i : = Slabe 2 i
i SowceDrechoey [CAMBST\Apghcourientase : : EHEWHSIM'\cmmm\cmsm azm :
i i H = 1
H Basld Dieaclory [\ g eemben basid : i CAMBS 1 \Appheountersrcientzet aam i
i Inchde Diccloy [CmasT\nclade H - Stale 4 i =
1 X - [
i Apeeble Deecloty [oh.5 i e ol 1- ----------- -|- =t
i W
e o 4
Cioabe Buld Senpty ‘ \Huﬁﬂdﬁmﬁ: | Cimaba Wi | Berashyme Wiislhpp | ‘wimtdipn D)
Ready \ \ ans.-'m\ F50 P
\ Directory Map \ PC Interface Parameter List E Source File Map

Timex Corporation 111

M851 WristApp Design Guide

Section

Rev 1.2

Description

Directory Map

PC Interface Parameter List

Source File Map

Shows the locations of source files, executables, include files, and
assembler files.

Data sourceto fill out the *.APP file used by the PIM to download a
WristApp to a watch.

A hierarchal view of the files associations to the actual wristapp
function.

NOTE: Theinformation displayed in the utility is stored in afile appname.SCR. Thefileis created
! when the build scripts are generated or it was saved through the File\Save menu. Thefileis stored
in the build directory of the application.

5.11.1 PC Interface Parameter List
Fill up al the required information in Application Parameter section.

Field

Description

Application Name

Folder Name

Description
Banner Line 1

Banner Line 2

Version Required

PC Interface

Password Support

Database Support

5.11.2 Source File Map

Descriptive name of the application.

Indicates the application folder name. Entering data in the Folder
Name text box will automatically fill up therequired entriesin the
Directory Map section.

A brief description of the application.

Mode banner message to be display in line either 1 and/or line2. A
blank entry in these two sections will tell the application to use the
mode banner name indicated in the parameter file.

Indicates the M851 firmware version that the wristapp is referencing.

Indicates the PC Interface of the wristapp. Thisinterface will handle
any special requirements of an application prior to download to the
watch. This utility is also responsible for setting up the database that
an application will require.

Indicates if the wristapp is designed to support password protection
that can be checked by the PIM.

Indicates if the wristapp requires a database to be downloaded with the
WristApp. Thisis checked by the PIM.

Add the files associated with the different application sections.

Section

Description

Parameter File

Header File

Background Handler File

Timex Corporation

Application Parameter List file.

List of header files specific to the application. The variablefileisto be
located in thislist.

Background Handler sourcefile. The background handler routineis

112

M851 WristApp Design Guide Rev 1.2

located as the first module in the common section.

Common Files List of filesto be located in the common section of the overlay area.
Generally, the utility files and the display source files are located in
thislist.

State n File Soresthe source file of an associated state index.

There are two procedures in adding files into each section of the Source File Map.
Using the Add File button;
Using Drag & Drop method from File Explorer.

Adding a Fileusing the Add File button.

Click on a section where the new file is to be added (the figure shows the “ Parameter File’ being
selected. Then click on the “Add File” button to open up the Open dialog window.

* MBS WristApp Builder

Ele Teak Hep
Appicaion Pasnel e Sownee Fie Seup
Acpbaim Nane [Countes Wosdpp = dppleabon -
Folder Mame
leospio Hezde: Fiz
[crntion |Coanbe up and domn Ezckagraund Handber Fil
Boadiresr Lire 1 | Comman Fiex
5 Shain
Banner Line 2 | a1
Yecin Amuired [0 Sz
el 3
FC Irinfacn | = Chaie 4
St G
[T Pesesscid S upport [~ [atabeses Buppaot Chstm
Sheln T
Shaln B
] Shata S
Headei Dircioy [CAMBS) wapph courberth | Crak 10
Souss Disciny. [CME SAro! oumer e = ;T;;}L
Bl Diia ooy | MR wapp counberbuld o < Siele 13
Inchac Ditectony [c S e Sl %
ek Direclony [Choi g 4ddFie | RemoveFie |
Creale Buld Soripls | R Bidd Sciiph Create 'winshdpo Ainahes Wi sl | wisldpp O osnlnsde)
Fiesc [BARZNZ [J45FM

Select the file to be added in the section and click Open. The figure below shows thefile
“CNTPOR.ASM” selected.

Timex Corporation 113

M851 WristApp Design Guide

Rev 1.2

CIs =] o+ B
O N X ¥ ¥ B
m obanesn orBdHdesn ol OdeD
g mpw
=7
W Dooumedts
o
Wy Congaies
Hmpama: E— j
e ol fros Soura Flea) Ei
T Cpen pa madonly

After this operation, the file CNTPOR.ASM will be added under the “ Parameter File” section.

See figure below.

o MEST WristApp Builder

Ble Teols Hep
Appicaion Pasneies Sounee Fie Sep
Aophcaie Name [Countes Wisdpp = hpgeakion -
Folder Mame [eomiee EHRSHEE
C:% HWEST Wip phoountar srchontpor. asm
e coion |Coante up and domn Heade Fie
Banrer Line 1 | + - Backgpound Hard e Fis
Comman Filez
Banner Lins 2 |' | mLamn
Merion Ae=quisd — [75070 x*;
=
FC Intnface | | Chate 3
| e d
[T Passmcd S upport [~ [atabeses Suppot (oSt S
- kel B
Staln T
] Srain 2
Heace: Ditsciory [CAMES1 Mg couimrth | e g
Souipe omciny [CAME Yo' coureettas e Bty
B Diia chosy [MEET ' counkerbuld =9 e P
Inchade Dikeciony ||:"rrﬂ'5“1-.'|1uﬁ Shale 13 -
Amsserbler Divectony [z | RemaveFie |
Crmale Busld Sovipls | R Bisd Sciipl Create 'winshdpo Ainahee W Ebieg | SwiEldpp O cenlnmde)
Fisack [GA6a0z [J45PM

Adding afileusing File Explorer.

Click on a section where the new file is to be added (the figure shows the “Header File” being

selected.

Timex Corporation

114

M851 WristApp Design Guide

Rev 1.2

o MEST WristApp Builder

He Teas Help
Appicaion Pasneies Sounee Fie Sep
Acpkcaliri Mane [Counkes Wistd o = Apgleaton %
Folder Hame H
|¢Mle- C:% WEST Wip phoountar srchontpor. asm
e coion |Coante up and domn Heade Fie
Boadiresr Lire 1 | - Backgound Hardler Fils
Coamrinn Filez
Banner Line 2 |' | mLamn
Merion Ae=quisd — [75070 i x*;
=
FC Intnface | | | Ciape
| e d
[T Passmcd S upport [~ [atabeses Suppot (oSt S
- kel B
Staln T
] Srain 2
Heace: Ditsciory [CAMES1 Mg couimrth = e g
Sowes Dwecloy [CyvEmn Lo councert s = | xj:_ln
B Diia chosy [MEET ' counkerbuld =9 e P
Inchade Diiectony |2l ncice ~Ghele 13 -
Aasenrbler Divectony |22 sddfie | Removeric |
Crmale Busld Sovipls | R Bisd Sciipl Create 'winshdpo Ainahee W Ebieg | SwiEldpp O cenlnmde)
Fisack [GA6a0z [J44PM

Open File Explorer and select the files to be added. Then click on the highlighted files and drag
them over the Source File Setup List window.

@ MBS WristApp Builder

Ele Tools Hep
Appication Paamatens: Sowrce Fia Sehup
Apphcation Mame |counter = Apphcainn ~
Folder N = Parameter File
i lesanir C:AMBS T \App\cosmer\eic\entpog azm
Descrphon |Conrts up s dowm
barwiiet [Bachgpoumd Hands Fls
Cosnenoe: Filss
s Line 2 Siate)
Wexsion Fequied glde;
)
FE Ireadace] i State 3
Slate 4
™ Passvoed Support [~ Database Support State 5 -
State &
Stabe 7
Headed Daecloy [C\MBS1\ipph coumter\h =]
Sousce Dwectoey [CAMBS \Apgccorterane =] \ [4=]l:3
Buld Divectory [T T P p———y] =] Stae | Be Edt Vew Fportes ook 3
Inchide Dieeclony [cnds nchade Stae - ~
Que- O & Pt W | -
Aisrsmmbles Dpecton lehesg Add File
Sgkess | () ComES appoounter ¥ kds
- TR
Create Buld Scrpls [Fun Budd Scpts Cieate Wistipp | Ay = 3 =851 =
= [a0 anth entvareh
=) counder
Fiendy [=1F]
=2h
(=11
(=]
) e
) My Ingtakatons
[NI
B) Program Fies ol

After this operation, the files CNT.H and CNTVARS.H will be added under the “Header File”

section. Seefigure below.

Timex Corporation

115

M851 WristApp Design Guide Rev 1.2

= MEST WristApp Builer

He Teas Help
Appicaion Pasneies Sounee Fie Sep
Aophcaie Name [Countes Wisdpp = dppleaton -
Foldar Mame o =i Paranebs Fle
C:% WEST Wip phoountar srchontpor. asm
[cdion [Couniz Lp and down -
Bumrit i f | L% MBS Whp phycosnber b colvas b
’ C-AMBS W phcounbeihcal b
Banner Line 2 | Ezackgcund Harnd) Fikz
VemionFequmd [r ;‘:“E“F“*
B
FC Irinfacn | L= Crate
Shatm 2
[T Passmcd S upport [~ [atabeses Suppot | Shete 3
Shale d
Staln 5
] Srain £
Headei Diwcloy [CpBS) woppt courbersh LR Cra 7
Sowce Deecloy. [EMBRT Waro coumerte = | 3;:2
Biic] Dia chony | MR i counber\buld Eo s - Srels 10
Inchade Dikectuy [ci hnchace : Sale 11 5
Aaserbla Dircloy ||:-v‘ﬂ-ﬂ 3 i add Fie] Azmrave Fie |
Crmale Busld Sovipls | R Bisd Sciipl Create 'winshdpo Ainahee W Ebieg | SwiEldpp O cenlnmde)
Fisack [GA6a02 [T44PM

The figure below shows all the files added into their respective sections for the counter wristapp.

MBS WristApp Builder

He Teak Hep
Apdiation Paameiens: | Gosape Fils Bebp
Applcalon Hama [Counte: Wbt = P -
Foider Hame |comts =i Paramebes Fim
. e — C:AWEST Whpph counbs S achemlpor. asm
Dies ericticis [Counie L 2ngt dawin £1- Hrade Fin
Banner Lins 1 [CoNMEST WA eounte ey b
bl B ufup ph counba A eal b
Bnner Lin= 2 [= Bechgrcand Haedlel Fis
r Lz % MBS W ph oounts mrohontbokid. asm
Werson Requed E
= Common Fies
Bl | = C:AMBST Wpphountsmchentdap asm
0N WS] WA P b s ot aem
[Paswwcid Suppon [~ Dt bacs Supeo = Sxaln)
I S b BS Yo ph cosunbe i s el Bsana sm
=1 Stae 1
IC: Y WS Wi ph cownts S ocherids . asm
Hewdei Disclony [C:MES Wapph ounkerih = L Chen
Soupe Dimctarr [CAMESA Mt courteriars | i SIHC.:BNHH1WMMIWII:W$M#I
= 1
Buadd Dl ctonge [CAMEET Yo' rourter uld £, L4 MBS Wnpheounter sichent s el asm
(Y= LRSI == pyeprpey e -
Ak it [o4000 : ! | -) |
Creale Buld Soripis | Rur Buld Sciipls | Cieate ‘wieshdpo ansheswiktipp | wisltpp O osnlnsde
Fiesdy |51 BA2002 .33 FM

5.11.3 Saving the Current Workspace

Selecting File\Save menu option will store the current workspace under the filename
C. \ MB51\ APP\ appnane\ bui | d\ appnane. scr. It can beloaded again by using the File\Open
menu option.

5.11.4 Creating the Build Scripts

Clicking on the “Create Build Scripts’ button will create al the required scripts that automates the
assembly and linking of the source files. All script fileswill be created under the

Timex Corporation

116

M851 WristApp Design Guide Rev 1.2

C:. \ MB51\ APP\ appnane\ BUI LDdirectory. This processwill also save the current workspace under
the filename C: \ 851\ app\ appnane\ bui | d\ appnan®e. scr.

Create Build Scripts |

M851 WristApp Script Builder

-
1 r) Successful Generation of WristApp Build Scripts
"-L\

Once the build scripts are created, it is not required to create them again during the debugging process.

5.11.5 Executing the Build Scripts

Clicking on the “Run Build Scripts’ button will execute all the scripts generated in the previous section.
This process will open up acommand window where all the required scripts are executed. The build
process will take some time to complete.

Fun Build Scriptz

M85 1 WristApp Script Builder

L] E Assembling the application. Wait until the build window doses before selecting OK.
L3

CAWINDOWS\System3 2\cmd.exe

Mot Find G:mB51i“app*countersbuildx=*_out
Mot Find C:“\mB85i“app“countersbuilds*.err
Mot Find C:sm85%1%app>countersbuilds*.1nl
Mot Find C:wmB5iappscountersbuilds*.cal
Mot Find C:mB5i“app>countersbuilds*_bhak
Mot Find C:sm851i“app“countershuilds*_ers
assemhler vi.2 »3 SNBUEOEAEA-B61 (c> 2808 TASKING,

Section summary:

MR ADDR SIZE CYCLE NAME

1 AAF3I1A BBea 351 _text
EACE8 obhject linker vwi.2 »3 SHEPABRARA-A23 (c> 2800 TASKING,
EACE8 locator vi.2 p3 SNBUBERABA-@33 (c> 2808 TASKING.
SYMBOL GEMERATION UTILITY <EPSON EQC88>
Version 1.68

MAKE EQUATE UTILITY <EPSON EOQC88>
Verzion 1.86

1 file<s> copied.
EACE8 assembler vwl.2 »3 SNEBRBRBRE—-B61 (c> 2088 TASKING.

Build Window

Timex Corporation 117

M851 WristApp Design Guide

Rev 1.2

A successful build of the code sections for the counter will generate the following SRE files:

COMMON.SRE

STATEO.SRE
STATE1.SRE
STATE2.SRE
STATE3.SRE

1 NOTE: Wait until the build process is complete. Do not click on the “ Create WristApp” button
e until the command window is closed.

'*_-., WARNING: Executing the build scripts does not nescessarily mean that all the code sections has
. been compiled properly.

5.11.6 Creating the WristApp Downloadable Files
Clicking on the “ Create WristApp” button will create the files that are downloaded to the watch.

Create Wiistipp |

If al the code sections has been compiled properly with no compile and build errors, the distribution files
are generated for download and testing.

M851 WristApp Script Builder X

\1;) Succeszful Generation of WristApp Files

The distribution files are described bel ow:

File

Description

appname.app

appname.txt

appname_par_nnn.bin

Timex Corporation

Thisfileisreguired by the PIM. This contains information about the
application such as: user mode banner names, the code file, the
parameter file, password support, firmware version requirements and
PC WristApp Interface file.

The appname is the name of wristapp.

Description file for the PIM. Thisis a template only. Modify this
template and save it under another directory for distribution

The parameter file contains information required by the watch that
determines how the watch behaves in the system and its resource
requirements.

appname is the name of wristapp.
nnn is the version number of the required M851 firmware.

118

M851 WristApp Design Guide

appname_code_nnn.bin

Rev 1.2

Thisisthe WristApp code stored in a format that the watch can readily
grab the correct section to be loaded into the overlay area for
execution.

The appname is the name of wristapp.
nnn is the version number of the required M851 firmware.

For the counter wristapp, these are the following files generated:

counter.app
counter.txt
counter_par_018.bin

counter_code 018.bin

If there are no errorsin the source files, al the required files to build the downloadabl e file will be available
and executing the Create WristApp Downloadable Files would be compl eted.

in the screen snapshots below), this indicates that the build script was unable to complete compiling the
section due to errorsin the source files attached to a section.

Source files attached to the COMMON section have errors.

M851 WristApp Script Builder

@ C:'\M351%ppoounter puild \STATED.SRE not found. Correct errors and Run Build Scripts again.

Source files attached to the STATEO section have errors.

If an error exists then you can view the source of the errors by opening the following files:

File

Description

sourcename.ers

sourcename.elk

Timex Corporation

Thiserror fileis generated by the assembler (AS88.EXE). If
successful, the output of the assembler isan OBJ file.

The sourcename could be the section that generated the error. For
example: common.ers, state0.ers, statel.ers or param.ers.

Thiserror fileis generated by the linker (LK88.EXE). If successful, the
output of the linker isan OUT file.

119

M851 WristApp Design Guide

sourcename.elc

Rev 1.2

The sourcename could be the section that generated the error. For

example: common.elk, state0.elk, statel.elk or param.elk.

Thiserror fileis generated by the locator (LC88.EXE). If successful,

the output of the locator isan SRE file.

The sourcename could be the section that generated the error. For

example: common.elc, state0.elc, statel.elc or param.elc.

5.11.7 WristApp Memory Usage Analysis

Clicking on the “ Analyze WristApp” button will open up awindow that shows the memory usage of the
wristapp and determines if it can fit in the overlay memory area of the M851. A sample display is shown

below. The maximum overlay usage must be within the 900 byte limitation.

Analyze Wristhpp |

w. WristApp Memory Usage Analysis

Code File:

EEFROM Memom Usage
Code Size

Common Section Uzage:
b aimum State Uzage:

b airnum Dverlay Uzage:

Dverlay Size:

counter_code_018.bin
640
b6
241
183
429
300

Section | Memaory L zage

Comman 241

State 0 ¥

State 1 188

State 2 18

State 3 115
e

5.11.8 Downloading and Testing the WristApp

Clicking on the “WristApp Downloader” button will execute the “M 851 WristApp Download Utility”.
Once open, click on the “Browse” button and select the appname.app indicated in the previous section.

Timex Corporation

120

M851 WristApp Design Guide

Wnsthpp Downloader |

851 WristApp Download Utility

Wiristbpp APF File:

|I::‘-.m851 happhocountersbuildycounter, app

APP File Contents:

[wristApp]

M ame=counter
Description=Caounts number of clicks
Linel=

LineZ=

erzsion Required=018
FPaR=counter_par_018.bin
CODE=counter_code_013.bin
DB=counter_dbaze_018.bin
Fazsword Support=

App Interface=

[Ii

Download

APP lisioce|
_ Download |

Rev 1.2

Connect the watch to the PC using the USB cable. Once the watch displays“COMM READY”, click on

the “Download” button of the utility.

NOTE: The M851 WristApp Download Utility can be executed directly. It islocated in the

L, C:\M851\BIN directory.

If the downloaded WristApp has some execution errors, it may break the system by overwriting system
variables or writing to hardware and LCD registers. Thiswould lead to unpredictable operation on the
watch. In most cases, the system can detect certain conditions and automatically initiate a reset of the
watch. If the automatic detection does not work, then the following steps below can be taken to reset the

watch.

Initiate a software reset. Thisinvolves by first pushing the crown in, then holding al the three
buttons (2 side pushers and 1 top pusher) down for 4 seconds (or whatever time the nightmode
toggle duration was specified). The software reset will work only if the watch OSis still working.
If this procedure does not work, then the hardware reset described next is the only procedure that

will work.

Hardware reset. This requires ajewelers screwdriver to open up the case back (4 screws) and
shorting the two pads indicated by the battery label marking (RESET or A/C) and an arrow

pointing to the reset pads.

Timex Corporation

121

M851 WristApp Design Guide

5.11.9 Creating a Description File

Rev 1.2

Prepare a description file that will be used by the PIM to describe the wristapp. The filename is the same
asthe app file name. In this example, the description fileis: COUNTER.TXT. Thetext below shows a
sample entry for the description file in aregular text format. The PIM will be searching for an HTML
formatted file (*.HTML) first. If not available, it will search for aregular text file (*.TXT) or an HTML

formatted file (*.HTML).

WRI STAPP: COUNTER

Descri ption

The wristapp sinulates a mechani cal

count up or count down operation

The arrow in the upper dot matrix
wri st app
down operation

The digit
Swi t ches:
MODE -
START/ SPLI T -

STOP/ RESET -

CROMW- SET - pul |

There are two fields that can be set

(1) counter start value
(2) counter direction

Swi t ches:

MODE -
STOP/ RESET -
CROW- HOME -
CROWN- CW CCW -

count er. app -
counter. txt -
counter_par_018. bin
count er _code_018. bin -

appl i cation
application
application
appl i cation

Timex Corporation

Arrow Up indicates a count-up

counter. The user can select either a

region indicates the operation of the
Arrow Down i ndi cates a count

in the main dot matrix region indicates the current count.

proceed to the next node or primary time zone

increment or decrenent the count depending on direction

hold to reset the counter

crown to set to set the counter start value and direction

in this setting operation

proceed to the next setting field position with wap around
proceed to the previous setting field position with wap around
push crown to honme to conplete setting operation

change value of the current setting field

info

description (this file)
initialization paranmeter |ist
code

122

M851 WristApp Design Guide Rev 1.2

5.11.10 Distributing the WristApp

The following files generated by the system and one manually created by the user will be used for
distribution of the wristapp.

Filename Description

application_name. APP Information file required by PIM.

application_name. TXT Description of the wristapp and its operation.

Application_name. HTML Description of the wristapp and its operation in HTML
format.

application_name PAR_018. BI N Parameter file required by M851 OSto initialize the

wristapp in the system.
application_name CODE_018. BI N WristApp code.
application_name DBASE 018. BI N WristApp database file.

application_name. DLL WristApp PC interface

The counter wristapp distribution files:

Filename Description

COUNTER. APP Information file required by PIM.

COUNTER. TXT Description of the wristapp and its operation.

COUNTER PAR 018.BI N Parameter file required by M851 OSto initialize the wristapp in
the system.

COUNTER_CCDE_018.BIN Counter WristApp code.

The distribution files can be copied into the APP directory of the Timex Data Link USB PIM. Use the Add
Mode button to select the WristApp for download into the watch.

6 Trademarks

TIMEX is a registered trademark and service mark of Timex Corporation.

TIMEX DATA LINK and WristApp are trademarks of Timex Corporation in the U.S. and other
countries.

Night-Mode is a registered trademark of Timex Corporation.

INDIGLO is a registered trademark of Indiglo Corporation.

Timex Corporation 123

